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Abstract—This paper investigates a method for the state 

estimation of nonlinear systems described by a class of differential-
algebraic equation (DAE) models using the extended Kalman filter. 
The method involves the use of a transformation from a DAE to 
ordinary differential equation (ODE). A relevant dynamic power 
system model using decoupled techniques will be proposed. The 
estimation technique consists of a state estimator based on the EKF 
technique as well as the local stability analysis. High performances 
are illustrated through a simulation study applied on IEEE 13 buses 
test system. 
 

Keywords—Power system, Dynamic decoupled model, Extended 
Kalman Filter, Convergence analysis, Time computing. 

NOMENCLATURE 

M Inertia constant of the generator 
D Damping constant of the generator 
δ mechanical rotor angle of the rotating  machine 
ω mechanical angular velocity 
ωs electrical angular velocity 
PM Mechanical power input 
Pj, Qj Nodal active and reactive power 
Pc,d Transit power 
Ybus Nodal  admittance matrix 

,
ij ij
G B  real and imaginary terms of bus admittance matrix 

corresponding to ith  row and jth column 

N Total  number  of  system  buses 
ng Number of generator buses 
nl Number of load buses 
PGi Electrical power supplied by the generator 

,i iUθ  Phase and voltage at bus i 

,i iUθΔ Δ  Variation of phase and voltage 
,r x  Resistance and inductive reactance of line 

I. INTRODUCTION 
YNAMIC state estimation plays a basic and very 
important role in modern industries. Particularly in the 

power systems, state estimation generates critical input data 
for driving other operation functions including real-time 
security monitoring, load-forecasting, economic dispatch, 
load-frequency control, etc. 

Hence, an efficient and accurate dynamic state estimation is 
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a prerequisite for an efficient and reliable operation of power 
system [1]. 

State estimation in power system has mainly focused on 
Static State Estimation (SSE) from redundant measurement 
[2] [3]. However, to oversee an electrical power system in 
efficient, economic and secure manner, it is most important to 
be acquainted with the different dynamics states and then it’s 
Dynamic State Estimation (DSE) in electric power system, 
which apprises of the aforesaid information.  

In designing a DSE, it is important to consider all algebraic 
and dynamic variables (bus voltages/phases and generators 
variables). The existing models are based on reducing the size 
of the model (linearized DAE) [4], linearization of the model 
[5]. To override the limitations of the existing models, a 
relevant and new model has been considered in this paper to 
model the dynamics of the power system based on the 
nonlinear DAE models proposed in [6]. We show that we can 
always rewrite the system with a nonlinear DAE form with 
explicit ODE to facilitate its implementation and operation. 

After validation of a robust dynamic model, it is extremely 
important to consider a robust estimator which reflects a 
reliable image in the terms of capacity as for estimation, 
robustness and stability. A large number of existing methods 
are based on: 
• The power system is considered as a quasi-static variables 

(voltages magnitudes and angles at network buses) and 
then applying a tracking estimator [7]. 

• Definition of spaces of linear combinations and their 
algebraic complement for the calculation of the observer 
gains [8]. 

• The Kalman filter (by linearizing the DAE or ODE model 
[9]) [1], [10] with different resolution techniques (by 
varying the algorithm of resolution such as Square Root 
Filter Algorithm [11] or changing the weight vector [12]). 

Most methods are based on the Kalman Filter for the reason 
of the complexity of the model [13] [14]. The advantages of 
the EKF are its simplicity, the fact that it is a recursive 
algorithm and so its computational load is modest [15] [16]. 
The EKF is suitable for real-time industrial-scale applications 
[17] with the development of the Digital Signal Processor 
devices.  

The aim of this work is to show how a simple EKF 
algorithm can solve the dynamic state estimation problem for 
power systems. Indeed, the description of the network by a 
dynamic model leads us to have an idea about the transient 
behavior that plays a central role in monitoring and 
controlling design. To do so, through an IEEE 3-buses 
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example, we show that the dynamic model is always written 
as a nonlinear DAE. To develop useful and simple state 
estimator, we transform the obtained model into an augmented 
one written as a system of ordinary differential equations. 
Furthermore, to reduce the computational requirements and 
numerical instabilities, we show in the proposed decoupled 
dynamic model that the inverse of the Jacobian matrix can be 
approximated by the inverse of a block diagonal matrix using 
two sub-matrices of small dimensions. Thus, we propose a 
state estimator based on the EKF with a study of stability 
analysis. In the last section, numerical simulations applied on 
the IEEE 13-buses test system will show the relevance and 
efficiency of the proposed approaches. 

II. DYNAMIC POWER SYSTEM MODEL 
The dynamics of a power system can be modeled with a 

combination of nonlinear differential equations and nonlinear 
algebraic equations. These sets of equations are often solved 
separately in different analysis techniques. The solution is 
accomplished in an iterative way, with the important feature 
that all the desired system characteristics are included. The 
general form of the DAE model is given as: 

 
( ) ( ( ), ( ), ( ))

0 ( ( ), ( ))
( ) ( ( ), ( ))

d d d a

d a

d a

x t F x t x t u t
g x t x t

y t h x t x t

=⎧
⎪ =⎨
⎪ =⎩

     (1) 

 
with: dn

dx (t)∈ and ( ) an
ax t ∈ are respectively dynamic 

and algebraic states,  ( ) dn
dF t ∈  a function representing the 

nonlinear differential equations, (.) ang ∈  represents the 

nonlinear algebraic constraints (equations), ( ) pu t ∈ the 

control and ( ) my t ∈  the output system. The problem with 
the system (1) is that ( )ax t does not appear explicitly. 

A. Problem Formulation 
To put out, in details, the physical dynamic power model, 

we will treat the case of the 3 buses test system given in Fig. 1 
(with ng=2 and nl=1): 

 

 

Fig. 1 3 Buses test system 
 

We consider these assumptions [6]: 
- The internal field currents are constant, providing the 

representation of the machine as a constant voltage 
behind the direct axis transient reactance. 

- The mechanical power provided by the prime mover is 

constant and all dynamics of the prime mover are 
neglected. 

- All generators are rotating at synchronous speed (steady 
state) and are round rotors. 

- All generators in the system are identical, and therefore 
the inertia constant (Mi) along with the damping constant 
(Di) of each generator have the same value. 

- The mechanical rotor angle is the same as the electrical 
phase angle of the voltage therefore δ now refers to the 
electrical angle. To further simplify the notation, the 
transient reactance is incorporated into the system Ybus, 
resulting in θi as generator terminal voltage phase and Vi 
as the terminal voltage magnitude. 

If we take node 1 as reference, the set of equation of this 
network is given by [6]: 

 

˙

, ,

: 0

: ( ( , , ) )
2

: ( , , ) 0

: ( , , ) 0

: ( , , )

i i

I
i i s

II s
i i M G i

I
i j j

II
i j j

q c d c d

f

f P P V D
M

g P P V

g Q Q V

y P P V

δ ω ω
ω

ω δ θ ω

δ θ

δ θ

δ θ

⎧ − + =
⎪
⎪ = − −⎪
⎪
⎨ − =
⎪
⎪ − =
⎪
⎪ =⎩

    (2) 

 
with: 1... 1; ( 1)...( ); 1... ; , 1...g g g li n j n n n q m c d N= − = + + = = , the 
node 1 is taken as the reference and : 
 

1
| || | [ cos( ) sin( )]

i

N

G i j ij i j ij i j
j

P V V G Bδ θ δ θ
=

= − + −∑  

 
Therefore the model (2) can be rewritten under this form: 
 

( , , )
( , )

F x x u
y h x

β
β
=

=
 

 

with: [ , , , ] , , { }, (.) [ , ]iMT T
i i i i bus i j

P
x V u Y F f g

M
δ ω θ β= = = =  

and ,c dy P=  where u and y will be respectively the control 
and the output of the system. The choice of transit power as 
output which is based on this measure is used by the Tunisian 
Company of Electricity and Gas. Thus for this network, the 
state vector and the system equations are given by (3) and (4). 
 

1 2 3 4 3 3 2 2[    ] [    ]T Tx x x x x Vδ ω θ= =      (3) 

3 3

1 2

2 1 3 4 2

2 2 1 3 4

2 2 1 3 4

1 3,2 1 3 4

:

: ( ( , , ) )
2

: ( , , ) 0

: ( , , ) 0
: ( , , )

I
s

II s
M G

I

II

f x x

f x P P x x x Dx
M

g P P x x x

g Q Q x x x
y P x x x

ω
ω

⎧ = −
⎪
⎪ = − −⎪⎪
⎨ − =⎪
⎪ − =
⎪
⎪⎩

  (4) 

GS GS

Bus 1 

Bus 2 

Bus 3 
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with x1 and x2 are the dynamic variables, x3 and x4 are the 
algebraic variables. While using (1) the system is rewritten as: 
 

 

1
1 2 3 4

2

1 2 3 4

3,2 1 3 4

( , , , , ) [ , ]

( , , , ) [ , ] 0
( ) ( , , )

I II T
d d

I II T

x
x F x x x x u f f

x

g x x x x g g
y t P x x x

⎧ ⎛ ⎞
= = =⎪ ⎜ ⎟

⎝ ⎠⎪
⎪ = =⎨
⎪ =⎪
⎪
⎩

 

 
A simple diagram for the simulation of power system with 

model (1) is proposed, which: for the dynamic states we use a 
block of integration with nonlinear function ( ( )dF t ) with 
algebraic constraints resolver under a package SIMULINK of 
MATLAB®. The simulation diagram is as follows (Fig. 2): 

 

 

Fig. 2 Diagram of simulation 

B. Semi-Explicit DAE of Index 1 
If at an equilibrium point, the system (1) is called semi-

explicit [18], index-1 property requires that ( , )d ag x x is 
solvable for ax  and det( ( , )) 0

ax d ag x x ≠  (to simplify 

( ) , ( )d d a ax t x x t x= = ):  
 

0 ( , ) ( , )

0 ( , ) ( ,

 

 , ) ( , )
d a

d a

x d a d x d a a

x d a d d a x d a a

g x x x g x x x

g x x F x x u g x x x

= +

= +

⎧⎪
⎨
⎪⎩

  (5) 

 

where
( , )

( , )
a

d a
x d a

a

g x x
g x x

x
∂

=
∂

and 
( , )

( , )
d

d a
x d a

d

g x x
g x x

x
∂

=
∂

  

 In other words, the differentiation index is 1, if, by 
differentiation of the algebraic equations with respect to time, 
an implicit ODE system results: 

 

1

( , , )

( , ) (

 

 , ) ( , , )
a d

d d d a

a x d a x d a d d a

x F x x u

x g x x g x x F x x u−

=

=⎪ −

⎧⎪
⎨
⎩

    (6) 

where 1( , ) a a
a

n n
x d ag x x ×− ∈ and ( , ) a d

d

n n
x d ag x x ×∈ .  

A study of nature and stability of DAE system is given by 
[19]. It should be noted that: 

 
1 2 1 2

3 43 4

( , )
( , ) [ ]a a

a
a a

x xd a
x d a

x xa

g g j jg x x
g x x J

j jg gx

⎛ ⎞ ⎛ ⎞∂
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

 (7) 

 
where : 
• [J] is the Jacobian matrix used in the Load Flow 

calculation excepted for generators terms, which allows 
us to verify that this det( ( , )) 0d ag x x ≠  and g is solvable 
for any ax  (the elements of this matrix are the 
components of the diagonal Jacobian matrix used in load 
flow). 

• 1ax

P
g Pθθ

∂
= =

∂
, 2ax V

P
g P

V
∂

= =
∂

, 3ax

Q
g Qθθ

∂
= =

∂
, 

and 4ax V

Q
g Q

V
∂

= =
∂

. 

C. Proposed Dynamic Power System Model 
The basic idea is to extend the principle of decoupled 

algorithm used in Load Flow [3] and in SSE [2] to the 
dynamic model (and consequently to the DSE), but it apply 
only to the matrix ( , )

ax d ag x x . In the dynamic model (4), 

matrix ( , )
ax d ag x x  is formed by the differentiation of the 

algebraic constraints to the algebraic states and formed by the 
same elements of Jacobean matrix which are used for load 
flow calculation. In an equilibrium point (or around), we 
assume that the variation of ax  is very small and can be 
approximated, with the same methodology used in Newton's 
algorithm to load flow calculation (same principle), by 

( 1) ( ) ( )a a ax n x n x n+ = + Δ  where: 
 

1( )
[ ( )] ( , ) ( , )

( ) ( )a da x d a x d a
n

x n g x x g x x
V n P n
θ δ−Δ Δ⎡ ⎤ ⎡ ⎤

Δ = = −⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦
   (8) 

 
and ( ) ( ) ( )M GP n P n P nΔ ≈ −  and sδ ω ωΔ = − . The solution 

( )ax t  should always verify that calculated by load flow (in 
permanent mode ax  must be equal to 0 to verify the algebraic 
constraints). So we have the same formulation as that used for 
the load flow calculation and we can apply the principle of 
decoupled algorithms.  
With the same reasoning, we applied a change only to the 
matrix ( , )

ax d ag x x  in a similar way to that of the decoupled 

algorithm ( ( , ) |
ax d a Decg x x ): 

 
1

1

( , ) ( , ) ( , , )

( , ) | ( , ) ( , , )
a d

a d

a x d a x d a d d a

x d a Dec x d a d d a

x g x x g x x F x x u

g x x g x x F x x u

−

−

= −

= −
    (9) 

( )ax t  : algebraic state 

u(t) : 
mechanical  
power

( ( ), ( ), ( ))d d aF x t x t ut  .∫

Algebraic 
constraints 

resolver 

y(t) : transit 
power

( )dx t  : dynamic state 
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We present in what follows the principle of decoupled 
algorithm used for load flow and SSE. Let us consider an 
electrical line model given at Fig. 3: 

 

 

Fig. 3 Schema of electrical line 
 

where the voltage 1V  is supposed to be constant and the 
voltage 2V  is taken as the origin of phase with r and x are 
respectively resistance and inductive reactance of line . We 

have: 2 2

2

rQ xP
V

θ
+

Δ =  and 2 2

2

rP xQV
V
+

Δ = . In a high voltage 

network, it is obvious that the phase ( )θ depend primarily on 
the circulation of the active powers and that the modules of 
the nodal voltage (V) are mainly dependent on the circulation 
of the reactive powers because r x . In these conditions, we 

can approximate θΔ and VΔ  by 2

2

xP
V

 and 2

2

xQ
V

 respectively. 

These approximations allow us to cancel sub matrix 2[ ]
axg  

and 3[ ]
axg  , therefore obtaining a reduced dimensions system 

[20]. We can thus write this matrix in the following simplified 
form: 

 

1

4

1

4

0( , ) |
( , ) |

0

0
   [ ]

0

a

a
a

xd a Dec
x d a Dec

xa

Dec

gg x x
g x x

gx

j
J

j

⎛ ⎞∂ ⎜ ⎟= =
⎜ ⎟∂ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

   (10) 

 
To validate the proposed dynamic decoupled model, we 

present the variation of the difference between the magnitude 
voltage 2V  in load node 2 given respectively: by the diagram 
in Fig. 2, OM and DM for 3 buses test system: 
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Fig. 4 Plots of 2 2OM
V V−  and  2 2DM

V V−  

 
Fig. 4 shows that the two models converge to the same 

value (found in load flow), but with DM it converges faster 
than the OM and there are no oscillations with important value 
during the first iterations with a very small error. 

Now, we have tested the OM and proposed DM for 100 
simulations while varying the initial values in a random way 
(variation of 20%±  with respect to the actual initial values). 
We put on Table I the relative error given by (11) where realx , 

OMx  and DMx  represent respectively the states generated by: 
diagram in Fig. 2, OM and the proposed DM. 

 
/real OM DM

real

x x
x
−                    (11) 

 
TABLE I 

RELATIVE ERROR (%) AND COMPUTING TIME WITH RANDOM INITIAL VALUES  
 OM DM 

Relative error 4.133 % 2.679% 
Computing Time 1.72 s 1.24s 

 
As we can see (line 2 of Table I), the proposed decoupled 

model (DM) converges with more accurate precision than 
with ordinary model (OM). Moreover, the results show that 
the computing time is better when using DM which permits to 
implement more effectively this model for real time 
application. 

For the calculation of ax , the mathematical expressions are 
given in (12) for DM and in (13) for OM. 

 

      
1

1

0
( , , )

0

j i

j i

a d d a
V

P P
x F x x u

V Q Q

θ δ

δ

θ
−

−

−
= =

−

⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠
        (12) 

 

 where 
i

j

i

P
Pδ δ

∂
=

∂
 and 

i

j

i

Q
Qδ δ

∂
=

∂
. 

   

r+jx 

V1 V2 
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1

1

1
2 3

( ) 0
( , , )

0

j i i i

j i

a d d a

V

P P T P Q
x F x x u

Q Q T T

θ δ δ δ

δ

−

−

− − +
=

− + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

   (13) 

 
where: 

   
1 1 1

1

1 1
2

1 1 1 1 1
3 /2

1 1

( )

( ) ·

      · ( )

j j j j j j

j j j i

a j j j j j j j

j j j j i i

V V V

V

n V V V

V V

T P P Q Q P P

T Q Q P P

T I Q Q P P Q Q P

P Q Q P P Q

θ θ θ

θ θ δ

θ θ θ θ

θ θ δ δ

− − −

− −

− − − − −

− −

= − −

=

= +

−

 

 
We note though, according to (12) and (13), that DM 

neglects some terms (T1, T2 and T3) used by OM (which 
reduces the computation time). These neglected terms can lead 
the system (during transient mode) to large values which 
decrease the response time (these terms can cause numerical 
instabilities which are shown by the difference of variation of 
the relative error in Table I). 

Finally, the complete model in form ODE is according to: 
 

1

( , , )

( , , )

( , ) ( , ) ( , , )

( , )0
( , )

( , )

a d

d
d a

a

d d a

x d a x d a d d a

d a
d a

d a

x
x f x x u

x

F x x u

g x x g x x F x x u

g x x
y h x x

h x xy

−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠

⎛ ⎞⎛ ⎞
= = = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

    (14) 

 
In the expression of ( , )d ah x x , the purpose of adding the 

algebraic constraint ( , )d ag x x  is to check it permanently (with 

OM: 
axg  and DM: |

ax Decg ). It should be noted that the 

assumptions and the propositions given can be generalized for 
the other forms of dynamic power system models (models 
including a characteristic of the static/dynamic loads [21] and 
generators with exciter model [6]). 

III. DYNAMIC STATE ESTIMATION 
The main problem in dynamic state estimation of power 

system is that few methods are applicable. Effectively, the 
numerous and strong nonlinearities in presence lead generally 
to the use of Extended Kalman Filter to resolve the state 
estimation problem. We propose here the Extended Kalman 
Estimator to increase the precision as well as the robustness of 
the estimation. A study of the convergence of EKF will be 
presented. 

A. Extended Kalman Filter 
The Kalman filter is a recursive estimator. It means that to 

consider the running state, only preceding state and current 
measurements are necessary. The history of the observations 

and the estimates is; thus; not necessary. In the extended 
Kalman filter (EKF), the state transition and observation 
models need not be linear functions of the state but may 
instead be differentiable functions [22]. The considered 
nonlinear discrete system is given by (15): 

 

1 ( , )
( , )

k k k k

k k k k

x f x u v
y h x u w

+ = +⎧
⎨ = +⎩

      (15) 

 
where kv  and kw  are the system and observation noises 
which are both assumed to be zero mean multivariate 
Gaussian noises with covariance kQ  and kR  respectively. 

In this paper, we have used the classical form of EKF (we 
have used Euler discretization with a step size Te, 

1 ( , ) ( , )k k e k k k kx x T f x u f x u+ = + =  to discretize the 
continuous model (14)) given by: 

  
1

1

1

ˆ ˆ( , )

( )

( )
ˆ( , )

k k k k k
T T

k k k k k k k k
T

k k k k k k k

k k k k

x f x u K e

K F P H H P H R

P F K H P F Q
e y h x u

+
−

+

= +

= +

= − +
= −

     (16) 

 

with: ˆ
( ( , ))ˆ( , ) |

k k

k e k k
k k k x x

k

x T f x u
F F x u

x =
∂ +

= =
∂

and   

ˆ

( )
( , )ˆ( , ) |

( ) k k

k

kk k
k k k x x

kk

k

g x
xh x u

H H x u
h xx

x

=

∂⎛ ⎞
⎜ ⎟∂∂ ⎜ ⎟= = =
⎜ ⎟∂∂
⎜ ⎟

∂⎝ ⎠

. 

 
There are some attempts to apply Kalman Filter on 

linearized D.A.E system [23], but our proposition is to apply 
the E.K.E in the classic general form with some numerical 
approximations that we propose for the Jacobian calculation. 

Initially, it should be noted that due to the difficulty of 
finding kF  (following the transformation of the algebraic 
variables in ODE model), we will make the following 
numerical approximation: 

 

ˆ

1

( ( , ))
ˆ( , ) |

( ( , , ))

( , )

( ( ( , ) ( , ) ( ,

 

, )))

( , )

k k

k k k

k k

k a k k d k k k k

k k

k e k k
k k k x x

k

d e d d a k

d a

a e x d a x d a d d a k

d a

x T f x u
F F x u

x

x T F x x u

x x

x T g x x g x x F x x u

x x

=

−

∂ +
= =

∂

∂ +

∂
=

∂ + −

∂

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

(17) 

 
The numerical approximation is used on the second term of 

kF   (since it is very difficult to determine) as follows: 
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1

1

( ( ( , ) ( , ) ( , , )))

( , )

( , , )
( ( ( , ) ( , ) ))

( , )

k a k k d k k k k

k k

k k

a a k k d k k

k k

a e x d a x d a d d a k

d a

d d a k
n e x d a x d a

d a

x T g x x g x x F x x u

x x

F x x u
I T g x x g x x

x x

−

−

∂ + −

∂

∂
≈ + −

∂

(18) 

 
For ˆ ˆ,

k k k kd d a ax x x x= = . The terms 1
axg−  and 

dxg are 

calculated numerically.  

B. Convergence Analysis 
In this section, we present a convergence analysis of EKF 

(16) based on the method of [24], [25] and [26] by including 
an unknown diagonal matrix to model linearization errors and 
a Lyapunov function. This leads to the resolution of a LMI 
which depends on the choice of kR  and kQ . Initially, the error 
vector is defined: ˆk k kx x x= −   and the candidate Lyapunov 

function is:     1
1 1 1 1

T
k k k kV x P x−

+ + + += , where: 
 

1
1 1
1

1 ( )

( )

( )
( ,..., )

d a

k k k k k k k k k
T c

k k k k k

jk k n n k

x F K H x F x

P F P F Q
diag

α α

α α α

+
− −
+

+

⎧ = − =
⎪⎪ = +⎨
⎪ =⎪⎩

 

 
We have then: 

 
1

1 1
1

( ) ( )

   ( )

T
k k k k k k k k
T T T c
k k k k k k k k k k

V F x P F x

x F F P F Q F x

α α

α α

−
+ +

−

=

= +
      (19) 

 
A decreasing sequence 1,...{ }k kV =  means that there exists a 

positive scalar 0 1ξ< <  so that: 1 (1 ) 0k kV Vξ+ − − ≤ . This 
gives us this LMI: 

 
   1 1( ) (1 ) 0T T c

k k k k k k k k kF F P F Q F Pα α ξ− −+ − − ≤      (20) 
 

With the same reasoning used in [24], we determine 
domains in which (20) is satisfactory. Under the following 
assumption: 

 

   

1
2(1 ) ( )

| | | |
( ) ( ) ( )

T c
k k k k

jk k j jk T
k k k

F P F Q
sup

F P F
ξ σ

α α α
σ σ σ

⎛ ⎞− +
≤ = ≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
   (21) 

 

1,...{ }k kV =  is a decreasing sequence. With σ  and σ  denoting 
the maximum and minimum singular values respectively, and 
as kα  is a diagonal matrix then: 
 

  

2

1

1
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     (22) 

We have then: 
 

1

2 1

1
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−
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     (23) 

 
When (23) is satisfied, kV  is a strictly decreasing sequence. 

This last equation gives us an idea on the choice of c
kQ  and 

for c
kR , we proceed as follows: 
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1
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      (24) 

 
by replacing 1( )T T c

k k k k k k kP H H P H R H−+  by kA , we obtain: 
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with 
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We obtain finally: 

 

    
1( ) ( ) ( ) ( )

( )
( )

a d

T
k k k k k n n

k T c
k k k k
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F
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      (27) 

 

For example, we can choose c
kQ  sufficiently large and c

kR  

so that (27) is satisfied, thus kα  may be large and not 
necessarily very close to identity matrix. However, in order to 
ensure ˆlim ( ) 0k kk

x x
→∞

− =  and since kV  is a strictly decreasing 

sequence and kP  is a bounded matrix, it follows that: 

 

0

0

0 (1 )

0 lim ( ) lim ( ) lim ((1 ) ) 0

T k
k k k

T k
k k kk k k

x x V V

x x V V

μ ξ

μ ξ
→∞ →∞ →∞

≤ ≤ ≤ −

⇒ ≤ ≤ ≤ − =
 

 
with 10

d an n kI Pμ −
+≤ ≤ .  

Consequently, in the same reasoning of [24] and [26], and 
so that the EKF ensures local asymptotic convergence, we 
must verify the following conditions: 
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1. System (15) is M-locally uniformly rank observable, there 
exists 1k M≥ −  where the observability matrix: 

 
   ( ( 1, )) ( )d arank O k M k n n− + = +      (28) 

 
where 

1

2 1

1 1

( 1, )

k M

k M k M

k k k M

H
H F

O k M k

H F F

− +

− + − +

− − +

⎡ ⎤
⎢ ⎥
⎢ ⎥− + =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
In practice, we use a numerical rank test on 
( 1, )O k M k− + . 

2. kF , kH  are uniformly bounded matrices and 1
kF −  exist. 

3. The matrices c
kQ  and c

kR  are chosen so that the bounds 
(22) and (27) are satisfied: 

 

d a d a

c T
k k k n n n n

c T
k k k k m

Q e e I I

R H P H I

η υ

μ

+ += +

= +ε
        (29) 

 
where η  and υ  are to be chosen large and positive and ε  
and μ  a positive scalar fixed by the user. Indeed, once the 
convergence is reached (using the output error vector as a 
criterion) we switch to the actual covariance matrices i.e. 

c
k kQ Q= , c

k kR R= . 

IV. SIMULATION RESULTS 
Studies are carried out on the IEEE 13 buses test system to 

evaluate the performance of the dynamic state estimation of 
the proposed model on a Pentium Dual-Core, 1.60 GHz 
Personal Computer. The transit power is considered as 
measurements which are generated by the diagram of 
simulation given in Fig. 2.  For the discretization of the model 
(14), we used Euler discretization with a step size 410eT s−= . 
The network includes: 
- 5 generator buses:  2, 5, 7, 11 and 12 (with node 12 taken 

as the reference bus) and 8 static load nodes: 1, 3, 4, 6, 8, 
9, 10 and 13. 

- The outputs are the transit powers between nodes 7 and 6 
( 7,6P ) and nodes 12 and 1 ( 12,1P ) with a state vector 

composed by 24 variables ( [ ] [    ]T
i i j jx Vδ ω θ=  with i=2, 5, 

7, 11 and j=1, 3, 4, 6, 8, 9, 10, 13). 
Firstly, we present the evolution of the reciprocal condition 

estimator ( 13, )
13( )k k

busesrcond O −  in Fig. 5 to verify the 
observability. 
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Fig. 5 Evolution of ( 13, )
13( )k k

busesrcond O −  

 
After the verification of the observability, ( 13, )

13
k k
busesO −  is well 

conditioned ( ( 13, )
13( 0k k

busesrcond O − > ), the measurements are the 
results of the diagram of simulation (Fig. 2) and by applying 
low variance noise to the measurements ( 5%kw = ±  of real 
value) with: 

 
5

242.753*10
0.015664 0

0 0.014307

EKF
k

EKF
k

Q I

R

−=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 

 
We show in Fig. 6 the variation of the estimated bus 

voltage in node 1 ( 17x̂ ) with OM and DM (we used the final 
value (constant final value = 201.45 kV) to show the variation 
in the transient mode): 
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Fig. 6 Evolution of the estimated bus voltage: 1̂( )V k  with OM and 
DM 

 
It is clear, according to Fig. 6, that the estimated bus 

voltage ( 1̂( )V k ) converges to the real value with a small error 
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(which is due to the addition of disturbance on measures) with 
DM, error equal to 0.02. However with OM it's equal to 0.18. 
The reason why non-zero error is obtained after the estimation 
process comes from the fact that the measurements are 
corrupted by a disturbance ( 5%±  of real value). 

While noting that with the DM, the variation is more stable 
in transient mode because the elimination of the added 
elements VP  and Qθ  with OM. This is verified by:  

First, the variation of Condition number of additive terms 
T1 and T2+T3 in OM (neglected with the DM), where a 
disturbance is injected between iterations 2500 and 2510 (we 
reset the phases jθ ). 
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Fig. 7 Evolution of T1 and T2+T3 in OM 
 

The results obtained in Fig. 7 shows that, in the first 
iterations (transient mode), a large condition numbers of these 
terms indicates a nearly singular matrix, especially when a 
disturbance is injected. The existence of a singular matrix 
during the first iterations causes a peak value (which reduces 
the response time) and might lead the system to diverge.  

Second, by: 
- The variation of 1̂( )V k  with OM (variation of 395% of 

finale value) and DM (just a small variation of 7.42%). 
- The number of iterations until convergence: with OM 

after 1000 iterations and only 400 iterations with DM. 
Concerning the last point, it is due to the fact that with DM, 

we have to invert only two matrices of a dimension of 8x8 
(each matrix is formed by 12 elements). However with OM a 
matrix of 16x16 (matrix formed by 48 elements) to calculate 
only 1( , )

ax d ag x x − .  

Third, by the evolution of the relative error given by (11) 
(using the same conditions as Table I) with OM and DM. 

 
TABLE II 

RELATIVE ERROR (%) AND COMPUTING TIME WITH RANDOM INITIAL VALUES  
 OM DM 

Relative error 6.857% 3.819% 
Computing Time 121.2s 98.016s 

Table II shows that the proposed decoupled model 
converges with more accurate precision than ordinary model 
(with DM 3.819%, however with OM 6.857%). We notice, 
also, that the computing time with DM (98.016s) gives an 
indication on the feasibility and the possibility of practical 
implementation.  

Now, the measurement values are generated by adding high 
variance noise to the measurements ( 15%kw = ±  of real 
value). We present the evolution of the norm of error 
estimation by OM and DM: ˆrealx x−‖ ‖  (respectively Figs. 8 

and 9) with the previous values of c
kQ  and c

kR  (Standard 
EKF) and these new values (Modified EKF: proposed choice 
given in III-B by (29)): 
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Fig. 8 Evolution of ˆrealx x−‖ ‖  with OM 
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Fig. 9 Evolution of ˆrealx x−‖ ‖  with DM 

 
Concerning the evolution of error estimation, the results 

show that the appropriate choice of matrices c
kQ  and c

kR  
given by (29) insures the convergence of the estimated states 
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to the real value with OM (in Fig 8, we used a zoom to show 
the evolution of the estimation error since the error with the S-
EKF completely diverges) and DM. Another problem 
connected to the stability of DSE methods is the choice of 
initial values for various states. We tested the Standard and 
Modified EKF (respectively S-EKF and M-EKF) for 100 
simulations while varying the initial values in a random way 
(variation of 20%±  with respect to the actual initial values) 
with OM and DM. The following Table III shows the % of 
convergence by applying a disturbance to the system 
parameters: 
- Case 1: Adding a low variance noise to the system 

(variation of 5%kv = ±   applied on ijG  and ijB ). 

- Case 2: Adding a high variance noise to the system 
(variation of 15%kv = ±   applied on ijG  and ijB ). 

 
TABLE III 

CONVERGENCE (%) WITH RANDOM INITIAL VALUES  

Estimator OM  
(Case 1) 

DM (Case 
1) 

OM  
(Case 2) 

DM  
(Case 2) 

S-EKF 47% 52% 45% 48% 
M-EKF 90% 94% 88% 91% 

 
In the general case, the studied algorithms converge to the 

good values only when they are initialized ± near their actual 
values (the voltages are selected close to the values of the 
generator voltages and the phases equal to 0). Table III shows 
clearly that the Modified EKF converges in the majority of the 
cases compared with the Standard version and especially with 
the proposed DM.  

We present now in Table IV the relative error given by (30) 
when we add high variance noise to the measurements (±15% 
of real value) with the same previous conditions on initial 
values. 

 

/ˆreal OM DM

real

x x
x
−‖ ‖

‖ ‖
        (30) 

 
TABLE IV 

RELATIVE ERROR (%) WITH RANDOM INITIAL VALUES  
Relative error OM DM 

S-EKF 43.43% 28.73% 
M-EKF 8.89% 4.86% 

 
The values obtained in Table IV confirm that the M-EKF 

increases the estimation quality. In fact, with the use of M-
EKF with the proposed DM, the relative error is reduced by 
5.91 times in comparison with S-EKF. 

It should be noted that the results of simulation of dynamic 
model given by the diagram (Fig. 2) are validated and 
compared with those generated by the Toolbox 
SimPowerSystems of MATLAB® (we obtained the same 
results). In addition, the use of this Toolbox facilitates the real 
time implementation in DSP device. 

 

V. CONCLUSION 
An efficient decoupled dynamic power system model has 

been described and investigated based on introducing a 
transformation of ordinary DAE model using decoupled 
algorithm. We also used the classical method of EKF to 
dynamic state estimation of power systems including some 
numerical approximation for the calculation of the Jacobian 
matrix and which was preceded by a convergence analysis. 
The results show well the appropriate choice of the dynamic 
DM in terms of robustness, speed and computing time and, in 
a very clear way, the high quality of estimation offered by the 
Modified EKF. The remaining open questions are the 
experimental test of the proposed method and its application 
to large scale power test systems using the decentralized state 
estimation approaches for each zone (for each zone we apply 
the EKF with the DM) with coordination techniques to reduce 
the computational requirements. These two issues will be 
investigated in the near future. 
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