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Abstract—The detection of outliers is very essential because of 

their responsibility for producing huge interpretative problem in 
linear as well as in nonlinear regression analysis.  Much work has 
been accomplished on the identification of outlier in linear 
regression, but not in nonlinear regression. In this article we propose 
several outlier detection techniques for nonlinear regression. The 
main idea is to use the linear approximation of a nonlinear model and 
consider the gradient as the design matrix.   Subsequently, the 
detection techniques are formulated.  Six detection measures are 
developed that combined with three estimation techniques such as the 
Least-Squares, M and MM-estimators.  The study shows that among 
the six measures,  only the studentized residual and Cook Distance 
which combined with the MM estimator,  consistently capable of 
identifying the correct outliers.  
 

Keywords—Nonlinear Regression, outliers, Gradient, Least 
Square, M-estimate, MM-estimate. 

I. INTRODUCTION 

ANY statistics practitioners have been using residuals  
for the identification of outliers.  The use of residuals 

resulting from the ordinary least squares (OLS) estimates will 
give a misleading conclusion because the residuals are 
functions of leverages and true errors. According to Habshah 
et al. [9], the high leverage points together with large errors 
(outliers) and the residuals are responsible for the cause  of 
masking and swamping of outliers in linear regressions. There 
are a considerable amount of good written papers relating to 
identification of outliers in linear regression [see for example, 
Hadi [10], Habshah et al. [9], Cook and Weisberg  [7], Belsley 
et al.[6], Anscombe and Tukey [1] and the discussion on the 
properties of Atkinson’s distances in [3] and [4] ). However, 
not much work has been explored in the formulation of the 
outlier‘s identification method in nonlinear regression.  Cook 
and Weisberg [6] and Fox et al. [7] introduced a measure for 
the identification of outliers in nonlinear model, which is 
based on the OLS method.  However, it is now evident that 
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outliers have an adverse effect on the OLS estimates (see for 
example Habshah et al. [9] ).  In this situation, we suspect that 
any measures which are based on the OLS estimates are not 
efficient and this may cause swamping (false positive) and 
masking (false negative) effects. In this paper, an attempt is 
made to propose robust method of identification of outliers in 
nonlinear model. 

II. ROBUST NONLINEAR REGRESSION 

 
Consider the nonlinear model with additive error terms: 

+≡ )(θη                                                                (1) 

where T
nyyy ],...,,[ 21=y is 1×n  response vector, 

[ ]);(),...,;()( 1 θθθη nff xx=  is 1×n  vector of function 

models );( θixf ’s, T
ikiii xxx ],...,,[ 21=x is k dimensional 

predictor (design) vector, T
n ],...,,[ 21 εεε=  is 1×n  

vector of iid residuals, which under normality assumption 
assumed to have normal distribution with mean zero and 

variance nI2σ , and pθ ℜ∈  and p dimensional unknown 

parameter vector.       The least squares estimator, θ  of the 
nonlinear regression in (3) are found by minimizing the error 
sum of squares: 

2
minargˆ r
θLS =θ  (2) 

where r  is the residual vectors with 

elements );( θiii xfyr −= , and ||.|| is the Euclidean norm. 

However, many statistics practitioners are not aware of the 
fact that outliers have an unduly effects on the OLS estimates.  
As an alternative, robust methods which are not easily 
affected by outliers are put forward to remedy these problems.  
There are many robust methods in the literatures and in this 
paper, only the M and MM estimators are considered (See 
Huber [14] and Stromberg [20]).  

The M estimator is obtained by minimizing: 
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and )(θρ  is a robust loss function satisfies the Huber 

conditions (see [14] ).  The Newton method (see [21] ) is used 
to estimate the parameter theta. When convergence is not 
achieved due to large residuals, the Levenberg-Marquardt is 
utilized. 

Yohai [22] and Stromberg [20]  introduced the the MM 
estimator in linear and nonlinear regression, respectively. 
Stromberg proposed the computation of MM estimator in 
three stages as follows;  

 
Stage 1 :  Obtain a consistent high breakdown estimator 

 
  Stage 2 : Use stage 1 to calculate the M-estimate of 

scale using rho function 0ρ  

Stage 3 :  Compute the M estimate using rho function 

1ρ  by using stage 1 and stage 2. 

 
There are several rho functions, to choose from, and in this 

study, the Hampel redescending rho function (See [11]) 

denoted as Hρ , is used in the analysis.  Yohai (See [22]) 

revealed that )(0 rρ  and )(1 rρ  can be taken to be 

( )0/ krHρ  and ( )1/ krHρ , respectively.  Stromberg [20] 

demonstrated that selecting k0 = 0.212 and k1 = .9014 will 
guarantee a high breakdown estimate and will result in 95% 
efficiency under normal errors, respectively. The parameter 
estimates computed by these three techniques will be utilized 
in the development of the outlier measures in nonlinear 
regression that is discussed  in Section III. 

III. THE  OUTLIER MEASURES 

Consider the multiple linear regressions,  

ε+= XBY  
 Where matrix X is the explanatory variable pn × , Y is 

1×n  vector of response vector, ε is identically independent 
distributed error vector, n is number of observations, β is p 
dimensional unknown vector of coefficients. After the least 
squares estimates of the parameters β have been computed, 
the predicted value of the response variable can be written in 
the form of the Hat matrix as follows; 

WyXy == β̂ˆ    (4) 

where W is the hat matrix of 
TT XXXXW 1)( −=  (5) 

The elements of W are shown by ijw . It can be seen from 

equation (4) that the influence of the response values on the 

prediction, depends on the values of ijw .  Equation (4) can be 

rewritten as:  

∑
=≠

+=
n

jij
jijiiii ywywy

1;

ˆ   

Hoaglin and Welsh [13] suggested a direct use of ijw  as 

diagnostic of identifying high leverage points, if iiw   is large 

relative to the remaining terms. The fitted value iŷ  is more 

dominated by response iii yw , so ijw  is interpreted as the 

amount of influence or leverage of jŷ on iy . In nonlinear 

regression, the linear approximation of function model is used, 
and replaces the explanatory matrix in linear regression, by 
the gradient of the function model.  The linear approximation 
form can be derived by expanding the function model (1) 

around the true value *θ  

)()()( ** θθθηθη −+≅ V  

where 
θ

θ
∂

∂
=

);(xfV  is pn ×  gradient matrix computed 

at estimated point. Based on this approximation, an equivalent 
measure for equation (5) which is called as tangent plane 
leverage matrix is given by 

TT VVVVH 1)( −=  (6) 

This leverage matrix in nonlinear plays a similar role as the 
Hat matrix W in linear form, as defined by equation (5) (see 
[7] p.187 and [16] Chapter 10).  

Linear regression uses the Hat Matrix W as a beginning idea 
of influence detection tool, and creates several statistical 
measures for outlier detection. In this article, the leverage 
matrix H in Equation (6) is used in the formulation of the 
method of the identification of outliers in nonlinear 
regression. 

In this section we extend the idea of influence outlier 
measures of linear regression for nonlinear case.  Instead of 
using the Hat matrix W defined in (5),  the gradient matrix H, 
as defined in (6) is utilized in the formulation of the influence 
measure.  

A prevalent way of developing an influence detection 
method is to re fit a model with deleting a special case or a set 
of cases. Then, observe the amount of change of some 
statistics such as the parameter estimates, predicted, 
likelihoods, residuals, and so on, for a recalculated measure 
with the i’th data point, removed.  The notation (-i ) is used 
for each removed observation.  It is important to point out that 
the three estimators namely the OLS, the M and the MM 
estimator are used to estimates the parameters of the nonlinear 
regression. 

Subsequently, the respective estimates were utilized in the 
computation of the influence measures.   The Six outlier 
measures are briefly discussed as follows;  

A. Studentized and Deletion Studentized Residuals 

This measure (hereafter refer as it ) is used for identifying 

outliers.  Suppose iih  is the diagonal of leverage matrix H 
based on gradient in Equation (6), the studentized residual 
and the deleted studentized residuals are  defined as follows 
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(See [19], [1]) : 
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where )(ˆ i−σ  is the estimated standard deviation in the 

absence of the i’th observation.  The residuals, denoted as 

)ˆ;( θiii xfyr −= is obtained from the OLS, M and the MM 

estimates. 
 
The i'th observation is considered as an outlier if 

3or  5.2|||| >ii dort .  

 

B. Hadi potential 
Hadi [10] proposed Hadi’s potential denoted as pii to detect 

high leverage points or large residuals: 

ii

ii
ii h

h
p

−
=

1
 

Hadi [10] proposed a cut-off point for pii as  

)()( iiii pMADcpMedian ⋅+ where MAD represents the 

Mean Absolute Deviance defined by:  

6745.0)}({)( iiiiii pMedianpMedianpMAD −=  

C is an appropriately chosen constant such as 2 or 3. 

C. Elliptic Norm (Cook Distance) 
The Cook Distance (hereafter is refereed as CD) which is 

defined by Cook and Weisberg [7], is used to asses the 
influential observations. An observation is influence if the 
value of CD is greater than one.  They defined CD as 

2
)()(

2 ˆ)ˆ)(()ˆ()ˆ,( σθθθθσ pVVpVVCD i
TT

i
T

i −− −−=

where )(̂ i−θ  is the parameter estimates when the i’th 

observation is removed. When )(̂ i−θ  is replaced by the linear 

approximation (see [7], and [8]),  this norm changes to 

ii

iiiT
i h

h
p
t

pVVCD
−

=
1

)ˆ,(
2

2σ  

Where it  and p is the studentized residual and the number of 

parameters in the model, respectively.  With the cut of point 
equal to 1, that is the expectation of 50% confidence ellipsoid 
of parameter estimates. 

D. Difference in Fits  
Difference in Fits, denoted by DFFITS, is another 

diagnostics measure used in measuring the influence, defined 

by Belsley et al. [6].  For the i’th observation, DFFITS is 
defined as 

||
1 i

ii

ii
i d

h
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=  

where id  is the deleted studentized residual.  They 

considered observation is an outlier when DFFITS exceeds  

the cut of point equals to np2 .  

E. Atkinson’s Distance 

Atkinson distance (hereafter refer as iC ) for  observation i 

was developed by Atkinson [1] and it is used to detect the 
influential observation (See [3] and [4] for the discussion of 
the Atkinson’s property). Atkinson  [1] defined the Atkinson’s 
distance as follows; 

i
ii

ii
i d

h
h

p
pnC ⎟
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⎛

−
−

=
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where id  is the deleted studentized residuals. He suggested 

a cut-off  value equals to 2. 

IV. NUMERICAL EXAMPLE 

In this section, a real data which is referred as the lake data,  
taken from Stromberg [20] is used to compare the preceding 
methods. The data set is collected from 29 lakes in Florida by 
United States Environmental Protection Agency (1978). 
Stromberg [20] has identified observations 10 and 23 as 
outliers. 

The data presents the relationship between the mean annual 
total nitrogen concentration, TN, as the response variable and 
the average influence nitrogen concentration, NIN, and water 
retention time, TW, as predictors.  The model associated with 
the data is: 

 29,...,1      ,
1

=+
+

= i
TW

NINTN i
i

i
i ε

δ β   (7) 

with unknown parameter vector ),( βδθ = .  The results 

of the six measures are shown in table 1 and 2. 
 
The results of tables 1 and 2 suggest that most of the 

diagnostic measures that are based on the OLS and M 
estimates fail to identify the two observations as outliers. The 

iip -M based and iip -OLS based can correctly identify the 

two outliers but swamp two points (cases 11 and 16) as 

outliers.  The results of Table 2 also point out that the id -MM 

based fail to identify any outlier. The iip -M based can 

correctly identify the two outliers but swamps one observation 

(case 16) as outliers.  Furthermore, the DFFITS and iC  fail to 

detect observations 10 and 23 as outliers but swamp 
observation one as outlier.  On the other hand, the studentized 
residuals and Cook’s distance measures which are based on 
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the MM estimates identify correctly observations 10 and 23 as 
outliers.  

V. SIMULATION STUDY 

In this Section, a simulation study was performed to 
investigate whether the results of the simulation study confirm 
the conclusion of the real data set that the ti-MM based and 
CD-MM based are capable of identifying correct outliers.  

The simulated value from the logistic model is based on the 
following function: 

icxi ieb
ay ε+

+
= −.1

 (8) 

where ),,( cba=θ  are the parameters of the model.  This 

model is chosen to mimic a real life chicken data set presented 
by Riazoshams and Midi (see [18] ).  In this simulation study, 

three parameters are considered  (a=2575, b=41, 0.11) . The 
residuals are generated from normal distribution with mean 

zero and standard deviation 70=σ . The ix ’s, are 

generated from a uniform distribution on [3,50] with a 
sample size 20.  
Three different cases of contamination are considered,  

Case A. The first good datum point ( 1x , 1y ), is replaced 

with a new value 1y  which is equals to 10001 +y . 

 Case B. The 6th, 7th and 8th data points are replaced with 
their corresponding y values increased by 1000 unit. 
      Case C.  Six high leverage points were created by 
replacing the last six observations with (x,y) pair values 
(90,6500), (92,6510), (93,6400), (93,6520), (90,6600), 
(94,6600). 

The six outlier detection techniques were then applied to 
the sets of A, B and C data based on the OLS, M and MM 
estimates. The results are exhibited in Tables 3-5.  Due to 
space limitations, only the results on the outlier measures 
which are based on OLS and MM are presented.  The 
results of the M based measures are discussed event though 
they are not displayed. 

It can be observed from Table 3 that all methods fail to 

detect the single outlier except the it -OLS based, CD-M 

based it -MM based and CD-MM based.  The results also 

point out that the iip  based on the OLS, M and MM 

swamp two observations as outliers (cases 18 and 19). 
It is interesting to note the results of Table 4, when there 

are three outliers in the y directions.  The it -M based, the 

it -MM based and the CD-MM based are able to identify 

the 3 outliers correctly.  Other outliers measures fail to 

identify even a single outlier.  For instance, the iip -MM 

based masked the 3 outliers and swamps 2 observations 
(cases 18 and 19).  

The presence of six high leverage points makes it harder 
for almost all outlier detection methods to detect high 
leverage points correctly.  In this situation, most detection 
measures fail to identify even a single high leverage point 
because of the masking effects.  It can be seen from Table 5 

that again the ti-MM based and CD-MM based did a credible 
job.  Both measures can identify the six high leverage points 
correctly. 

TABLE I SIX OUTLIER MEASURES BASED ON OLS FOR LAKE DATA 

 
Cut 

of  
point

s 
 
Index 

it  

3.0 

id  

3.0 

iCD  

 1.0 

iip   

0.066 

iDFFITS  

 0.525 

iC   

2.000 

1 -1.525 -1.146 0.642 0.355 0.682 2.507 

2 2.772 0.032 0.183 0.009 0.003 0.011 

3 0.370 0.013 0.037 0.020 0.002 0.007 

4 0.886 0.007 0.055 0.008 0.001 0.002 

5 1.740 0.089 0.248 0.041 0.018 0.066 

6 0.088 0.003 0.009 0.021 0.000 0.001 

7 -0.860 -0.676 0.223 0.135 0.248 0.912 

8 0.734 0.005 0.045 0.008 0.000 0.002 

9 1.635 0.150 0.291 0.063 0.038 0.138 

10 0.228 0.029 0.052 0.104 0.009 0.035 

11 -1.259 -0.229 0.250 0.079 0.065 0.237 

12 0.437 0.006 0.027 0.008 0.001 0.002 

13 0.057 0.002 0.006 0.020 0.000 0.001 

14 0.865 0.114 0.165 0.073 0.031 0.113 

15 0.369 0.021 0.044 0.028 0.004 0.013 

16 0.495 0.263 0.154 0.193 0.116 0.426 

17 1.223 0.023 0.104 0.015 0.003 0.010 

18 0.058 0.001 0.003 0.007 0.000 0.000 

19 0.088 0.001 0.004 0.005 0.000 0.000 

20 -0.380 -0.004 0.018 0.005 0.000 0.001 

21 -0.007 0.000 0.001 0.016 0.000 0.000 

22 1.240 0.008 0.064 0.005 0.001 0.002 

23 -3.067 -11.428 4.528 4.359 23.861 87.673 

24 1.458 0.038 0.127 0.015 0.005 0.017 

25 -0.411 -0.010 0.031 0.011 0.001 0.004 

26 -0.035 -0.001 0.003 0.018 0.000 0.001 

27 0.137 0.019 0.027 0.079 0.005 0.020 

28 -0.354 -0.012 0.032 0.016 0.001 0.005 

29 0.264 0.002 0.014 0.006 0.000 0.001 
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TABLE II SIX OUTLIER MEASURES BASED ON M AND MM ESTIMATES FOR LAKE DATA 
 M-estimate MM-estimate 

 
Cut of 

 points 
Index 

it  

3.0 
id    

3.0 

iCD  

 1.000 

iip   

0.067 

iDFFITS  

0.525 

iC   

2.0 

it    

3.0 
id   

3.0 

iCD   

1.0 

iip   

0.078 

iDFFITS

 0.525 
iC   

2.0 

1 -1.846 -1.945 0.799 0.375 1.191 4.374 -1.591 -1.780 0.469 0.174 0.742 2.728 

2 3.823 0.041 0.248 0.008 0.004 0.014 1.505 2.477 0.159 0.022 0.371 1.362 

3 0.583 0.023 0.054 0.017 0.003 0.011 0.035 0.000 0.002 0.008 0.000 0.000 

4 1.244 0.011 0.077 0.008 0.001 0.004 -0.477 -0.063 0.030 0.008 0.006 0.020 

5 2.497 0.091 0.334 0.036 0.017 0.063 1.091 0.010 0.110 0.020 0.001 0.005 

6 0.204 0.008 0.020 0.019 0.001 0.004 -1.016 -0.014 0.077 0.012 0.002 0.006 

7 -1.016 -1.249 0.264 0.135 0.459 1.688 -1.039 -1.086 0.182 0.061 0.269 0.988 

8 1.035 0.008 0.063 0.007 0.001 0.002 -0.675 -0.078 0.042 0.008 0.007 0.025 

9 2.365 0.142 0.390 0.054 0.033 0.122 1.689 0.009 0.182 0.023 0.001 0.005 

10 0.373 0.052 0.083 0.100 0.017 0.061 -10.473 -0.132 5.615 0.575 0.100 0.367 

11 -1.625 -0.681 0.352 0.094 0.209 0.767 -1.203 -1.054 0.260 0.093 0.322 1.183 

12 0.648 0.012 0.037 0.007 0.001 0.004 0.299 0.000 0.012 0.003 0.000 0.000 

13 0.157 0.011 0.015 0.018 0.001 0.005 -0.465 -0.001 0.030 0.009 0.000 0.000 

14 1.312 0.163 0.241 0.067 0.042 0.155 1.020 0.010 0.119 0.027 0.002 0.006 

15 0.587 0.040 0.067 0.026 0.006 0.024 0.373 0.003 0.027 0.011 0.000 0.001 

16 0.873 0.498 0.291 0.223 0.235 0.863 1.326 0.145 0.379 0.163 0.058 0.215 

17 1.746 0.034 0.141 0.013 0.004 0.014 0.828 -0.004 0.051 0.008 0.000 0.001 

18 0.121 0.006 0.007 0.006 0.001 0.002 -0.017 0.001 0.001 0.003 0.000 0.000 

19 0.158 0.005 0.007 0.004 0.000 0.001 -0.047 0.000 0.001 0.002 0.000 0.000 

20 -0.498 -0.010 0.028 0.006 0.001 0.003 -0.076 0.023 0.012 0.049 0.005 0.019 

21 0.037 0.013 0.004 0.023 0.002 0.007 0.815 0.153 0.224 0.151 0.060 0.219 

22 1.713 0.020 0.086 0.005 0.001 0.005 -0.571 -0.242 0.074 0.033 0.044 0.163 

23 -3.354 -17.324 4.792 4.081 34.998 128.592 -31.818 -0.234 32.941 2.144 0.343 1.259 

24 2.063 0.046 0.167 0.013 0.005 0.019 1.730 0.001 0.093 0.006 0.000 0.000 

25 -0.521 -0.038 0.043 0.013 0.004 0.016 -0.360 0.007 0.029 0.013 0.001 0.003 

26 0.027 0.006 0.002 0.016 0.001 0.003 -0.724 -0.003 0.047 0.008 0.000 0.001 

27 0.344 0.047 0.063 0.067 0.012 0.045 -0.987 -0.009 0.127 0.033 0.002 0.006 

28 -0.440 -0.044 0.046 0.022 0.007 0.024 0.156 0.051 0.034 0.097 0.016 0.058 

29 0.405 0.005 0.021 0.005 0.000 0.001 -0.285 -0.004 0.011 0.003 0.000 0.001 

 
TABLE III SIX OUTLIER MEASURES BASED ON OLS AND MM ESTIMATES FOR DATA SET WITH ONE OUTLIER 

 Least Square-estimate MM-estimate 

 
Cut of  
points 

Index 

it  

3.000 

 id  

 3.000 

iCD  

1.000 

iip  

0.243 

iDFFITS  

0.775 

iC   

2.000 

it  

3.000 

id  

 3.000 

iCD  

1.000 

iip  

 0.335 

iDFFITS
 0.775 

iC  2.000 

1 
3.810 0.741 0.643 0.085 0.216 0.515 9.515 0.000 1.155 0.044 1.78E-05 4.25E-05 

2 
-0.907 -0.138 0.166 0.100 0.044 0.104 -1.357 0.000 0.192 0.060 5.13E-05 1.22E-04 

3 
-0.386 -0.061 0.075 0.114 0.020 0.049 -0.062 0.000 0.010 0.079 1.11E-04 2.63E-04 

4 
0.110 0.019 0.022 0.125 0.007 0.016 1.170 -0.001 0.214 0.100 1.82E-04 4.33E-04 

5 
-0.406 -0.070 0.085 0.131 0.025 0.061 0.017 -0.001 0.003 0.120 3.64E-04 8.66E-04 

6 
-0.442 -0.074 0.093 0.132 0.027 0.064 -0.043 -0.002 0.009 0.137 5.90E-04 1.40E-03 

7 
-0.163 -0.025 0.033 0.127 0.009 0.021 0.608 -0.002 0.134 0.146 7.27E-04 1.73E-03 

8 
-0.394 -0.053 0.078 0.119 0.018 0.043 -0.010 -0.003 0.002 0.146 1.22E-03 2.89E-03 
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TABLE III(CONTINUE). SIX OUTLIER MEASURES BASED ON OLS AND MM ESTIMATES FOR DATA SET WITH ONE OUTLIER 

9 
-0.012 -0.001 0.002 0.112 0.000 0.001 0.787 -0.003 0.170 0.139 9.72E-04 2.31E-03 

10 
-0.695 -0.077 0.135 0.113 0.026 0.061 -1.015 -0.329 0.216 0.135 1.21E-01 2.88E-01 

11 
-0.731 -0.087 0.149 0.124 0.030 0.072 -1.310 -0.330 0.286 0.143 1.25E-01 2.97E-01 

12 
0.307 0.042 0.068 0.146 0.016 0.038 0.933 -0.002 0.219 0.166 6.29E-04 1.50E-03 

13 
0.877 0.148 0.211 0.173 0.062 0.146 2.064 0.004 0.529 0.197 1.64E-03 3.91E-03 

14 
0.659 0.132 0.167 0.193 0.058 0.138 1.342 0.004 0.362 0.218 2.05E-03 4.87E-03 

15 
0.112 0.023 0.029 0.195 0.010 0.024 -0.093 -0.033 0.025 0.211 1.52E-02 3.61E-02 

16 
-0.160 -0.032 0.039 0.179 0.013 0.032 -0.765 -0.174 0.190 0.185 7.47E-02 1.78E-01 

17 
0.088 0.015 0.021 0.169 0.006 0.015 -0.095 -0.030 0.023 0.172 1.25E-02 2.98E-02 

18 
-0.290 -0.059 0.076 0.208 0.027 0.064 -0.810 -0.123 0.219 0.219 5.77E-02 1.37E-01 

19 
-0.362 -0.133 0.130 0.386 0.082 0.196 -0.687 -0.075 0.248 0.392 4.70E-02 1.12E-01 

20 
0.260 0.252 0.152 1.028 0.255 0.608 1.225 -0.002 0.657 0.863 2.25E-03 5.35E-03 

 

TABLE IV SIX OUTLIER MEASURES BASED ON OLS AND MM ESTIMATES FOR DATA SET WITH 3 OUTLIERS (CASE 6,7,8) 
 Least Square-estimate MM-estimate 

 
Cut of  
points 

Index 

it  

3.000 

id   

 3.000 

iCD  

1.000 

iip  

0.235 

iDFFITS  

0.775 

iC  

 2.000 

it         

 
3.000 

id   

 3.000 

iCD  

1.000 

iip  

0.335 

iDFFITS  

0.775 

iC  

2.000 

1 
-0.704 -0.101 0.167 0.170 0.042 0.099 -0.117 -9.65E-05 0.014 0.044 2.03E-05 4.83E-05 

2 
-1.141 -0.167 0.271 0.169 0.069 0.164 -1.079 -2.19E-04 0.153 0.060 5.35E-05 1.27E-04 

3 
-0.807 -0.107 0.188 0.163 0.043 0.103 -0.050 -4.32E-04 0.008 0.079 1.21E-04 2.89E-04 

4 
-0.494 -0.059 0.111 0.151 0.023 0.055 0.930 -6.17E-04 0.170 0.100 1.95E-04 4.64E-04 

5 
-0.880 -0.097 0.187 0.136 0.036 0.085 0.013 -1.15E-03 0.003 0.121 4.00E-04 9.51E-04 

6 
1.992 0.232 0.398 0.120 0.080 0.192 7.978 -1.53E-03 1.706 0.137 5.66E-04 1.35E-03 

7 
2.156 0.245 0.406 0.107 0.080 0.191 8.526 -2.17E-03 1.882 0.146 8.31E-04 1.98E-03 

8 
1.989 0.216 0.362 0.099 0.068 0.162 8.033 -2.97E-03 1.771 0.146 1.13E-03 2.70E-03 

9 
-0.626 -0.068 0.115 0.101 0.022 0.051 0.623 -3.04E-03 0.134 0.139 1.14E-03 2.71E-03 

10 
-1.069 -0.145 0.206 0.111 0.048 0.115 -0.809 -3.12E-01 0.172 0.135 1.15E-01 2.73E-01 

11 
-1.052 -0.168 0.218 0.129 0.060 0.143 -1.044 -3.59E-01 0.228 0.143 1.36E-01 3.23E-01 

12 
-0.274 -0.045 0.061 0.149 0.017 0.041 0.738 -2.84E-03 0.174 0.166 1.16E-03 2.75E-03 

13 
0.196 0.034 0.046 0.164 0.014 0.032 1.636 5.29E-03 0.420 0.197 2.35E-03 5.60E-03 

14 
0.137 0.023 0.032 0.168 0.009 0.022 1.062 2.19E-03 0.286 0.218 1.02E-03 2.44E-03 

15 
-0.134 -0.020 0.031 0.159 0.008 0.019 -0.079 -4.59E-02 0.021 0.211 2.11E-02 5.02E-02 

16 
-0.215 -0.029 0.047 0.146 0.011 0.026 -0.613 -1.92E-01 0.152 0.185 8.27E-02 1.97E-01 

17 
0.054 0.008 0.012 0.150 0.003 0.007 -0.081 -3.28E-02 0.019 0.172 1.36E-02 3.25E-02 

18 
-0.112 -0.023 0.029 0.202 0.010 0.024 -0.648 -1.50E-01 0.175 0.219 7.04E-02 1.68E-01 

19 
-0.068 -0.028 0.024 0.372 0.017 0.040 -0.550 -7.21E-02 0.199 0.392 4.51E-02 1.07E-01 

20 
0.468 0.439 0.255 0.887 0.414 0.986 0.969 -3.65E-03 0.519 0.862 3.39E-03 8.07E-03 

VI. CONCLUSION 

In this paper, a linear approximation of a nonlinear model is 
formulated and subsequently leverage matrix based on the 
gradient is formed.  The outlier measures for nonlinear 
regression are then formulated by incorporating the leverage 
matrix  and the  commonly  used detection measures based on 
the OLS, M and MM estimates.   The results of the study 
clearly reveal that the proposed measures which are based on 
the OLS and M estimates can hardly detect the high leverage 

points correctly.  The studentized residuals-OLS based and 
CD-M based can detect a single outlier correctly  while the 

it -M based able to detect 3 outliers correctly.  The results of 

simulation study agree reasonably well with the results of the 
real data that the ti-MM based and CD-MM based are the best 
outlier measures in nonlinear regression because they 
consistently can identify outliers correctly in different outliers 
scenarios.  
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TABLE V SIX OUTLIER MEASURES BASED ON THE OLS AND MM ESTIMATES WITH 6 HIGH LEVERAGE POINTS(THE LAST 6 OBSERVATIONS) 
 Least Square-estimate MM-estimate 

 
Cut of  
points 

Index 

it  

3.000 
id   

 3.000 

iCD  

1.000 

iip  

0.241 

iDFFITS  

0.679 

iC   

2.000 

it   

 
3.000 

id  

 3.000 

iCD  

1.000 

iip  

0.298 

iDFFITS  

0.679 

iC  2.000 

1 
-0.841 -0.027 0.095 0.038 0.005 0.015 -0.111 -8.30E-05 0.010 0.022 1.23E-05 3.41E-05 

2 
-1.709 -0.070 0.209 0.045 0.015 0.041 -1.026 -1.98E-04 0.105 0.031 3.50E-05 9.68E-05 

3 
-0.858 -0.038 0.113 0.052 0.009 0.024 -0.047 -3.67E-04 0.006 0.043 7.65E-05 2.12E-04 

4 
-0.038 -0.002 0.005 0.060 0.000 0.001 0.879 -5.62E-04 0.123 0.059 1.36E-04 3.77E-04 

5 
-0.792 -0.045 0.119 0.067 0.012 0.032 0.011 -9.74E-04 0.002 0.077 2.70E-04 7.47E-04 

6 
-0.772 -0.049 0.122 0.075 0.013 0.037 -0.035 -1.48E-03 0.006 0.096 4.59E-04 1.27E-03 

7 
-0.232 -0.016 0.038 0.081 0.005 0.013 0.456 -1.89E-03 0.089 0.115 6.41E-04 1.77E-03 

8 
-0.482 -0.035 0.082 0.086 0.010 0.029 -0.012 -3.00E-03 0.003 0.129 1.08E-03 2.98E-03 

9 
0.265 0.020 0.046 0.090 0.006 0.017 0.595 -2.89E-03 0.127 0.136 1.07E-03 2.95E-03 

10 
-0.682 -0.054 0.119 0.091 0.016 0.045 -0.785 -2.58E-01 0.166 0.135 9.47E-02 2.62E-01 

11 
-0.588 -0.046 0.102 0.090 0.014 0.039 -1.006 -2.46E-01 0.208 0.128 8.80E-02 2.44E-01 

12 
1.193 0.097 0.203 0.087 0.029 0.079 0.690 -3.08E-03 0.139 0.122 1.08E-03 2.98E-03 

13 
2.169 0.191 0.363 0.084 0.055 0.153 1.519 3.76E-03 0.307 0.122 1.32E-03 3.65E-03 

14 
1.852 0.160 0.308 0.083 0.046 0.128 0.978 6.04E-04 0.205 0.132 2.19E-04 6.08E-04 

15 
0.955 0.084 0.163 0.088 0.025 0.069 -0.083 -3.01E-02 0.018 0.147 1.16E-02 3.20E-02 

16 
0.367 0.037 0.068 0.103 0.012 0.033 -0.594 -1.90E-01 0.138 0.163 7.67E-02 2.12E-01 

17 
0.454 0.060 0.096 0.135 0.022 0.061 -0.086 -1.96E-02 0.021 0.172 8.11E-03 2.25E-02 

18 
-0.632 -0.117 0.161 0.194 0.052 0.143 -0.620 -1.39E-01 0.148 0.171 5.76E-02 1.60E-01 

19 
-1.431 -0.406 0.448 0.294 0.220 0.609 -0.492 -5.99E-02 0.114 0.162 2.42E-02 6.69E-02 

20 
-1.497 -0.644 0.586 0.459 0.437 1.209 0.728 -3.01E-03 0.163 0.150 1.16E-03 3.22E-03 

21 
0.648 0.124 0.166 0.197 0.055 0.153 31.062 -1.64E-04 7.779 0.188 7.13E-05 1.98E-04 

22 
-0.056 -0.011 0.014 0.200 0.005 0.013 31.156 -1.35E-04 7.838 0.190 5.89E-05 1.63E-04 

23 
-1.206 -0.263 0.324 0.216 0.122 0.338 30.293 -1.22E-04 7.636 0.191 5.34E-05 1.48E-04 

24 
-0.349 -0.074 0.094 0.216 0.034 0.095 31.242 -1.22E-04 7.875 0.191 5.34E-05 1.48E-04 

25 
1.356 0.269 0.347 0.197 0.119 0.330 31.852 -1.64E-04 7.976 0.188 7.13E-05 1.98E-04 

26 
-0.127 -0.030 0.036 0.243 0.015 0.041 31.880 -1.11E-04 8.051 0.191 4.85E-05 1.34E-04 
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