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Abstract—In this paper, the nonlinear matrix equation is 

investigated. Based on the fixed-point theory, the boundary and the 
existence of the solution with the case ir δ> −  are discussed. An 
algorithm that avoids matrix inversion with the case 1 0iδ− < <  is 
proposed. 
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I. INTRODUCTION 
N  this paper, we consider the nonlinear matrix equation 

 
                        *

1
i

mr
i ii

X A X A Iδ
=

+ =∑                             (1) 
 
where r , m  are positive integers, I  is an n n×  identity matrix, 

( 1,2, , )iA i m= "  are n n×  nonsingular complex matrices and 
*
iA  is the conjugate transpose of iA . As nonlinear matrix 

equations have applications in control theory, dynamic 
programming ladder networks and other fields, similar kinds of 
nonlinear matrix equations have been widely studied [1]-[4]. 
The case when 1m = , i itδ = −  is one of the important study 
fields of the numerical algebra [5], [6]. To solve such matrix 
equations, numerical solutions are usually taken into 
consideration.  

Different iterative methods including a kind of 
inversion-free method have been put forward and improved 
[7]-[9]. 

A. M. Sarhan et al. have studied the extremal positive 
definite solutions of (1) when 1 0iδ− < <  holds [10]. They have 
given a necessary condition and a sufficient condition for the 
existence of the solution and also, several algorithms are 
derived to compute the extremal (maximal or minimal) positive 
definite solutions. 

In this paper, we first continue to discuss (1) with 
( )0i ir δ δ> − <  and then we have several results for the definite 

solution of the equation. We also give an iterative algorithm 
that avoids matrix inversion, and according to this method we 
obtain the maximal solution when 1 0iδ− < < . Finally, we use 
some numerical examples to illustrate our algorithm. 
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The notations used in this paper are summarized as follows. 
( )0 0A A≥ >  means that matrix A  is Hermitian positive 

semi-definite (definite); the maximal and minimal eigenvalues 
of A  are denoted by  max ( )Aλ  and min ( )Aλ , respectively; A  
and 

F
A represent the spectral norm and the Frobenius norm of 

A , respectively. For matrix 1 2( , , ) ( )n ijA a a a a= =" , ( )vec A  is a 

vector defined by 1 2( ) ( , , )T T T T
nvec A a a a= " ; ( )ijA B a B⊗ =  is a 

Kronecker product. 
Lemma 1 If 0A B> >  (or 0A B≥ > ), then A Bα α> (or 

0A Bα α≥ > ) for all ( ]0,1α ∈ , and A Bα α< (or 0 A Bα α< ≤ ) for 

all [ )1,0α ∈ − [11]. 
Lemma 2 If C  and P  are Hermitian matrices of the same 

order with 0P > , then 1 2CPC P C−+ ≥ [12]. 
Lemma 3 If 0 1α< ≤ , and P and Q  are positive definite 

matrices of the same order with , 0P Q bI≥ >  then 
1P Q b P Qα α αα −− ≤ − . Here i  stands for one kind of matrix 

norm[11]. 

II. THE MAIN RESULTS 
Now, we consider the following nonlinear matrix equation 
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X A X A I−
=

+ =∑ , 0 1it< <                  (2) 
  
Theorem 1 If ( )0, 1,2,i ir i mδ δ> − < = " , then (1) is 

equivalent to (2). 
Proof. Consider *

1
i
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X A X A Iδ
=

+ =∑ . let rY X= , then 
1/ rX Y= , /i i rX Yδ δ= . The equation can be rewritten as 

/*
1

i
m r

i ii
Y A Y A Iδ

=
+ =∑ . Since ir δ> − , 1,2,i m= " , we have 

1 0i

r
δ

− < < , that is 0 1i

r
δ

< − < . Replace /i rδ  with it− , then 

*
1

i
m t

i ii
Y A Y A I−

=
+ =∑ , 0 1it< < . So (1) is equivalent to (2). 
As for ir δ> − , the solution of (1) can be obtained by (2). In 

the following theorems, we will discuss the solution of (2). 
Theorem 2 If (2) has a HPD solution, then we have 

1 2( , )X T T∈ , where  
 

1/* * *
1 1 2 2 1 2 1

1 1 1

1max( , ), , ( ) ,i i

m m m
t t

i i i i i i
i i i

T M M T I AA M AA M I AM A
m

−

= = =

= = − = = −∑ ∑ ∑    (3) 
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Proof. If (2) has a HPD solution X , then 
*
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X I A X A I−

=

= − <∑ , i.e., X I< . Moreover, *
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X I A X A−

=

= − <∑  

*

1

m

i i
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I A A
=

− ∑ . On the other hand, *
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m
t

i i
i

A X A I−

=

<∑  implies 

* it
i iA X A I− < , hence 1/*( ) it

i iX A A>  and 1/*

1
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i i
i

mX A A
=

> ∑ , i.e., 

1/*
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1

1 ( ) i
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i

X A A M
m =

> =∑ . Further, *
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X I A X A I−

=

= − > −∑  

*
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A M A M−

=

=∑ . Let 1 1 2max( , )T M M= , *
2

1

m

i i
i

T I A A
=

= − ∑ , then 

we have 1 2( , )X T T∈ . 
Lemma 4 Let X  and Y  be positive definite matrices, 

satisfying X Iα≥ , Y Iα≥  where α  is a positive number. 
Then 1t t t

FF
Y X t Y Xα− − − −− ≤ −  where 0 1t< < [10]. 

Theorem 3  If *
1 1

1
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m
t

i i
i

M A M A I−

=

+ <∑ , then (2) has solutions in 

1 2[ , ]T TΩ = . And, if 1 2I T X Tα ≤ ≤ ≤  (where α  is the minimum 

eigenvalue of 1T ) and 21

1
1i

m
t

i i F
i

t Aβ α − −

=

= <∑ , then (2) has a 

unique HPD solution. 

Proof. We consider the map *

1
( ) i

m
t

i i
i

f X I A X A−

=

= − ∑ , and 

1 2[ , ]X T T∈Ω = . Since X I<  and 1 1X T M≥ ≥ , ( )f X I= −  

* *
2

1 1

i

m m
t

i i i i
i i

A X A I A A T−

= =

< − =∑ ∑  and  *
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f X I A X A I−

=

= − ≥ −∑  
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A M A M−

=

=∑ . Since *
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M A M A I−

=

+ ≤∑ , we have ( )f X ≥  

*
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I A M A M−

=

− ≥∑ . Hence, ( )f Ω ⊆ Ω , then by Brouwer’s 

fixed point theory, (2) has solutions in Ω . For arbitrary 
,X Y ∈Ω , we have X Iα≥ , Y Iα≥  and ( ) ( ) (f X f Y I− = −  

* * *

1 1 1
) ( ) ( )i i i i

m m m
t t t t

i i i i i
i i i

A X A I A Y A A Y X A− − − −

= = =

− − = −∑ ∑ ∑ .Then, 

2*

1 1

( ) ( ) ( )i i i i

m m
t t t t

i i iF F F
i iF

f X f Y A Y X A A Y X− − − −

= =

− = − ≤ −∑ ∑ . 

By Lemma 4, we derive  
21

1
( ) ( ) i

m
t

i iF F F F
i

f X f Y t A X Y X Yα β− −

=

− ≤ − = −∑ . 

Since 1β < , by Banach’s fixed point theory, (2) has an 
unique solution in Ω . 

Algorithm 1 Consider the following algorithm 
0X Iα=  

*
1

1
, 0,1,2,i

m
t

k i k i
i

X I A X A k−
+

=

= − =∑ "  

Theorem 4 Suppose that ( 1,2, )iA i = " are nonsingular 
complex matrices, and we consider the sequence of positive 
definite matrices { }kX  derived from Algorithm 1. If (2) has a 

PHD solution X  and 1α > , *

1
(1 )i

m
t

i i
i

A A Iα α−

=

> −∑ (or 0 1α< < , 

*

1
(1 )i

m
t

i i
i

A A Iα α−

=

< −∑ ), then { }kX is monotonic decreasing (or 

increasing) and converges to the maximal solution (or the 
minimal solution). 

Proof. Compare to the proof of Theorem 1 and Lemma 4 in 
[10], and replace iδ  with it− , 1r = , we can easily get the 
result. 

III. AN ITERATIVE METHOD THAT AVOIDS MATRIX INVERSION 

FOR 1 0iδ− < <  

We consider the following nonlinear matrix equation 
 

*
1

i
mr

i ii
X A X A Iδ

=
+ =∑ ,    ( 1 0, 1,2, , )i i mδ− < < = "         (4) 

 
Let i iη δ= − , 1,2,i m= " . Since 1 0iδ− < < , then 0 1iη< < . 
Algorithm 2 Consider the iterative algorithm 

0

* 1/

1

1

( )

(2 ), 0,1,2,

i

m
r

k i k i
i

k k k k

Y I

X I A Y A

Y Y I X Y k

η

=

+

=

= −

= − =

∑
"

 

Theorem 5 Let ( )1,2, ,iA i m= " be nonsingular complex 

matrices and satisfy the condition *

1

m

i i
i

A A I
=

≤∑ . And if (4) has a 

positive definite solution X , then the sequence of positive 
definite matrices { }kX   derived from Algorithm 2 is monotonic 
decreasing and converges to the maximal solution LX . 

Proof. Let X  be a HPD solution of (4). Then X I≤  and 

hence * 1/ * 1/

1 1
( ) ( )i

m m
r r

i i i i
i i

X I A X A I A Aδ

= =

= − ≤ −∑ ∑  that is, X ≤  

* 1/

1
( )
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r

i i
i

I A A
=

− ∑ . Therefore, by algorithm 2, we have 

* 1/ 1
0 0

1
( ) ,

m
r

i i
i

X I A A X Y I X −

=

= − ≥ = ≤∑ . By Lemma 2 and Lemma 

3, we have 1 1
1 0 0 0 0 02Y Y Y X Y X X− −= − ≤ ≤  and 

1 0 0 0 0 0Y Y Y Y X Y− = − =  1
0 0 0 0 0( ) 0Y Y X Y I X− − = − ≥ , that is, 

1
1Y X −≤ and 1 0Y Y≥ . It follows from Lemma 1 that 1X =  

* 1/
1

1
( )i

m
r

i i
i

I A Y Aη

=

− ≥∑  * 1/

1
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i

I A X A Xδ

=

− =∑ and * 1/
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1
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X I AY Aη

=

= − ≤∑  

* 1/
0 0

1
( )i

m
r

i i
i

I A Y A Xη

=

− =∑ , that is, 0 1X X X≥ ≥  and 1
0 1Y Y X −≤ ≤ . 

Assume that 1k kX X X− ≥ ≥  and 1
1k kY Y X −

− ≤ ≤ , 2,3,k = " , we 

have 1 1
1 2k k k k k kY Y Y X Y X X− −

+ = − ≤ ≤  and * 1/
1 1

1
( )i
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k i k i
i

X I A Y A
η

+ +
=

= − ≥∑  
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i

I A X A Xδ

=

− =∑ . 
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Further, since 1 1
1k k kY X X− −

−≤ ≤ , i.e., 1
k kY X− ≥ , we have 

1
1 ( ) 0k k k k k k k k k kY Y Y Y X Y Y Y X Y−

+ − = − = − ≥ and * 1/
1 1

1
( )i

m
r

k i k i
i

X I AY Aη
+ +

=

= − ≤∑   

* 1/

1
( )i

m
r

i k i k
i

I A Y A Xη

=

− =∑ . By induction, we derive the following 

results 0 1 kX X X X≥ ≥ ≥ ≥"  and 1
0 1 kY Y Y X −≤ ≤ ≤" . 

 Apparently the limits of { }kX and { }kY  exist. Taking limit 

in the Algorithm 2 leads to  1lim (lim )k kk k
Y X −

→∞ →∞
=  and (lim )r

kX +  

*

1
(lim ) i

m

i k i
i

A Y A Iη

=

=∑ , i.e., *

1
(lim ) (lim ) i

m
r

k i k i
i

X A X A Iδ

=

+ =∑ . So, we 

get lim kk
X

→∞
 is a HPD solution of (4). As , 0,1,2,kX X k≥ = "  

holds for any HPD solution of (4), we derive  lim k Lk
X X

→∞
=  

where LX  stands for the maximal solution.  
Theorem 6 After k  iterative steps of Algorithm 2, if  

k kI X Y ε− < , then *
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r
k i k i

i
X A X A I pδ ε

=

+ − <∑ where 21
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p T Aη−

=

= ⋅∑ . 

Proof. Since *
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δ δ η
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+ +
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A X Y Aδ η
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Use of Lemma 3, we have  
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                               21

1

m

k k i i
i

X Y A η−

=

≤ − ⋅∑ . 

Since 1kX X T≥ ≥ , which implies 1 1
1kX T− −≤  and 

1 1 1 1
1( )k k k k k k k k k kX Y X I X Y X I X Y T I X Y− − − −− = − ≤ ⋅ − ≤ ⋅ − . 

Then, 2* 1
1

1 1

i

m m
r
k i k i k k i i

i i

X A X A I I X Y T A pδ η ε−

= =

+ − ≤ − ⋅ ⋅ <∑ ∑ .  
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