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Abstract—Nowadays, more engineering systems are using some 

kind of Artificial Intelligence (AI) for the development of their 
processes. Some well-known AI techniques include artificial neural 
nets, fuzzy inference systems, and neuro-fuzzy inference systems 
among others. Furthermore, many decision-making applications base 
their intelligent processes on Fuzzy Logic; due to the Fuzzy 
Inference Systems (FIS) capability to deal with problems that are 
based on user knowledge and experience. Also, knowing that users 
have a wide variety of distinctiveness, and generally, provide 
uncertain data, this information can be used and properly processed 
by a FIS. To properly consider uncertainty and inexact system input 
values, FIS normally use Membership Functions (MF) that represent 
a degree of user satisfaction on certain conditions and/or constraints. 
In order to define the parameters of the MFs, the knowledge from 
experts in the field is very important. This knowledge defines the MF 
shape to process the user inputs and through fuzzy reasoning and 
inference mechanisms, the FIS can provide an “appropriate” output. 
However an important issue immediately arises: How can it be 
assured that the obtained output is the optimum solution?  How can it 
be guaranteed that each MF has an optimum shape? A viable solution 
to these questions is through the MFs parameter optimization. In this 
Paper a novel parameter optimization process is presented. The 
process for FIS parameter optimization consists of the five simple 
steps that can be easily realized off-line. Here the proposed process 
of FIS parameter optimization it is demonstrated by its 
implementation on an Intelligent Interface section dealing with the 
on-line customization / personalization of internet portals applied to 
E-commerce. 
 

Keywords—Artificial Intelligence, Fuzzy Logic, Fuzzy Inference 
Systems, Nonlinear Optimization.  

I. INTRODUCTION 
EVELOPING  intelligent applications is not a new 
subject. However, developing intelligent applications that 

ensure an “optimum” solution is of great interest to Artificial 
Intelligent (AI) researchers. Intelligent applications normally 
include a proper methodology among a wide variety of AI 
techniques such as, Artificial Neural Nets, Fuzzy Inference 
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Systems (FIS), Neuro-Fuzzy Inference Systems, [1]; and 
Rough Sets implementations [8]. In Fuzzy Set Theory [1], 
ambiguous data can be represented by Membership Functions 
(MFs). An MF normally maps a smooth transition from 
“belonging to a set” to “not belonging to a set”.     

Parameterized functions, commonly used to define MFs of 
one dimension, include non-continuous MFs (Triangular MF, 
Trapezoidal MF) over the entire input domain; and continuous 
MFs (Gaussian MF, Generalized bell MF, or bell MF, and 
Sigmoidal MF among others) over the entire input domain.  

Fuzzy inference systems (FIS) are based on fuzzy rules  (IF-
Then) and fuzzy reasoning [1]. The extension principle 
provides a general procedure for extending crisp domains of 
mathematical expressions to fuzzy domains. Normally, the 
human terms or linguistic values are defined by fuzzy sets on 
two universes of discourse: one named as the antecedent or 
premise, whereas the other is called the consequence or 
conclusion [1].  

Fuzzy reasoning is an inference procedure that obtains 
conclusions from a set of fuzzy IF-THEN rules and known 
facts; and is also known as approximate reasoning. The 
compositional rule of inference plays a key role in fuzzy 
reasoning. A special case of this rule is the extension 
principle. In approximate reasoning, there are two important 
inference rules: a generalized modus ponens (GMP) and a 
generalized modus tollens (GMT).  

The concepts of fuzzy set theory, fuzzy IF-THEN rules, and 
fuzzy reasoning are the basis of the framework called fuzzy 
inference system. Thus, three conceptual components form the 
basic structure of a fuzzy inference system: rule base (fuzzy 
rules selection); database (membership functions used in the 
fuzzy rules), and reason mechanism (inference procedure). 

Moreover, a representative (crisp) value can be extracted 
from a fuzzy set, called defuzzification. The process of 
defuzzification transforms a fuzzy output of a fuzzy inference 
system into a crisp output. Jang et al (1997) mention five 
methods for defuzzifying a fuzzy set of a universe of 
discourse, such as: centroid of area method (CENTROID), 
bisector of area method (BISECTOR), mean of maximum 
method (MOM), smallest of maximum method (SOM), and 
largest of maximum method (LOM) [1].  

Many AI applications are based on FIS due to their ability 
to process imprecise data and ambiguous concepts. Here 
following [3], a methodology for FIS parameters optimization 
is presented. By optimizing the FIS Membership Functions 
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(MFs) with respect to a performance criterion, the resulting 
FIS can lead to an optimal solution with respect to that 
criterion. The proposed FIS parameter optimization 
methodology consists of a set of simple steps, which includes: 

1.  Conversion of non-continuous MFs to continuous MFs.  
If the entire original set of MFs consists of continuous 

functions of the corresponding inputs in their entire domain; 
then this step is skipped. In the case that the entire set or any 
of the original MFs (i.e. triangular, trapezoidal MFs, others) 
is not continuous over the entire inputs domain; then each MF 
is converted into a continuous form (i.e. a gaussians MF) over 
the corresponding entire input domain. In order to perform 
properly this conversion, the parameters of the discontinuous 
MFs can be considered. 

2.  Selection of the appropriate Fuzzy Reasoning and 
Defuzzification Method.  

At this step the FIS reasoning mechanisms are set by 
properly selecting different implication (minimum –MIN- and 
product –PROD-) and aggregation (maximum –MAX- and 
summation –SUM-) operators, and the Defuzzification 
methods (CENTROID, MOM, and BISECTOR). 

3.  Implementation of the selected Fuzzy Reasoning and 
Defuzzification Method. 

The third step implements the selected FIS reasoning and 
defuzzification method. The figures to be shown next and in 
subsequent sections, subsequently have been produced with 
the use of the Matlab Toolbox [7]. 

These results from this step can be evaluated considering 
two cases:  

(1) predefined ‘safe’ input, Fig. 1-(a), (where the input 
value –represented by the vertical line- is located in the 
middle of MF, giving more degree of belief to that MF. The 
shade area (weight) covers almost all the MF; and  

(2) arbitrary ‘risk’ input, Fig. 1-(b); where the input value is 
intersecting two MFs, creating similar shade area in the MFs 
involved; making difficult to select either of the MFs.  

As exemplified in a subsequent section, using predefined 
(“safe”) inputs values can generate very similar crisp outputs 
values, in all combinations of FISs. Whereas, selecting 
arbitrary (“risky”) input values, can generate a different 
solution in some of their outputs. In addition, the chosen T-
norm operators in the fuzzy reasoning mechanism can 
generate outputs with different shapes.  

 

             
(a)                                              (b) 

Fig 1 Illustration of a predefined ‘safe’ input (a) and arbitrary ‘risk’ 
input (b). 

4.  Optimization of the FIS.  
Once all the MFs have been properly defined and the FIS 

reasoning and defuzzification method are selected, the process 
to optimize the FIS parameters can begin. Here, this process 
centers on the optimization of a performance criterion defined 
in terms of a Frobenious norm, as suggested in [3], that can be 
explicitly expressed in terms of the FIS MFs (antecedent, 
consequent) parameters. 

5.  Evaluation of results from the optimization process.  
In this step, the results from the optimization process are 

properly analyzed and evaluated. The steps for optimization 
methodology have been defined and are explained in more 
detail in the following sections as well as the illustration of the 
results. 

II. AN INITIAL WORKING FIS MODEL 
Here, we exemplify the proposed parameter optimization by 

considering as an initial working FIS model a previous 
module system presented in [2]. In reference [2], the authors 
present a Paradigm for the proper matching of an Intelligent 
Human-Computer Interface with an Intelligent System. An 
instance of this Paradigm it is the development of a suitable 
Intelligent Interface for on-line (e-commerce) Internet Portal 
Customizations. The Intelligent Interface consists of an 
intelligent engine (i-engine) that receives information 
(characteristics and areas of interest) from an internet web 
user, and processes this information to generate User Ascribed 
Qualities (UAQs). In [2], the information from the user is 
referred to as ‘user profiles’ and the UAQs interpret and 
categorize these profiles to identify the user. The i-engine is 
based on a Fuzzy Inference System (FIS) module that contains 
containing two FISs sub-modules in cascade called “Main” 
and “Preference Link”. The “Main” FIS receives the 
characteristics (fuzzy inputs: gender, age, marital status, etc.) 
from the web user; while the “Preference Link” receives 
preferences/interests (fuzzy inputs: news, health, 
entertainment, etc.) from the user. The “Main” FIS generates 
categories and characteristics associated with the user such as 
purchaser link, purchaser capacity, purchaser free time, 
among others (fuzzy outputs); whereas the “Preference” FIS 
generates the particular user’s interests (fuzzy outputs: 
preferences, health, news, and other links).  Each fuzzy input 
of the two FISs modules is represented through Membership 
Functions (MF) and the MFs chosen are considered 
triangular, trapezoidal, gaussian, and gaussian-2. These two 
FIS are in cascade; that is, an input (age) and an output 
(purchaser capacity) from the “Main” FIS are inputs for the 
“Preference” FIS. 

The FIS considered here as an initial working model to 
exemplify the proposed FIS parameter optimization 
corresponds to the first Fuzzy Agent “Main” from the cascade 
FIS in [2].  In the optimization process, the non-continuous 
MFs (triangular, trapezoidal and gaussian-2) present in this 
initial working model are converted into continuous 
(gaussian) MFs  as described in the next section. 
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III. CONVERSION OF NON-CONTINUOUS MFS TO CONTINUOUS 
MFs 

Some FIS can contain non-continuous MFs (Triangular 
MF, Trapezoidal MF) and/or continuous MFs (Gaussian MF, 
Generalized bell MF -or bell MF- and Sigmoidal MF) over 
their entire inputs domains. A graphic representation of 
several continuous and discontinuous MFs over their entire 
inputs domains is illustrated in detail in Jang et al in [1].  

In the conversion of non-continuous MFs to continuous 
MFs process, it is important to consider continuous MFs over 
the entire input domains. This facilitates the definition of the 
objective function to be optimized, and some derivatives 
needed by the optimization process; as exemplified in a 
subsequent section. Some suitable Available continuous MFs 
include Gaussian and Bell MFs [1]. In particular, the Gaussian 
MF can closely represent the original non-continuous MFs 
over the entire inputs domains.  

A desirable feature (but not a necessary one) of the MFs 
discontinuous-continuous conversion process, in the entire 
inputs domains, is that the outputs of the modified FIS (for a 
wide range of inputs) resemble as much as possible the 
outputs (for the same inputs) of the initial working FIS model, 
prior to the parameter optimization.  

 In order to choose a “method” to convert the original non-
continuous MFs into continuous MF over a large input 
domain, some approaches can be explored. One method is to 
convert the original MFs “manually”; i.e. one can easily 
convert triangular, trapezoidal, bell, functions to Gaussian 
functions; however, the outputs yielded by the corresponding 
modified FIS can be different than the outputs produced by 
the original FIS.  

For example, let’s consider the trapezoidal MF [1]. This 
trapezoidal MF has the parameters x, a, b, c, and d, and the 
Gaussian MF has parameters: center (c) and sigma (σ) 

where
2

)(,
2

)( bcbcbc −
+=

−
=σ .  After 

modifying the original MF parameters to obtain the 
corresponding parameters for the Gaussian MF, the resultant 
MF had a different shape and meaning regarding the original 
MF. However, it is necessary to do this with caution; since the 
outputs of the FIS with these continuous functions may not be 
the same as the outputs of the original FIS. 

Another approach is to consider the original (i.e. bell, 
gauss-2) MFs and convert them into gaussian MFs; but in this 
case approximating the cross points of the converted MFs 
with the original MFs, respectively. This process of 
converting original-to-gaussian MFs can be applied to the 
original inputs variables of the “Main” FIS [2]. The following 
figure illustrates this conversion for this FIS model using the 
input ‘Age’ from the Main FIS. The dashed lines (a), (b), and 
(c) are positioned in the intersections (cross-point) between 
the MFs. 

 
Fig. 2 Conversion the Original input to Gaussian MFs. (The 

dashed lines on  (a), (b) and (c) show the cross points.) 
Fig. 2 shows that the new Gaussian MFs maintains a 

relationship with the original, since the x and y cross-points 
are closely related to the originals, and therefore maintain the 
same meaning. Consequently, this conversion process it is 
applied here to convert all the input MFs of the original 
working model ‘Main’ FIS to Gaussian MFs.  

The characteristics and details of the inputs illustrated in the 
Fig. 2 are included in Table I.   

 
TABLE I  

CHARACTERISTICS OF INPUT VARIABLE: AGE FOR THE ‘MAIN’ FIS 

 
The characteristics presented in Table I for the original 

working model ‘Main’ MFs and modified MFs are: Name, 
Range, Number of Membership Functions (NumMFs), and the 
properties of each Membership Functions (MF1=’ ‘). This 
input variable has four (4) MFs.  

Furthermore, the rules considered in the modified FIS with 
gaussian MFs are the same as the original working model FIS. 
Once all the new MFs have been converted to continuous 
MFs, it is required to select an appropriate Fuzzy Reasoning 
and Defuzzification Method as shown in the next section.  

IV. SELECTION OF THE APPROPRIATE FUZZY REASONING AND 
DEFUZZIFICATION METHOD 

This section presents a procedure for the proper selection of 
the FIS fuzzy reasoning mechanism. In this case, the 
Implication Operator (T-norm) and Aggregation Operator (T-
conorm) are determined by a trial and error combination 
process using the operators MIN, MAX, SUM and 
PRODUCT. The types of Defuzzification methods considered 
here are Mean of Maximum (MOM), Centroid of Area (COA 
or Centroid), and Bisector of Area (BOA or Bisector) [1]. 

In order to assign the different types of T-norm and T-
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conorm Operators and Defuzzification Methods and select the 
proper FIS fuzzy reasoning; here first a general system of two 
inputs, one output, and two general rules is considered as 
shown in Fig. 3. The inputs represent two possible extreme 
cases. First, they have associated Gaussian MFs and a 
Triangular MF; second, in their weight or measure of degree 
of belief: (a) an input value intersects two MFs generating 
almost equal shade area –weight- in both MFs; and  (b) an 
input value in the center of MF that shades all its area 
facilitating the selection of that MF.  

Fig. 3 illustrates the Fuzzy Reasoning, considering the 
Implication Operator as MIN, the Aggregation Operator as 
MAX, and the Defuzzification Method as MOM. 

 

 
 
Fig. 3 FIS with Implication (T-norm) of MIN and Aggregator (T-
conorm) MAX  and the Defuzzification Method of MOM. 
 

After assigning a different operator to T-norm and T-
conorm and a different type to defuzzification method to the 
system in Fig. 3; four combinations of operators are 
considered. Such combinations are: MIN MAX, PROD MAX, 
MIN SUM, and PROD SUM. The behaviours of the FIS are 
also compared after assigning the combinations of operators 
for each type of defuzzification method, illustrated in Figures 
4-1, 4-2, and 4-3. In Fig. 4-1, the “MIN MAX” square 
represents the results obtained when the first operator MIN 
corresponds to Implication and MAX corresponds to 
Aggregation. The same explanation is given to “PROD 
MAX”, “MIN SUM” and “PROD SUM” squares. Also, the 
type of defuzzification method chosen for Fig. 4-1 is MOM. 
Fig. 4-2 represents the results obtained for a defuzzification 
method Centroid and Fig. 4-3, for a Bisector.  

The Fig. 4-1 illustrates that the final output of the 
considered FIS is directly related to the output MF that 
contains more weight in its area. For the output ‘MIN SUM,’ 
the sum of the two MF areas indicates an output that intersects 
in the two MFs, in comparison with ‘PROD SUM’ in which 
the output considers the MF with more weight in its area. This 
defuzzification method selects the appropriate MF output. 

 
 
Fig. 4-1 FIS outputs from the different combinations of operators, 
with Implication (T-norm) of MIN, Aggregator (T-conorm) MAX , 
and the Defuzzification Method of MOM. 
 

 
 
Fig. 4-2 FIS outputs from the different combinations of operators, 
with Implication (T-norm) of MIN, Aggregator (T-conorm) MAX, 
and the Defuzzification Method of CENTROID. 
 

 
 
Fig. 4-3 FIS outputs from the different combinations of operators. 
with Implication (T-norm) of MIN, Aggregator (T-conorm) MAX, 
and the Defuzzification Method of BISECTOR. 

 
Fig. 4-2 illustrates that the final output for the Centroid, is 

the center of the entire area (in the horizontal axis) of the 
outputs MFs. By choosing the centroid in the considered 
general FIS, the output might yield other MF for the output 
than the expected one. 

Fig. 4-3 includes the obtained outputs for the Bisector. 
Here, the MF corresponding to the output is similar to the 
Centroid. That is, the output in one side has the same area of 
weight (shade) to the other side. These methods also yield to 
other MF for the general FIS. 

As a result, the fuzzy reasoning selected from this analysis 
has the Product in the Implication Operator (T-norm) and Sum 
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in the Aggregation Operator (T-conorm). Also, the 
defuzzification method selected is Mean of Maximum, MOM. 
This fuzzy reasoning was assigned to the modified FIS. The 
combination used in the original working model FIS and the 
combination used in the modified FIS yield similar outputs for 
the same inputs. 

     Even though, this section may indicate that the 
appropriate fuzzy reasoning should be PROD SUM and 
MOM; the parameter optimization described in the next 
section needs to consider PROD SUM and centroid. Due to 
the fact that Centroid defuzzification method facilitates to 
consider an objective function in terms of a fobrenious norm 
representing a performance criterion. This is not detrimental to 
the goal of constructing an improved FIS; rather, as shown in 
section VI, using the proposed parameter optimization this 
goal can still be attained. 

    In the next section is exemplified in detail the selection 
of PROD SUM combination for the modified FIS. 

V. APPLICATION OF SELECTED FUZZY REASONING AND 
DEFUZZIFICATION METHOD; AND EVALUATION OF THE 

OBTAINED RESULTS 
After selecting a fuzzy reasoning for the general FIS, these 

combinations of operators and type of defuzzification methods 
are assigned to the modified “Main” FIS. This section 
explains the results obtained from the original “Main” FIS and 
the modified “Main” FIS in the presented tables. 

In order to compare and analyze the results of the “Main” 
FIS using different operators in their fuzzy reasoning, two 
input types are:  

Case 1. FIS comparison results of the outputs’ values 
obtained from the user interface ‘safety input’; 

Case 2. FIS comparison results of the outputs’ values 
obtained arbitrarily ‘risky input’. 

 
Here, the headings of the tables are fare explained for both 

cases. The results are illustrated in two types of tables: in 
values crisp, and in ‘linguistic’ interpretation of those values 
crisp.The following illustration presents the organization of 
the results for the first type of table.  

 
There are three sets of outputs, resulting from: FIS with the 

original MFs (Original MF (trap,bell,etc)), FIS with gaussian MFs 
with MIN-MAX composition (Gaussian MF and MIN-MAX 
Composition) and FIS with gaussian MFs with different 
combinations (Gaussian MF (Variations in the Imp and Agg composition). 

For each of these sets of outputs, it was specified the 
Definition of Method, Implication Operator (Imp), 
Aggregation Operator (Agg), Defuzzification Method 
(Defuzz). The tables, furthermore, concentrate the results 
obtained after creating a FIS with the same MFs properties but 
with modified Implication and Aggregation operators for each 
case, and also the Deffuzzification method is changed from 
Mean of Maximum (MOM) to Centroid of Area 
(CENTROID).  

The second type of tables provide the results for the 
different combinations of the T-norm operator, as presented in 
the illustration, for the three defuzzification methods: MOM, 
CENTROID, and Bisector. Moreover, the results included in 
this type of table are from the original FIS; the Gaussian 
converted FIS using MIN and MAX as implication and 
Aggregation operators, respectively; and the Gaussian 
converted FIS using PROD and SUM as implication and 
Aggregation operators, respectively.  

 
  CASE 1. FIS comparison results of the outputs values 
obtained from the user interface ‘safety input’ 

The input values, and their interpretation, obtained from the 
Interface are included in Table II. The inputs are: gender 
(input 1) is  Male,  age  (input 2)  is Middle Age,  level of 
education (studies – input 3) is University, where the years 
that he has been working (Yearswork – input 4) are Several, 
his marital status (maritalSta – Input 5) is Single, his children 
age (Childage – Input 6) is in the area of Kids, and his 
occupation (Occupation – Input 7) is in Engineering.  
 

TABLE II 
 “SAFETY INPUT” VALUES 

 

 
 

Tables III and IV (located in Appendix A) include the crisp 
outputs values corresponding to the considered ‘safety’ input. 
The difference from the original output value to any of the 
outputs corresponding to the T-norm T-conorms combinations 
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is less than 0.03; then, the interpretation of these values is the 
same for all the considered combinations. These outputs are 
presented in the Table V:  

TABLE V  
INTERPRETATION OF THE RESULTS OBTAINED 

 

 
 

According to the “safety” input, the outputs obtained are: 
Purchaser Capacity (PurchCap – Out 1) is Very Good, 
Purchaser Type (PurchLink – Out 2) is Men, estimated 
Availability Time for leisure activates (FreeTime – Out 4) is 
Moderate, Level of experience in the field (ExpLevel – Out 
4) is Experts, Occupation (Occupation – out 5) is  Technical-
Engineering.   

CASE 2. FIS comparison results of the outputs values 
obtained arbitrarily ‘risky input’. 

For this case, the x values for this input are positioned close 
to the intersection of two MFs; therefore, the output in this 
area can have more than one output option. As a result, the 
output for the defuzzification method centroid and bisector 
method has different output values. 

The input values and their interpretation obtained from the 
Interface are included in Table V. The inputs are: gender 
(input 1) is Male, age (input 1) is Middle Age, level of 
education (studies – input 3) is University, where the years 
that he has been working (Yearswork –input 4) are Several, 
his marital status (maritalSta – Input 5) is Single, his children 
age (Childage – Input 6) is in the area of Kids, and his 
occupation (Occupation – Input 7) is in Business.  This Table 
VIII includes both the obtained ‘Crisp Values’ and the ‘Fuzzy 
Interpretation’ using a “Risky Input”. 

 
TABLE VIII 

“RISKY INPUT” VALUES 
 

 
 

Tables VI-I and VI-II (located in Appendix A) summarize 
the results obtained for the risky input presenting the values 
and the interpretation of these outputs values, respectively.  
Tables VII-I and VII-II (located in Appendix A) compare the 
results for the different defuzzification methods, also the 
values and interpretation of the obtained outputs. 

After comparing the results from Tables VI-I and VI-II, 
VII-I and VII-II, the output values corresponding to the T-
norm T-conorm combinations with a difference greater than 1 
to the output of the original FIS provide an altered output. For 
example, on Tables VII-I and VII-II, Purchaser Capacity (Out 
2 (PurchLink)) the output from the original working model 
FIS is Women; however, the output from the modified FIS 
with the MIM-MAX-MOM composition is Men and PROD-
SUM-MOM composition is Teenagers.  

The modified FIS for the same inputs, using a particular T-
norm, T-conorm, and Defuzzification method can yield 
outputs that do not resemble the outputs of the original 
working model FIS. That is, why it may be necessary to resort 
to parameter optimization. 

The next step, “Parameter Optimization of the FIS,” 
optimizes the actual MFs parameters and implements the new 
optimized MFs parameters in the Main FISs to generate 
optimum parameter values and also solutions.  

VI. OPTIMIZATION OF THE FIS PARAMETERS 
 

Once the MFs are converted to be continuous Gaussians 
functions over the entire input domain; each Gaussian sigma 
parameter and center parameter are some x values as 
exemplified in Table IX.  The Gaussian Membership Function 
[1] is: 

2

2
1

),;(
⎟
⎠
⎞

⎜
⎝
⎛ −

−
= σσ

cx

ecxgaussian  (1) 
 

The “Main” FIS contains seven inputs, giving a total of 24 
Gaussian MFs with 24 centers and 24 sigma parameters 
represented as follows: 

 
x      u1 ... u7        
c     c11 ... c74    x(2), x(4)…x(48) 
sigma      s11 ... s74    x(1), x(3)…x(47) 
 
To represent these variables, the same input variable is 

chosen: Age, as in Section II. The range, number of MFs 
(numMFs), the MFs, and their sigma and center parameters, 
respectively, are presented in the Table IX. 
 

TABLE IX  
CHARACTERISTICS OF INPUT VARIABLE: AGE 

 
 
The equivalent optimization variables are: 
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TABLE X  
MF PARAMETER VARIABLES FOR THE INPUT VARIABLE: AGE 

 

 
 

Fig. 5 Specification of MFs parameter for each rule (in total 12) of 
the output F1. 

 
A similar analysis is applied to the rest of the inputs: the 

variables x1 to x4 correspond to the variable “Gender”; x13 
to x20 to “studies” input; x21 to x28 to “years working” 
input; x29 to x32 to “marital status” input; x33 to x40 to 
“ChildrenAge” input; and x41 to x48 to “Occupation” input. 

Once the input MFs parameters have been defined, the F 
outputs equation of the “Main” FIS were obtained. Also, 
considering the sum-product composition, Theorem 4.1 [1], is 
applied to MAIN FIS.  The first step is to obtain the firing 
strength as follow: 

 

∫∫ += dzzwdzzwz
ii CzCzYicj )()()( 21 μμμ  (2) 

  
For example, to obtain the F1 (for the first output: 

Purchaser Capacity), the firing strength is the product of 
(input 3-“Studies”) * (input 4-“Years Working”) * (output 1 – 
“Purchaser Capacity”) and sum the next rule, successively 
until the end, illustrated in Fig. 5. The product of the inputs 
represents the Firing Strength.  Second, after analyzing the 
output of the system and considering defuzzification method 
as Mean of Maximum, each membership function receives the 
value of 1.  

The formulas for each output are: where gMFu34 is 
equivalent to )( 34,3

uθμ  and gMFu41 is also equivalent 

to )( 41,4
uθμ . The same interpretation is applied to all the 

others MFs, respectively.  And the output tMFy11w1_1 means 
that )(

1,1
z

yθμ . 

Therefore, the output equation for the output one (Purchaser 
Capacity) is: 

 

 16 tMFy15w1_* gMFu42 * gMFu33     
... 15 tMFy15w1_* gMFu44 * gMFu33     
... 14 tMFy14w1_* gMFu43 * gMFu33     
... 13 tMFy11w1_* gMFu41 * gMFu33     

     ... 12 tMFy15w1_* gMFu42 * gMFu32     
... 11 tMFy14w1_* gMFu44 * gMFu32     
... 10 tMFy13w1_* gMFu43 * gMFu32     

... 9 tMFy11w1_* gMFu41 * gMFu32     
     ... 8 tMFy14w1_* gMFu42 * gMFu31     

... 7 tMFy13w1_* gMFu44 * gMFu31     

... 6 tMFy12w1_* gMFu43 * gMFu31     
... 5 tMFy11w1_* gMFu41 * gMFu31     

     ... 4 tMFy13w1_* gMFu42 * gMFu34     
... 3 tMFy13w1_* gMFu44 * gMFu34     
... 2 tMFy12w1_* gMFu43 * gMFu34     

... 1 tMFy11w1_* gMFu41 * gMFu34  F1

+
+
+
+
+
+

+
+
+
+
+
+
+
+

+=

 (3) 

  
Following the same procedure, the equations for the outputs 

2 to 5 are obtained.  Where each input has: 
 
Input  1u   has 2 MFs iu ,11 )( θμ , where ;2...1=i     

Input  2u   has 4 MFs iu ,22 )( θμ , where ;4...1=i    

Input  3u   has  4 MFs iu ,33 )( θμ , where ;4...1=i    

Input  4u   has 4 MFs  iu ,44 )( θμ , where ;4...1=i    

Input  5u   has 2 MFs  iu ,55 )( θμ , where ;2...1=i    

Input  6u   has 4 MFs iu ,66 )( θμ ,  where ;4...1=i    

Input  7u   has 4 MFs  iu ,77 )( θμ , where ;4...1=i    

 
Subsequently, a Jacobian matrix (Mayorga 2002), is created 
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using the functions (F1, F2, F3, F4, F5), as follows: 
 
 u1        u2         u3         u4         u5        u6        u7 
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 (4) 
Here, the objective function to be optimized (Mayorga, 

2002) is selected to be 
2),(
F

auΨ  (5) 
This objective function represents a suitable performance 

criterion in terms of the Frobenius norm, (Mayorga 2002). 
This criterion ensures that for small changes in the outputs 
there should be small changes in the outputs, (Mayorga 2002) 

After applying the Frobenius norm to the Jacobian matrix, 
the following objective function is obtained: 
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  (6) 
subject to 

 

Specification of the Intervals for the MFs Parameters 
To specify the range values for the MFs parameters, it is 

important to mention that the size of the range does affect the 
optimization process. If a large range is indicated for the 
Upper (UppB) and Lower (LowB) boundaries, the optimized 
resultant parameters might alter the membership function 
shape, which will provide a new MF in a different position 
and also altering the output of the system. The range selected 
was 2%, and the following Fig. 6 illustrates this range for the 
input Age. Also, for the purpose to show the interval for each 
MF parameter, the x-axis is increased.  The next section 
contains the results obtained. 

 
 

Fig. 6 Ranges specification for the Age Input. 

VII. EVALUATION OF OPTIMIZED RESULTS 
In order to evaluate the output of the system, different 

ranges were considered, such as:  
- Original ranges proposed determined subjectively 
- Reduced and verified ranges of 2% for both Sigma and 

Center 
- Reduced range of 5% Sigma and 2% Center 
Table XI shows that the solution from ‘Reduce and Verified 

ranges of 2%’ generated an optimized Frobenious Output of 
21.5035, and the others solutions generated outputs less than 
1. The reason is that, in the optimization process, the 
membership function is adjusted to a shape that generates a 
reduced output. 

TABLE XI  
COMPARISON OF THE OBTAINED RESULTS FROM THE DIFFERENT SET OF 

DEFINED RANGES 

 
 
The MF parameters are valid because they are in the 

indicated range.  However, the mean of the MF in relation to 
the system has changed. The following screenshots illustrate 
this situation. The Input 6 corresponds to the 'ChildrenAge' 

S6i refers to Sigma of the MFs ( i ) of the Input 6 
C6i refers to Center of the MFs ( i ) of the Input 6 
 
Range % 2% 5% 2% 
Parameter S6i C6i S6i C6i 
Range Value 0.36 0.36 0.36 0.9 

 
Table XII shows the values for each parameter, considering 

“Boundaries reduced to 2%” and the “Boundaries Reduced to 
2% center and 5% sigma”. 
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TABLE XII 
COMPARISON OF DIFFERENT SETS OF DEFINED RANGES 

 
 
The Fig. 7 shows the original ‘Kids’ MF is in the interval 

from 5 to 10 over the X axis. However, the ‘Large Boundaries 
(Proposed)’ is positioned in the range from approximately 11 
to 16. Even though the shape is similar to the original, the 
position altered the output of the system; while it formerly 
referred to kids in the range of 5 to 10, it now refers to kids 
between the ages of 11 to 16. Also, when the Original MF has 
a z value of 1, the ‘Large Boundaries (Proposed)’ MF has a 
value close to 0. Supporting the above statement, the ‘New’ 
MF has a different meaning to the system and consequently 
the output is altered. 

 

 
Fig. 7 Representation of MFs affected for the range definition. 

The “Boundaries reduced 2%” MF has a significant value 
close to one and is similar to the original. On the other hand, 
the last “Boundaries reduced to 2% center 5% sigma” MF 
keeps the center between the small range (2%), but the shape 
is smaller. This shape is affected, for example, when the x 
input is around 9, the output z has a value of 0, and while the 
‘Large Boundaries (Proposed)’ MF has a value greater than 
zero. The above Fig. 8 included the “Lower Bound” and 
“Upper Bound” for each MF function for the boundaries of 
2% and 2% center and 5% sigma. Focusing our attention on 
the “Lower Bound”, we can see that the “lower bound” and 
the “Output” are overlapped. Therefore, the MF with the 
smaller value range has reduced the shape of the MF, while 
the MF with a lower boundary of 2% keeps a configuration 

similar to the original. 
 

 
 

Fig. 8 Illustration of the Lower and Upper boundary for the MFs 
 
The same analysis used for the MFs of the input 6 

“Children Age” have been applied to the rest of the inputs. 
The following screenshots summarize the results for each 
input of the “MAIN” FIS. 

 
Final Obtained Results 
After the ranges of the parameter have been defined, the 

optimization process is performed. The Matlab function 
employed, fmincon, finds the minimum of a constrained 
nonlinear multivariable function.  In order to identify the set 
of parameters to be optimized, a program was created to 
generate arbitrary inputs and to find the correspondent output 
of the Frobenious equation. 

From those outputs, different input values were selected 
within the higher output range. Those values were 65, 70, 75, 
80, and 85.  The Frobenious Output and the resultant 
Optimized Frobenious Outputs are included in Table XIII. 

The results for the solution 65 comparing the MF 
parameters with the original values and including the lower 
and upper boundaries are illustrated in the Table XIV. 

 
TABLE XIII 

 COMPARISON OF THE OBTAINED RESULTS FROM THE REDUCE AND VERIFIED 
RANGES PROPOSED 2% 
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TABLE XIV 
 COMPARISON OF MFS PARAMETERS FOR SOLUTION 65. 

Var. 
Name 
Gauss Eq. 

 Var. 
Name 
Opt-Eq. LowB UppB Original 

Optimized 
Parameter 

s11 x(1) 0.23 0.27 0.25 0.27

c11 x(2) -0.02 0.02 0 0.02

s12 x(3) 0.23 0.27 0.25 0.23

c12 x(4) 0.98 1.02 1 1.02

s21 x(5) 1.22 4.02 2.62 2.62

c21 x(6) 2.44 5.24 3.84 3.84

s22 x(7) 2.86 5.66 4.26 4.26

c22 x(8) 14.9 17.7 16.3 16.3

s23 x(9) 8.33 11.13 9.73 8.33

c23 x(10) 36.2 39 37.6 37.1755

s24 x(11) 5.74 8.54 7.14 5.74

c24 x(12) 58.1 60.9 59.5 58.1

s31 x(13) 0.16 0.32 0.24 0.3131

c31 x(14) 1.43 1.59 1.51 1.4368

s32 x(15) 0.176 0.336 0.256 0.1892

c32 x(16) 2.42 2.58 2.5 2.5211

s33 x(17) 0.345 0.505 0.425 0.425

c33 x(18) 3.82 3.98 3.9 3.9

s34 x(19) 0.196 0.356 0.276 0.347

c34 x(20) 0.268 0.428 0.348 0.4005

s41 x(21) -0.04 0.76 0.36 0.36

c41 x(22) -0.3325 0.4675 0.0675 0.0675

s42 x(23) 2.98 4.58 3.78 3.78

c42 x(24) 34.7 36.3 35.5 35.5

s43 x(25) 1.323 2.923 2.123 1.3823

c43 x(26) 4.2 5.8 5 4.3497

s44 x(27) 3.447 5.047 4.247 4.1136

c44 x(28) 19.2 20.8 20 20.0487

s51 x(29) 0.165 0.205 0.185 0.205

c51 x(30) 0.203 0.243 0.223 0.243

s52 x(31) 0.165 0.205 0.185 0.165

c52 x(32) 0.754 0.794 0.774 0.794

s61 x(33) 0.452 1.172 0.812 0.812

c61 x(34) 2 2.72 2.36 2.36

s62 x(35) 1.01 1.73 1.37 1.01

c62 x(36) 7.28 8 7.64 7.28

s63 x(37) 1.96 2.68 2.32 1.96

c63 x(38) 15.24 15.96 15.6 15.96

s64 x(39) 0.098 0.598 0.348 0.348

c64 x(40) -0.432 0.068 -0.182 -0.182

s71 x(41) 0.0527 0.0927 0.0727 0.0727

c71 x(42) 0.0107 0.0507 0.307 0.0507

s72 x(43) 0.0537 0.0937 0.0737 0.0762

c72 x(44) 0.329 0.369 0.349 0.3491

s73 x(45) 0.0525 0.0925 0.0725 0.0925

c73 x(46) 0.628 0.668 0.648 0.668

s74 x(47) 0.052 0.092 0.072 0.092

c74 x(48) 0.943 0.983 0.963 0.983

VIII. CONCLUSIONS 
This work presents a simple procedure to optimize the 

Membership Functions (MF) parameters of a general FIS. 
First, it is shown the importance of appropriately converting 
the MFs to continuous MFs. Also, it is demonstrated the 
relevance of the selection of an appropriate Fuzzy Reasoning 
and Defuzzification Method; to define the right ranges/ 
intervals for the MFs parameters, and to analyze all possible 
solutions. Assigning an appropriate range (lower and upper 
boundaries) to the antecedent parameters modifies the MF 
shape during the Optimization process to an “optimal” shape 
and location. However, a larger range might alter the shape of 
the inputs MF of the system and also the generated outputs. 

In this work, it was determined that, when considering 
parameter variations in the range of up to 2%; the shape of the 
membership functions have been optimized without altering 
the shape and meaning of the MF from the original MF 
meaning. It was also demonstrated that increasing the range of 
sigma affected the shape and position of the MF to a smaller 
degree than increasing the center parameter, since this center 
range allows the MF to be positioned in an area that might 
change the meaning.  

The information presented in the tables and the figures 
provided the following conclusions: 

-  A small variation in the parameter ranges considered 
reduces the optimized output of the Frobenious Equation to 
approximately zero. This means that the optimization process 
might adjust some MFs to a position where the output value is 
close to zero as well. As a result, the shape and/or position of 
the MF function might be altered from its original parameters 
and generate a different system output. 

-  The variation in the MF center range affects the meaning 
of the MF more than increasing its sigma range does. This is 
due to the fact that the MF’s position remains within a small 
range and the sigma is changed in a larger range. 
Consequently, the original output “meaning” is also changed.  

In summary, this Paper has shown that the application of 
the proposed optimization steps can conduce to a simple 
parameter optimization, with respect to a performance 
criterion, of a general FIS system.   
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APPENDIX A:  TABLES PRESENTING THE RESULTS AFTER COMPARISONS 
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