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On the mathematical structure and algorithmic

implementation of biochemical network models
Paola Lecca

Abstract—Modeling and simulation of biochemical reactions is
of great interest in the context of system biology. The central
dogma of this re-emerging area states that it is system dynamics and
organizing principles of complex biological phenomena that give rise
to functioning and function of cells. Cell functions, such as growth,
division, differentiation and apoptosis are temporal processes, that can
be understood if they are treated as dynamic systems. System biology
focuses on an understanding of functional activity from a system-wide
perspective and, consequently, it is defined by two hey questions: (i)
how do the components within a cell interact, so as to bring about
its structure and functioning? (ii) How do cells interact, so as to
develop and maintain higher levels of organization and functions?
In recent years, wet-lab biologists embraced mathematical modeling
and simulation as two essential means toward answering the above
questions. The credo of dynamics system theory is that the behavior
of a biological system is given by the temporal evolution of its state.
Our understanding of the time behavior of a biological system can
be measured by the extent to which a simulation mimics the real
behavior of that system. Deviations of a simulation indicate either
limitations or errors in our knowledge.

The aim of this paper is to summarize and review the main
conceptual frameworks in which models of biochemical networks
can be developed. In particular, we review the stochastic molecular
modelling approaches, by reporting the principal conceptualizations
suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D.
T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O.
Wolkenhauer, P. S. Jöberg and by the author.

I. INTRODUCTION

We can distinguish four fields of application of mathe-

matical models to biology: 1. population dynamics; 2. cell

and molecular biology; 3. physiological systems; 4. spatial

modeling.

Different formalisms are usually applied to describe the

dynamics of these different fields. In general the mathematical

structure of a model of a physical phenomenon depends on

the nature of the determination, of the time, and of the space

state. The determination of a model can be deterministic or

stochastic, or also hybrid deterministic and stochastic. The

time course can be continuous of discrete, and the state

space can also be continuous of discrete. The combination

of the these characteristics give rise to different mathematical

approaches to the modeling the dynamics of the phenomenon.

Here following we list some of the most common mathemat-

ical formalism and approaches to specify the dynamics of a

system with respect to the four categories listed above.

1) Deterministic processes (Newtonian dynamical sys-

tems). A fixed mapping between an initial state and a

final state. Starting from an initial condition and moving

forward in time, a deterministic process will always
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TABLE I
CLASSES OF BIOLOGICAL PHENOMENA AND MOST USED

FORMALISMS TO DESCRIBE THEM.

Population dynamics Deterministic processes
Ordinary differential equations.

Cell and molecular biology Stochastic processes:
Jump Markov processes
and continuous Markov processes.

Physiological systems Deterministic processes
Spatial modeling (epidemiology) Deterministic processes.

Partial differential equations.

generate the same trajectory and no two trajectories

cross in state space.

• Ordinary differential equations (Continuous time.

Continuous state space. No spatial derivatives.)

• Partial differential equations (Continuous time.

Continuous state space. Spatial derivatives.)

• Maps (Discrete time. Continuous state space)

2) Stochastic processes (random dynamical systems) A

random mapping between an initial state and a final

state, making the state of the system a random variable

with a corresponding probability distribution.

• Jump Markov process – Master equation (Continu-

ous time with no memory of past events. Discrete

state space. Waiting times between events discretely

occur and are exponentially distributed.)

• Continuous Markov process – stochastic differential

equations or a Fokker-Planck equation (Continuous

time. Continuous state space. Events occur contin-

uously according to a random Wiener process.)

• Non-Markovian processes – Generalized master

equation (Continuous time with memory of past

events. Discrete state space. Waiting times of events

(or transitions between states) discretely occur and

have a generalized probability distribution.)

• Stochastic simulation algorithms: Gillespie exact

simulation and StochSim

3) Hybrid stochastic/deterministic systems (metabolic and

signaling pathways)

• Gillespie τ -leap algorithm – Differential equations

for the simulation of fats reactions and Gillespie

algorithm for the exact simulation of slow reactions.

With regard to modeling the chemistry of intracellular

dynamics, the two most popular frameworks are the determin-

istic modeling and the stochastic modeling. The deterministic

modeling is based on the construction of a set of rate equations

to describe the reactions in the biochemical pathways of

interest. These rate equations are ordinary differential equa-
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tions with concentrations of chemical species as variables. In

general, given the complexity of biological pathways we have

to deal with non-linear differential equations. Deterministic

simulations produce the time course of the concentrations by

solving the differential equations.

In its most known aspect stochastic modeling involves

the formation of a set of chemical master equations with

probabilities as variables [32]. Stochastic simulation produces

counts of molecules of some chemical species as realizations

of random variables drawn from the probability distribution

described by the master equations.

Which framework is appropriate for a given biological

system is not only a question of what biological phenomena

are investigated but also influenced by assumptions one makes

to simplify the analysis. For instance, the scale, and thus the

level of granularity at which a phenomenon is investigated

may be parameters to choose a deterministic of a stochastic

approach [26].

In this paper we firstly review the deterministic approach to

chemical kinetics, then we examine thoroughly and critically

discuss the main concepts of stochastic chemical kinetics and

highlight the necessary re-formulations to adapt them to the

biological simulation context.

II. CHEMICAL REACTIONS

Here we report some introductory considerations of Wilkin-

son [33]. There are many ways one could represent a model

of a biological system. Biologist have traditionally favored

diagrammatic schemes conveying qualitative information of

the depicted mechanisms. At the other extreme, applied mathe-

maticians traditionally prefer to work with systems of ordinary

or partial differential equations. These are more precise and

fully quantitative, but also have a number of disadvantages.

The differential equations models are too low level description,

as they not only encode the essential features of the model,

but also a wealth of accompanying baggage associated with

a particular interpretations of chemical kinetics, that is not

always well suited to application in the molecular biology

context. Between these two extremes, the biochemist view

systems as networks of coupled chemical reactions. These

networks are sufficiently general that they can be simulated

in different ways using different algorithms depending on

assumptions made about the underlying kinetics. Furthermore,

they are sufficiently detailed so that, once the kinetics have

been specified, they can be used directly to construct full

dynamic simulations of the system behavior on a computer.

A general chemical reaction takes the form

s1X1+s2X2+· · ·+snXn −→ r1Y1+r2Y2+· · ·+rmYn (1)

where n is the number of reactants and m is the number of

products. Xi represents the ith reactant molecule and Yi is

the jth product molecule. si is the number of molecules of

Xi consumed in a single reaction step, and rj is the number

of molecules of Yj produced in a single reaction step. The

coefficients si and rj are known as stoichiometries, and they

are usually (tough not always) integer numbers. there is no

assumption that Xi and Yj are distinct, i. e. a given molecule

can be both consumed and produced in by a single reaction.

In particular, if a chemical species occurs on both the left and

the right hand side, is referred to as a modifier. In this case the

reaction will have no effect on the amount of this species, that

is usually included in the system because the velocity at which

the reaction proceeds depends on the level of this species.

Let nj be the number of molecules of species Xj The

reaction equation describe precisely which chemical species

react together and in what proportions, along with what is

produced. for instance consider the dimerization of a molecule

M , that is written as follows.

2M −→ M2

Two molecules of P react together to produce a single

molecule of P2. Here P has a stoichiometry of 2 and P2 has

a stoichiometry of 1, that usually is not written. Similarly, the

reaction for the dissociation of the dimer is written as

M2 −→ 2M

A reaction that can happen in both directions is known as

reversible. Reversible reactions are quit common in biology.

They are written explicitly adding a reverse arrow for the

backward reaction. This notation is simply a shorthand for the

two separate reaction processes taking place. In the context

of the stochastic models to be studied in this thesis, it will

be not acceptable to replace the two separate reactions by a

single reaction proceeding with a velocity given by some kind

of combination of the velocities of the two separated reactions.

2M ⇋ M2

III. KINETICS OF CHEMICAL REACTIONS

Chemical kinetics is concerned with the time-evolution of

a reaction system specified by a set of coupled chemical

reactions. In particular, it is concerned with the system behav-

ior away from equilibrium. Although the reaction equations

capture the key interactions between the competing species,

on their own they are not enough to determine the full system

dynamics. Solving the dynamics of a chemical system means

solving the following general problem: if a fixed volume V
contains a spatially uniform mixture of N chemical species

which can interact through M chemical reaction channels,

then given the numbers of molecules of each species present at

some initial time, what will these molecular population levels

be at any later time?

For answering this question we need to know the rates at

which each of the reactions occurs together with the initial

concentration of the reacting species. The rate of a reaction

is a measure of how concentration of the involved substances

changes with time. Consider a closed volume V containing a

mixture of chemical compounds Xj (j = 1, 2, · · · , J) and a

typical reaction as in the following

s1X1 + s2X2 + · · · −→ r1X1 + r2X2 + · · · (2)
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Let xj be the number of molecules Xj . It is convenient

to represent the set {nj} geometrically by a vector �n in a J-

dimensional state-space. The integral values of xj constitute a

lattice. Every lattice point in the octant of non-negative values

corresponds to a state of the mixture and vice versa (Fig. III).

Fig. 1. The state space of a binary mixture.

The state of the mixture changes when a chemical reaction

occurs. Both sides can be written as a sum over all j when

zero values of sj and rj are admitted.

∑
sjXj −→

∑
rjXj

If for any k one has sk = rk �= 0 the corresponding Xk

is a catalyst. If rk > sk > 0 then Xk is an autocatalyst.

sj is the actual number of molecules needed for a reactive

collision. A reaction that proceeds through intermediate steps

(chain reaction) has to be written as a sequence of single

collision reactions, the intermediate products being included

as separate items among the Xj . As three-body collisions are

rare to meet in practice only reactions with
∑

sj equal to 1

or 2; or possibly 3 if a catalyst is involved.

Each reactive collision of type (2) changes the state {xj} of

the mixture into xj+sj−rj}. In the geometrical representation

it means that it changes the state vector �x by adding to it

a vector �v with components vj = rj − sj . As the reaction

proceeds the state vector runs over a sequence of lattice

points lying on a straight line. This line cannot extend to the

infinity and must therefore end on one of the boundaries of

the physical octant.

The reverse reaction

∑
rjXj −→

∑
sjXj

will have instead the effect of subtracting �v from the state

vector. Thus, starting from an initial state �x0, the direct and

inverse reactions together cause the state vector to move over a

discrete chain of lattice points lying on a straight line between

two boundaries of the physical octant. The accessible points

are

�x = �x0 + ξ�v (3)

where ξ takes all integer values between an upper and a lower

bound.

Suppose now that another reactions s′j , r′j and its reverse

are possible. Starting from �x0 a second chain of lattice points

becomes accessible. Together with the previous reaction, a

network of points can now be reached,

�n0 + ξ�v + ξ′�v′ (ξ, ξ′ = . . . ,−1, 0, 1, . . . ) (4)

When in this way all possible reactions are taken into account

a sublattice is generated of points accessible from �x0. Since∑
j xj is bounded, it cannot cover all the octant. As the

reactions take place in a closed volume, there is no other way

by which nj can vary. Thence, this bounded sublattice is the

set of all accessible states of the systems. The physical octant

decomposes in such sublattices and the system is confined to

that sublattice on which its initial state �x0 happens to lie. Using

the expression (4), it is possible to parametrize the accessible

sublattice in the following way. Each possible reaction ρ has

a vector �v(ρ), and by construction all lattice points accessible

from �x0 are

�x = �x0 +
∑

ρ

ξρ�v
(ρ) (5)

Each parameter ξρ takes the integer values

. . . ,−2,−1, 0, 1, 2, . . . and it is called degree of advancement,

because it indicates how far the reaction ρ has advanced1.

Suppose that representation (5) is unique, i. e. for each �x0

each accessible point �x is represented by a single set of values

{ξρ}. If that is so, then (5) maps the accessible sublattice onto

the integral value lattice in the space with coordinates ξρ. Each

lattice point in the accessible part of this space corresponds to

a one and only one state of the mixture. Each reactive collision

corresponds to a unit step parallel to one of the coordinates

axes ξ. However, in general, there is no reason why (5) should

be unique. There may be two different sets of ξρ that lead from

�x0 to the same �x. That implies that there is a set of integers

ζρ, not all zero, such that

∑
ρ

ζρ�v
(ρ) (6)

In this case it is still possible to find a smaller set of lattice

vectors �w(ρ), such that each point of the accessible sublattice

is uniquely represented by

�x = �x0 +
∑

ρ

ηρ �w(ρ), (7)

with integer ηρ. Each lattice point in the space with coordinates

ηρ corresponds to one and only one state of the mixture, but

while in ξ-state space reactions correspond to unit steps, in

η-state space they do not. Hence not much has been gained

with respect to the original representation in the space of state

vectors �x.

The reactions that are possible in a closed volume are

restricted by conservation laws for the atoms involved. Let

α label the various kinds of atoms and suppose Xj contains

mα
j atoms of kind α, where mα

j = 0, 1, 2, . . . . Then the

stoichiometric coefficients of (2) obey for each α

∑
j

sjm
α
j =

∑
j

rjm
α
j

Since this holds for all reactions, the accessible sublattice lies

entirely on the intersection of hyperplanes given by

�x · �mα = Cα (8)

1Other names for ξ that are not rare to find in literature are “progress
variable”[32], “extent of the reaction”, and “reaction parameter”.
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Fig. 2. Accessible states for the reactions 2A ⇋ 2B with C = 7.

where Cα is the total number of available atoms α.

The conservation laws (8) are not all necessary independent.

If a group of different atoms are bounded in molecule through

all reactions, it gives rise to a single conservation law. For

example the reaction

2NO + Cl2 ⇋ 2NOCl

involves three kinds of molecules, but the conservation laws

for N and O coincide, because N and O atoms stay together

in both direct and inverse reactions. In addition to the laws

expressing the conservation of atoms, there may be also other

conservation laws. For instance if Xk only occurs as a catalyst

the corresponding stoichiometric coefficient is conserved by

itself.

All conservation laws together define a linear subspace of

lattice points. The accessible subspace lies in this subspace

and usually it is identical with it, but not necessarily so. A

counterexample would be

2A ⇋ 2B

in which two molecules X by colliding may change into

a different modification Y . The conservation law for this

reaction is

xA + xB = C

and it defines a straight line in the 2-dimensional state space

(Fig. 2), but only every other lattice point is accessible from

a given �x0.

A. Mass-action kinetics

The rate of a reaction is a measure of how the concentrations

of the involved substances changes with time. For the rate

at which a reaction as (2) occurs, one takes the Van’t Hoff

expression

k · ΠJ
j=1c

sj

j (9)

Here k is a constant, which involves the cross-section for a

collision of the required molecules, time the probability for the

collision to result in a reaction. This probability is calculated

as the product of the reactants concentrations, cj = xj/V ,

raised to the power of their stoichiometries. The Van’t Hoff

expression in (9) gives the number of collision per unit time

per unit volume in which {xj} −→ {xj + sj − rj}. The rate

equations are therefore

dxi

dt
= V k(ri − si)Π

J
j=1

(
xj

V

)sj

(10)

This equation is not an universal truth, but holds when the

following physical requirements are satisfied.

1) The mixture must be homogeneous, so that the its

density at each point of V equals xj/V .

2) The elastic, non-reactive collisions must be sufficiently

frequent to ensure that the Maxwell velocity distribution

is maintained. Otherwise the collision frequency could

not be proportional to the product of densities, but more

details of the velocities distribution would enter. This

requirement will be satisfied in the presence of a solvent

or an inert gas.

3) The internal degrees of freedom of the molecules are

also supposed to be in thermal equilibrium, with the

same temperature T as the velocities. Otherwise the

fraction of collisions that result in a reaction would

depend on the details of the distribution over internal

states, and not just on the concentrations. Long-lived

excited states, however, may be taken into account by

listing them among the Xj as a separate species, but a

clear-cut difference in time scales is indispensable.

4) The temperature must be constant in space and time in

order that one may treat the reaction rate coefficients as

constants.

Although these assumptions may be not very realistic in

many actual chemical reactions, they do not violate any

physical law and their validity can therefore be approximated

to any desired accuracy in suitable experiments. They assure

that the state of the mixture is fully described by the state

vector �x.

In the following two sections, we present two simulations

of the chemical kinetics specified by Eq. (10): the first is

the Lotka-Volterra system and the second is the enzymatic

Michaelis-Menten catalysis. These two examples allow us

to introduce the main concepts related to the analysis of

differential equation and to the time-scale analysis methods

used to simply the molecular models.

B. Example 1: the Lotka-Volterra system

Chemical kinetics is concerned with the time-behavior

of a system of coupled chemical reactions away from the

equilibrium. As example let consider the Lotka-Volterra (LV)

predator-prey system for two interacting species [33].

Y1 −→ 2Y1

Y1 + Y2 −→ 2Y2

Y2 −→ ∅

This model is the simplest model exhibiting a non-linear auto-

regulatory feedback behavior. Y1 represents a prey species

(such as rabbits) and Y2 represents a predator species (such

a foxes) 2. The first reaction is the representation of prey

reproduction. the second reaction is an attempt to capture

2The use of the reactions to model the interaction of species in a population
dynamics context explains the use of the term ”species” to refer to a particular
type of chemical molecule in a set of coupled chemical reactions.
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predator-prey interaction (consumption of prey by predator, in

turn influencing predator reproduction rate). The third reaction

represents death of predators due to natural causes.

The LV model encourages to think about the number of prey

and predators as integers, which can change only by discrete

integer amounts when a reaction event occurs. However in

the classical continuous deterministic chemical kinetics, the

amounts of reactants and products are expressed as concen-

tration, measured in moles per liter (M), which can vary

continuously when as the reaction progresses. Conventionally,

the concentration of a chemical species X is denoted [X].
The equation (10) states that the instantaneous rate of a

reaction is directly proportional to the concentration (in turn

directly proportional to mass) of each reactant to the power

of its stoichiometry. This kinetic law is know as mass-action

kinetics. So for the LV system, the second reaction will

proceed at a rate proportional to [Y1][Y2]. Consequently, due to

the effect of this reaction, [Y1] will decrease at instantaneous

rate k2[Y1][Y2], where k2 is the constant of proportionality for

this reaction. [Y2] will increase at the same rate, because the

overall effect of the reaction is to decrease [Y1] at the same

rate [Y2] increases. The expression k2[Y1][Y2] is the rate law of

the reaction, and k2 is the rate constant. Considering all three

reactions, we can write down a set of ordinary differential

equations (ODEs) for the system.

[Y1]

dt
= k1[Y1] − k2[Y1][Y2] (11)

[Y2]

dt
= k2[Y1][Y2] − k3[Y2] (12)

The three rate constants k1, k2, and k3 must be specified, as

well as the initial concentrations of each species. Once this has

been dome, the entire dynamics of the system are completely

determined and can be revealed by solving the set of the ODEs,

either analytically (in the rare case where it is possible), or

numerically using a computer. Fig. 3 shows the time behaviors

of the solutions when the initial values of [Y1] and [Y2] are

4 and 10, respectively and the rate constants are k1 = 1,

k2 = k3 = 0.1. The solutions have been obtained using the

ODEs solution and analysis package XPPAUT [6].

Fig. 3. Lotka-Volterra dynamics for [Y1]t=0, [Y2]t=0, k1 = 1, and k2 =
k3 = 0.1.

An alternative way to display the dynamics of the system is

an orbit in a phase space, where the values of one variable is

plotted against the values of the other variables. Fig. 4 shows

the dynamics in this way.

Fig. 4. Lotka-Volterra dynamics for [Y1]t=0, [Y2]t=0, k1 = 1, and k2 =
k3 = 0.1. The equilibrium solution for this combination of parameters is
[Y1] = 1 and [Y2] = 10. These values correspond to the coordinates of the
nullclines intersection points.

Phase plane analysis is a powerful way to determine how the

behavior of a system will change with changes in the various

parameters. Several types of plots are utilized as part of what

is generically called phase plane analysis:

• a phase portrait consists of the variables describing a

system plotted against each other rather then as a function

of time to produce a trajectory in phase space. A phase

portrait tells us how the variables interact for a given set

of parameters.

• A vector field shows in the direction in which a system

will evolve from any location in phase space.

• Nullclines are plotted in phase space, and show the values

of a pair of variables at which one of the variables does

not change. For a system of coupled equations X(x, y, t)
and Y (x, y, t) nullclines are the solutions of the equations

dX

dt
= 0 (13)

dY

dt
= 0 (14)

There is a nullcline for each variable. The points of

intersection of two nullclines are called fixed points, and

represent stable steady states, also known as equilibrium

points.

1) Equilibrium and conservation law: Even when the set

of O.D.E.s is not analytically intractable, it may be possible to

discover an equilibrium solution of the system by analytic (or

simple numerical) means. An equilibrium solution is a set of

concentrations which will not change over time, and hence can

be found by solving the set of simultaneous equations formed

by setting the right-hand side of the O.D.Es to zero. For the

Lotka-Volterra example, this is

k1[Y1] − k2[Y1][Y2] = 0

k2[Y1][Y2] − k3[Y2] = 0

Solving these for [Y1] and [Y2] in terms of k1, k2 and k3 gives

two solutions. The first is

[Y1] = 0, [Y2] = 0

and the second is

[Y1] =
k3

k2

, [Y2] =
k1

k2

Further analysis (rather tangential to the scope of this work)

reveals that this second solution is not unstable, and hence

corresponds to a realistic stable state of the system. Moreover,

it is not ”attractive” stable state, and so there is no reason

to suppose that the system will tend to this state irrespective

of the starting conditions. Despite knowing the existence of

an equilibrium solution of this system, there is no reason to

suppose that any particular set of initial conditions will lead

to this equilibrium, and even if we suppose it, it would say

nothing about how the system reaches this equilibrium. To

answer this question we have to reduce to a particular set of

initial conditions and integrate the O.D.Es to uncover the full

dynamics.

In the context of chemical kinetics it is worth considering

the conservation laws, that are useful to reduce the dimension
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of the system under investigation. Consider for example a

reversible dimerization reaction

2P ⇋ P2

If we make the very strong assumption that neither of these

species are involved in any other reactions, then we get the

O.D.Es

d[P ]

dt
= 2k2[P2] − 2k1[P ]2 (15)

d[P2]

dt
= k1[P ]2 − k2[P ] (16)

where k1 and k2 are the forward and backward rate constants,

respectively. the system is at equilibrium whenever

k2[P2] = k1[P ]2.

that can be re-written as

[P2]

[P ]2
=

k1

k2

≡ Keq (17)

where Keq is the equilibrium constant of the system. This

equilibrium is stable and attractive.

Note now that [P ] and [P2] are deterministically related in

this system. One way to see this is to add twice the second

O.D.E. of the system in (15) to the first to get

d[P ]

dt
+ 2

d[P2]

dt
= 0 ⇒

d

dt

(
[P ] + C

)
= 0 ⇒ [P ] + [P2] = c

(18)

where c is the concentration of [P ] if the dimers were fully

dissociated. Equation (18) is known as conservation equation,

as the value of left-hand side is conserved by the reaction

system. Solving the conservation equation for [P2] and sub-

stituting back into the equilibrium relation (17) we find the

equilibrium concentration of [P ] as a solution of the quadratic

equation

2Keq[P ]2 + [P ] − c = 0

that has a single real positive root give by

[P ]eq =

√
8cK[eq] + 1 − 1

4Keq

the conservation equation can be alternatively used to reduce

the pair of O.D.Es to a single first-order ODE

d[P ]

dt
= k2(c − [P ]) − 2k1[P ]2. (19)

It turn out that (19) has an analitycal solution derivable by

solving in [P ] the following equation

0.49 × ln

∣∣∣∣−4[P ] − 1.56

−4[P ] + 2.56

∣∣∣∣ = t + const.

C. Example 2: the Michaelis-Menten kinetics

Let consider the following chemical reactions

E + S
k
+

1→ ES

ES
k
−

1→ E + S

ES
k2→ E + P

This model involves four variables E, S, ES and P . However,

the total concentration of enzyme

[E]tot = [E] + [ES]

and of the substrate

[S]tot = [S] + [ES] + [P ]

are conserved, so that only two of the concentrations change

independently. In this analysis we choose the concentration of

substrate [S] and enzyme-substrate complex [ES] as variables

and eliminate the concentration of enzyme using the conser-

vation law

[E] = [E]tot − [ES].

Because the catalytic process is irreversible, the concentration

of the product [P ] does not appear in the equations for [E] and

[S], that are obtained applying the mass-action laws applied

to the chemical equations of the system

d[S]

dt
= −k+

1 [E]tot[S] + (k−
1 + k+

1 [S])[ES] (20)

d[S]

dt
= k+

1 [E]tot[S] − (k−
1 + k+

2 + k+

1 [S])[ES] (21)

The two important time scales in the Michaelis-Menten

model are the time that the substrate needs to be converted

into product, and the time scale on which enzyme-substrate

complex forms. Therefore the important rates are k+

1 [E]tot

and k+

1 [S]. Michaelis and Menten assumed that the quantity

of the enzyme if very little compared to the quantity of

substrate. Under this condition we expect there to be very

little complex compared to substrate. This means that, at least

at the beginning before a lot of product has been made, the rate

k+

1 [E]tot is much smaller than the rate k+

1 [S]. As consequence,

it is the small ratio of the concentration of catalyst to total

concentration of substrate, i. e.

ǫ =
[E]tot

[S]tot

that makes the two time scales widely different.

IV. THE STRUCTURE OF KINETIC MODELS

The most part of the mathematical models of chemical

reactions is based on the assumption of spatial homogeneity.

This means that in these models diffusion and other transport

processes can be neglected. Thence, from the formal point of

view chemical reaction is handled as a temporal process and
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a network of chemical interactions is considered a dynamical

system.

A dynamics system is an ordered pair: (A, φ), where A is

the state space, and φ : T × A → A is a function which

assigns to an arbitrary point x0 ∈ A the point x ∈ A, that

characterizes the state at the time t, assuming that the system

was in x0 at t = 0. A fundamental property of φ is the validity

of the identity

φ((t + s), x0) = φ(s, φ(t, x0)). (22)

The motion of a dynamics system is the one variable function

φx0
: T → A (23)

φx0
≡ φ(·, x0) (24)

where T ⊂ R and A ⊂ R
M , (M ∈ N), or A consists of

random variables taking their values from R
M . For every t ∈

T φ(t, ·) : A → A is an automorphism.

The process, or equivalently the chemical reaction, to be

described can be classified either by the properties of the

process-time, or by the structure of the state space, or by the

nature of determination.

A. Properties of process-time

The time can be chosen as continuous (T ⊂ R) or a discrete

(T ⊂ Z) variable. Both the continuous and the discrete time

models presents advantages, disadvantages, arguments in favor

and arguments in disfavor. The arguments generally adopted

for choosing a continuous time variable are:

1) Calculation with continuous time models have greater

tradition. continuous models have the advantage over

discrete time models in that they are more amenable to

algebraic manipulation, although they are slightly harder

to implement on a computer.

2) Most physical processes are inherently continuous in

time. In particular, some physico-chemical quantities

can be transduced continuously. Thus, the parameters

in the models are strongly correlated with the physical

properties of the systems; something that is very appeal-

ing to an engineer. Moreover, as cost of computation

becomes cheaper, today’s data acquisition equipment

can provide nearly continuous-time measurements. Fast

sampled data can be more naturally dealt with using

continuous-time models than discrete-time models.

Arguments for selecting a discrete time variable are the

following.

1) Time is really discrete. The idea that time has no

objective existence but depends on events led some sci-

entists to abandon the assumption that it is a continuous

variable. Moreover, we perceive temporal intervals of

finite duration rather than durationless instants; and the

researcher prefer to assume that the nature has properties

that can be verified.

2) The notion of ’immediate next time” can be easily

interpreted, ant this is non so easy in the case of

continuous time

3) the experimentalists measure at discrete points only.

B. Properties of state-space

The state space can be chosen either continuous or discrete.

To emphasize the existence of elementary particles of a popu-

lation as in reaction kinetics a discrete state space formalism

is preferred.

The notion of state was derived from the theory of mechan-

ics and of thermodynamics and generalized by mathematical

system theory. The quantities of a model can be classified into

two categories: state variables and constitutive quantities. State

variables are functions such that their values specify the state

of the system. the constitutive quantities are functions of the

state, in the sense that their value is univocally determined

once the state of the system has been assigned. Thus, a

constitutive quantity Ω can be expressed as follows

Ω(t) = ω(g(t), t) (25)

where g denotes the state of the system and ω : A × T → R
′

is the constitutive functional3 mapping the state into a consti-

tutive quantity r ∈ N. The case r = 1 means that the value of

the constitutive quantity is a scalar.

As we already introduced in the previous section, the state

of an M -component chemical system is described by a vector:

�x : T → R
M , t �→ �x(t) ∈ R

M (26)

In this section we also said that a state is described by

function. The two statements are not in contradiction, namely a

finite-dimensional vector can also be interpreted as a function:

R
M can be considered as an abbreviation

R
M := R

{1,2,··· ,M} = {f ; f : {1, 2, · · · , M} → R}.

The state of the system with continuously changing compo-

nents is described at a fixed point of time by a (not necessarily

scalar valued) function f : R
M → R ∗ m. The state of the

system is ñ, where ñ : T → (Rm)R
M

, or it is an element of

the set

[(Rm)R
M

]T = {f ; f : T → (Rm)R
M

According to the convectional treatment of pure homoge-

neous reaction kinetics the state is a finite-dimensional vector

and the only constitutive quantities are the reaction rates.

The theory of thermodynamics adopts the concept of ’parti-

cles with memory’. According to this concept, the constitutive

quantities depend on the history of the independent variables,

and not only on their present value. This means that it is not

definite that the instantaneous value of state variables (i. e.

state) completely determines the state.

3The functional assigns a number to a function. Here the term refers to
every mapping having the function as argument.
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Let introduce the site function h : T → R
M . Since the state

is determined by earlier values of the site function, therefore

the state g is interpreted as

g : T → G, t �→ h′

where h′ is known as history function defined as

h′(s) = h(t − s), s > 0.

Knowing the history, the state can be set up

H (h, ·) = g,

i. e.

H (h, t) = g(t) = H (h′) = h′

H is a mapping assigning a function to a function and to

a number. If we assume that the history of the site does not

influence the state, then the constitutive functional reduces to

a function. Furthermore, if we also assume the invertibility of

this function then the differences between the state variables

and constitutive quantities are not significant. These two

assumptions are tacitly adopted in the classical theories of the

thermodynamics.

The stochastic version of a memory-free deterministic pro-

cess is a Markov process (more precisely, a first-order Markov

process).

C. Nature of determination

An (A, φ) dynamic system is deterministic if knowing the

state of the system at one time means that the system is

uniquely specified for all t ∈ T.

When the state of the system can be assigned to a set of

values with a certain probability distribution, the future behav-

ior of the system can be determined stochastically. Discrete

time, discrete state space (first order) Markov processes (i. e.

Markov chain) are defined by the formula

P(ξt+1 = a|ξ0 = a, ξ1 = a1, . . . , ξt = at) = P(ξt+1 = a|ξt = at).
(27)

where the set {ξt|t = 0, 1, 2, . . . } is a discrete time stochastic

process.

Knowing the total history of the process we can extrapolate

its future behavior with the same probability as if we knew

only the actual current state. Put another way, a Markov

process is a stochastic process which possesses the property

that the future behavior depends only on the current state of

the system. Thus, given information about the current state

of the system, information about the past behavior of the

system is no help in predicting the time-evolution of the

process. The behavior of the chain is therefore determined

by P(ξt+1 = a|ξt = at), and thus it depends on a and t.
However, if there is no t dependence, so that

P(ξs = x|ξt = y) = Pxy(s − t),

i. e. the transition probabilities are stationary, the Markov

chain is said to be time homogeneous. In this case the law

of evolution of the system does not depend explicitly on time

and consequently, the time origin can be defined arbitrarily.

Deterministic dynamics systems generated by ordinary differ-

ential equations

dx(t)

dt
= f(x(t))

can be associated with the time homogeneous Markov pro-

cesses.

Markov processes are particularly amenable for to both

theoretical and computational analysis and the dynamic be-

havior of biochemical networks can be effectively modeled

by a Markov chain. Moreover, a Markovian description can

be introduced by generalizing deterministic systems modeled

by ordinary differential equations, since the stochastic version

of a deterministic process without ’after-effect’ is a Markov

process.

However, the Markov character of the chemical process

represented by the state vector has not been derived from

microscopic models of the chemical dynamics. Therefore

Markovicity is not more and not less than a plausible assump-

tion.

D. XYZ models

At least eight different kinetic models can be defined,

depending on the specification of time (X), state space (Y) and

nature of determination (Z). As was explained earlier, time can

be discrete (D) or continuous (C), the state space can be also

discrete (D) or continuous (C), and the nature of determination

can be deterministic (D) or stochastic (S).

Mass-action type kinetic differential equations can be identi-

fied with the CCD model, while the more often used stochastic

model is the CDS model. DCD models have achieved a

significance in the last decade in connection with chaotic

phenomena. There are at least two distinct methods of relating

DCD models to CCD models. The first is the discretization of

time. An autonomous differential equation

dx

dt
= f(x(t), t), xt=0 = x0

can be transformed as

x(t + h) = x(t) + f(x(t), t)h + o(h)

The second method can be applied if the differential equation

has a periodic solution. take a hyperplane of dimension n− 1
traverse to the curve t −→ x(t) through x0. A map

F : U −→ R
n−1
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is induced by associating with t0 the nearest intersection of

the trajectory (with initial condition xt=0 = x0) with the given

hyperplane. If the first such intersection occurs at x1, we define

F (x0) ≡ x1. Since the form of F is independent of the index

of the series and also of the coordinates, we can specify

xn+1 = F (xn).

Thus a difference equation has been obtained from a differen-

tial system.

V. MARKOV PROCESSES

The story of the master equation must begin with Markov

processes. A Markov process is a special case of a stochastic

process. Stochastic processes are often used in physics, biol-

ogy and economy to model randomness. In particular, Markov

processes are often used to model randomness, since it is much

more tractable than a general stochastic process. A general

stochastic process is a random function f(X; t), where X is a

stochastic variable and t is time. The definition of a stochastic

variable consists in specifying

• a set of possible values (called ”set of states” or ”sample

space”)

• a probability distribution over this set.

The set of states may be discrete, e. g. : the number of

molecules of a certain component in a reacting mixture. Or

the set may be continuous in a given interval, e. g: one

velocity component of a Brownian particle and the kinetic

energy of that particle. Finally the set may be partly discrete

and partly continuous, e. g. the energy of an electron in the

presence of binding centers. Moreover the set of states may

be multidimensional: in this case X is written as a vector �X .

Examples: �X may stand for the three velocity components of

a Brownian particle or for the collection of all numbers of

molecules of the various components in a reacting mixture.

The probability distribution, in the case of a continuous one-

dimensional range, is given by a function P (x) that is non-

negative

P (x) ≥ 0

and normalized in the sense

∫
P (x)dx = 1

where the integral extends over the whole range. The proba-

bility that X has a value between x and x + dx is

P (x)dx

Often in physical and biological sciences a probability dis-

tribution is visualized by an ”ensemble”. From this point

of view, a fictitious set of an arbitrary large number N of

quantities, all having different values in the given range,

is introduced.In such a way the number of these quantities

having a value between x and x + dx is NP (x)dx. Thus the

probability distribution is replaced with a density distribution

of a large number of ”samples”. This does not affect any

simulation result, since it is merely a convenience in talking

about probabilities, and in this work we will use this language.

It may be added that it can happen that a biochemical system

does consists of a large number of identical replica, which to a

certain extent constitute a physical realization of an ensemble.

For instance, the molecules of an ideal gas may serve as

an ensemble representing the Maxwell probability distribution

for the velocity. The use of an ensemble is not limited to

such cases, nor based on them, but serves as a more concrete

visualization of a probability distribution.

Finally, we remark that in a continuous range it is possible

for P (x) to involve delta functions,

P (x) =
∑

n

pnδ(x − xn) + P̃ (x),

where P̃ is finite or at least integrable and non-negative, pn >
0, and

∑
n

pn +

∫
P̃ (x)dx = 1

Physically this may visualized as a set of discrete states xn

with probability pn embedded in a continuous range. If P (x)
consists of δ functions alone (i. e. P̃ (x) = 0, then it can also

be considered as a probability distribution pn on the discrete

set of states xn.

A general way to specify a stochastic process is to define

the joint probability densities for values x1, x2, x3, . . . at times

t1, t2, t3, . . . respectively

p(x1, t1; x2, t2; x3, t3; . . . ) (28)

If all such probabilities are known, the stochastic process is

fully specified, (but, in general, it is not an easy task to find

all such distributions). Using (28) the conditional probabilities

can be defined as usual

p(x1, t1; x2, t2; . . . |y1, τ1; y2, τ2; . . . ) =

p(x1, t1; x2, t2; . . . |y1, τ1; y2, τ2; . . . )

p(y1, τ1; y2, τ2; . . . )

where x1, x2, . . . and y1, y2, . . . are values at times t1 ≥ t2 ≥
· · · ≥ τ1 ≥ τ2 ≥ . . . . This is where a Markov process has

a very attractive property. It has no memory. For a Markov

process

p(x1, t1; x2, t2; . . . |y1, τ1; y2, τ2; . . . ) =

p(x1, t1; x2, t2; . . . |y1, τ1)

the probability to reach a state x1 at time t1 and state x2 at

time t2, if the state is y1 at time τ1, is independent of any

previous state, with times ordered as before. This property

makes it possible to construct any of the probabilities (28) by

a transition probability p→(x, t|y, τ), (t ≥ τ ), and an initial

probability distribution p(xn, tn):
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p(x1, t1; x2, t2; . . . xn, tn) =

p→(x1, t1|x2, t2)p→(x2, t2|x3, t3) . . .

. . . p→(xn−1tn−1|xn, tn)p(xn, tn)

A consequence of the Markov property is the Chapman-

Kolmogorov equation

p→(x1, t1|x3, t3) =

∫
p→(x1, t1|x2, t2)p→(x2, t2|x3, t3)dx2

(29)

VI. THE MASTER EQUATION

The master equation is a differential form of the Chapman-

Kolmogorov equation (29). The terminology differs between

different authors. Sometimes the term master equation is used

only for jump processes. Jump processes are characterized by

discontinuous motion, that is there is a bounded and non-

vanishing transition probability per unit time

w(x|y, t) = lim
∆t→0

p→(x, t + ∆t|y, t)

∆t

for some y such that |x − y| > ǫ. Here w(x|y; t) = w(x|y).
The master equation for jump processes can be written

∂p(x, t)

∂t
=

∫ (
w(x|x′)p(x′, t) − w(x′|x)p(x, t)

)
dx′ (30)

The master equation has a very intuitive interpretation. The

first part of the integral is the gain of probability from the

state x′ and the second part is the loss of probability to x′.

The solution is a probability distribution for the state space.

Analytical solutions of the master equation are possible to

calculate only for simple special cases.

A. The chemical master equation

A reaction R is defined as a jump to the state �X to a stare
�XR, where �X, �XR ∈ Z

N
+ . The propensity w( �XR) = ṽ( �X) is

the probability for transition from �XR to �X per unit time. A

reaction can be written as

�XR

w( �XR)
−→ �X

The difference in molecules numbers �nR = �XR− �X is used to

write the master equation (30) for a system with M reactions

dp( �X, t)

dt
=

M∑
i=1

w( �X + n)p( �X + �nR, t) −

M∑
i=1

w( �X)p( �X, t)

(31)

This special case of master equations is called the chemical

master equation (CME) [32], [25]. It is fairly easy to write:

however, solving it is quite another matter. The number of

problems for which the CME can be solved analytically is even

fewer than the number of problems for which the deterministic

reaction-rate equations can be solved analytically. Attempts

to use master equation to construct tractable time-evolution

equations are also usually unsuccessful, unless all the reaction

in the system are simple monomolecular reactions [9]. Let

consider for instance a deterministic model of two metabolites

coupled by a bimolecular reaction, as shown in Fig. 5. The

set of differential equation describing the dynamic of this

model is given in Table II, where the [A] and [B] are the

concentrations of metabolite A and metabolite B, while k, K,

and µ determine the maximal rate of synthesis, the strength

of the feedback, and the rate of degradation, respectively.

Fig. 5. Two metabolites A and B coupled by a bimolecular reactions.
Adapted from [16].

In the formalism of the Markov process, the reactions in Table

II are written as in Table III. The CME equation for the system

of two metabolites of Fig. 5 looks fairly complex as in Table

IV.

VII. MOLECULAR APPROACH TO CHEMICAL KINETICS

The solution of the set of differential equations of the form

(10), written for each species Xj included in the system,

describes the time-evolution of the system, i. e. the changes

in time of the state vectors �x of in the system.

The expression (10) is not the precise number of reactive

collisions, but the average. The actual number fluctuates

around it and in order to find the resulting fluctuation in xj

around the macroscopic values determined by (10) we need to

switch to a molecular approach to the chemical kinetics.

Now, to see how chemical kinetics can be modeled in

a stochastic way, first we need to address the difference

between the deterministic and the stochastic approach in the

representation of the amount of molecular species. In the

stochastic model, this is an integer representing the number

of molecules of the species, but in the deterministic model,

it is a concentration, measured in M (moles per liter). Then

for a concentration of X of [X] M in a volume of V liters,

there are [X]V moles of X and hence nA[X]V molecules,

where nA ≃ 6.023 × 1023 is the Avogadro’s constant (the

number of molecules in a mole). The second issue that needs

to be addressed is the rate constant conversion. Much of the

literature on biochemical reaction is dominated by a con-

tinuous deterministic view of kinetics. Consequently, where

rate constants are documented, they are usually deterministic

constants k. In the following we review the expression of

the reaction propensity and the formulae that convert the

deterministic rate constants into stochastic rate constants.

A. Reactions are collisions

For a reaction to take place, molecules must collide with

sufficient energy to create a transition state. Ludwig Boltz-

mann developed a very general idea about how energy was

distributed among systems consisting of many particles. He

said that the number of particles with energy E would be

proportional to the value exp[−E/kBT ]. The Boltzmann

distribution predicts the distribution function for the fractional

number of particles Ni/N occupying a set of states i which

each have energy Ei:
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TABLE II
REACTIONS OF THE CHEMICAL MODEL DISPLAYED IN FIG. 5. NO. CORRESPONDS TO THE NUMBER IN THE FIGURE. ADAPTED FROM

[16].

No. Reaction Rate equation Type

1 ∅
v1([A])
−−−−−→ A v1([A]) = k1

1+[A]K1

synthesis

2 A
v2([A])
−−−−−→ ∅ v2([A]) = µ[A] degradation

3 ∅
v3([B])
←−−−−− B v3([B]) = k2

1+[B]/K2

synthesis

4 B
v4([B])
−−−−−→ ∅ v4([B]) = µ[B] degradation

5 A + B
v5([A],[B])
−−−−−−−→ ∅ v5([A], [B]) = k3[A][B] bimolecular reaction

TABLE III
REACTIONS OF THE CHEMICAL MODEL DEPICTED IN FIG. 5, THEIR PROPENSITY AND CORRESPONDING ”JUMP” OF STATE VECTOR �nT

R
. V IS THE

VOLUMES IN WHICH THE REACTIONS OCCUR. ADAPTED FROM [16].

No. Reaction w(�x) �nT
R

1 ∅
w1(a)
−−−−→ A w1(a) = V k1/(1 + a/V K1)) (−1, 0)

2 A
w2(a)
−−−−→ ∅ w2(a) = µa (1, 0)

3 ∅
w3(b)
−−−−→ B w3(b) = V K2/(1 + b/(V K2)) (0,−1)

4 B
w4(b)
−−−−→ ∅ w4(b) = µb (0, 1)

5 A + B
w5(a,b)
−−−−−→ ∅ w5(a, b) = k2ab/V (1, 1)

Ni

N
=

gie
−Ei/kBT

Z(T )

where kB is the Boltzmann constant, T is temperature (as-

sumed to be a sharply well-defined quantity), gi is the degen-

eracy, or number of states having energy Ei, N is the total

number of particles:

N =
∑

i

Ni,

and Z(T ) is called thepartition function

Z(T ) =
∑

i

gie
−Ei/kBT

Alternatively, for a single system at a well-defined tempera-

ture, it gives the probability that the system is in the specified

state. The Boltzmann distribution applies only to particles at a

high enough temperature and low enough density that quantum

effects can be ignored.

James Clerk Maxwell used Boltzmann’s ideas and applied

them to the particles of an ideal gas to produce the distribution

bearing both men’s names (the Maxwell-Boltzmann distribu-

tion). Maxwell also used for the energy E the formula for

kinetic energy E = (1/2)mv2, where v is the velocity of

the particle. The distribution is best shown as a graph which

shows how many particles have a particular speed in the gas.

It may also be shown with energy rather than speed along the

x axis. Two graphs are shown in Fig. 6 and 7. Consider a

Fig. 6. Since the curve shape is not symmetric, the average kinetic energy
will always be greater than the most probable. For the reaction to occur, the
particles involved need a minimum amount of energy - the activation energy.

bi-molecular reaction of the form

S1 + S2 −→ . . . (32)

Fig. 7. Maxwell-Boltzmann speed distributions at different temperatures.
As temperature increases, the curve will spread to the right and the value of
the most probable kinetic energy will decrease. At temperature increases the
probability of finding molecules at higher energy increases. Note also that the
area under the curve is constant since total probability must be one.

the right-hand side is not important. This reaction means that

a molecule of S1 is able to react with a molecule of S2 if

the pair happen to collide with one another with sufficient

energy, while moving around randomly, driven by Brownian

motion. Consider a single pair of such molecules in a closed

volume V . It is possible to use statistical mechanics arguments

to understand the physical meaning of the propensity (i. e.

hazard) of molecules colliding. Under the assumptions that

the volume is not too large or well stirred, an in thermal

equilibrium, it can be rigorously demonstrated that the colli-

sion propensity (also called collision hazard, hazard function

or reaction hazard) is constant, provided that the volume is

fixed and the temperature is constant. Since the molecules

are uniformly distributed throughout the volume and this

distribution does not depend on time, then the probability that

the molecules are within reaction distance is also independent

of time. A comprehensive treatment of this issue is given in

Gillespie [9], [11]. Here we briefly review it by highlighting

the physical basis of the stochastic formulation of chemical

kinetics. Consider now that the system composed of a mixture

of the two molecular species, S1 and S2 in gas-phase and

in thermal, but not necessarily chemical equilibrium inside

the volume V . Let assume that the S1 and S2 molecules are

hard spheres of radii r1 and r2, respectively. A collision will

occur whenever the center-to-center distance between an S1

molecule and an S2 molecule is less than r12 = r1 + r2. To

calculate the molecular collision rate, let pick an arbitrary 1-2

molecular pair, and denote by v12 the speed of the molecule 1

relative to molecule 2. Then, in the next small time interval δt,
molecule 1 will sweep out relative to molecule 2 a collision
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TABLE IV
SET OF CHEMICAL MASTER EQUATIONS DESCRIBING THE METABOLITES INTERACTION SHOWED IN FIG. 5 AND DISCUSSED IN [16].

∂(0, 0, t)

∂t
= µp(1, 0, t) + µp(0, 1, t) +

k3

V
p(1, 1, t) − V (k1 + k2)p(0, 0, t)

∂(0, b, t)

∂t
= V

k2

1 + b−1
V K2

p(0, b − 1, t) +

+ µp(1, b, t) + µ(b + 1)p(0, b + 1, t) +
k3

V
(b + 1)p(1, b + 1, t) −

−

(
V

(
k1 +

k2

1 + b
V K2

)
+ µb

)
p(0, b, t)

∂p(a, 0, t)

∂t
= V

k1

1 + a−1
V K1

p(a − 1, 0, t) +

+ µ(a + 1)p(a + 1, 0, t) + µp(a, 1, t) +

+
k3

V
(a + 1)p(a + 1, 1, t) −

−

(
V

(
k1

1 + a
V K1

+ k2

)
+ µa

)
p(a, 0, t)

∂p(a, b, t)

∂t
= V

k1

1 + a−1
V K1

p(a − 1, b, t) + V
k2

1 + b−1
V K2

p(a, b − 1, t) +

+ µ(a + 1)p(a + 1, b, t) + µ(b + 1)p(a, b + 1, t) +

+
k3

V
(a + 1)(b + 1)p(a + 1, b + 1, t) −

−

(
V

(
k1

1 + a
V K1

+
k2

1 + b
V K2

)
+ µ(a + b) +

k3

V
ab

)
p(a, b, t)

volume

δVcoll = πr2
12v12δt

i. e. if the center of molecule 2 happens to lie inside δVcoll at

time t, then the two molecules will collide in the time interval

(t, t + δt). Now, the classical procedure would estimate the

number of S2 molecules whose centers lie inside δVcoll, divide

the number by δt, and then take the limit δ → 0 to obtain the

rate at which the S1 molecule is colliding with S2 molecules.

However, this procedure suffers from the following difficulty:

as δVcoll → 0, the number of S2 molecules whose centers lie

inside δVcoll will be either 1 or 0, with the latter possibility

become more and more likely as the limiting process proceeds.

Then, in the limit of vanishingly small δt, it is physically

meaningless to talk about ”the number of molecules whose

center lie inside δVcoll”. To override this difficulty we can

exploit the assumption of thermal equilibrium. Since the

system is in thermal equilibrium, the molecules will at all

times be distributed randomly and uniformly throughout the

containing volume V . Therefore, the probability that the center

of an arbitrary S2 molecule will be found inside δVcoll at time

t will be given by the ratio δVcoll/V ; note that this is true even

in the limit of vanishingly small δVcoll. If we now average this

ration over the velocity distributions of S1 and S2 molecules,

we may conclude that the average probability that a particular

1-2 molecular pair will collide in the next vanishingly small

time interval δt is

δVcoll/V =
πr2

12v12δt

V
(33)

For Maxwellian velocity distributions the average relative

speed v12 is

v12 =

(
8kT

πm12

) 1

2

where k is the Boltzmann’s constant, T the absolute tempera-

ture, and m12 the reduced mass m1m2/(m1 +m2). If we are

given that at time t there are X1 molecules of the species S1

and X2 molecules of the species S2, making a total of X1X2

distinct 1-2 molecular pairs, then if follows from (33) that the

probability that a 1-2 collision will occur somewhere inside

V in the next infinitesimal time interval (t, t + dt) is

X1X2πr2
12v12dt

V
(34)

Although we cannot rigorously calculate the number of 1-2

collisions occurring in V in any infinitesimal interval, we can

rigorously calculate the probability of a 1-2 collision occurring

in V in any infinitesimal time interval. Consequently, we

really ought to characterize a system of thermally equilibrized

molecules by a collision probability per unit time (namely the

coefficient of dt in (34) instead of by a collision rate. This

is why these collisions constitute a stochastic Markov process

instead of a deterministic rate process.
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Fig. 8. The collision volume δVcoll which molecule 1 will sweep out relative to molecule 2 in the next small time interval δt. Adapted fro [9].

Then we can conclude that for a bimolecular reaction of

the form (32, the probability that a randomly chosen A-B pair

will react according to R in next dt is

Preact =

{(
v12(πr2

12)

V
exp(−E/(kBT )

}
X1X2dt (35)

B. Reaction rates

The reaction rate for a reactant or product in a particular

reaction is defined as the amount of the chemical that is

formed or removed (in moles or mass units) per unit time

per unit volume. The main factors that influence the reaction

rate include: the physical state of the reactants, the volume of

the container in which the reaction occurs, the temperature at

which the reaction occurs, and whether or not any catalysts

are present in the reaction.

Physical state

The physical state (solid, liquid or gas) of a reactant is also an

important factor of the rate of change. When reactants are in

the same phase, as in aqueous solution, thermal motion brings

them into contact. However, when they are in different phases,

the reaction is limited to the interface between the reactants.

Reaction can only occur at their area of contact, in the case

of a liquid and a gas, at the surface of the liquid. Vigorous

shaking and stirring may be needed to bring the reaction to

completion. This means that the more finely divided a solid

or liquid reactant, the greater its surface area per unit volume,

and the more contact it makes with the other reactant, thus the

faster the reaction.

Volume The reaction propensity is inversely proportional

to the volume. We can explain this fact in the following

way. Consider two molecules Molecule 1 and Molecule 2.

Let the molecules positions in space be denoted by p1 and

p2 respectively. If p1 and p2 are uniformly and independently

distributed over the volume V , for a sub-region of space D
with volume V ′, the probability that a molecule is inside D
is

Pr(pi ∈ D) =
V ′

V
i = 1, 2

If we are interested in the probability that Molecule 1 and

Molecule 2 are within a reacting distance r of one another at

any given instant of time (assuming that r is much smaller

than the dimensions of the container, so that boundary effects

can be ignored), this probability can be calculated as

Pr(|p1 − p2| < r) = E(Pr(|p1 − p2| < r|p2))

but the conditional probability will be the same for any p2

away from the boundary, so that the expectation in redundant,

and we can state that

E(Pr(|p1−p2| < r|p2)) = Pr(|p1−p2| < r) = Pr(pi ∈ D) =
4πr3

3V

This probability is inversely proportional to V .

Arrhenius equation

Temperature usually has a major effect on the speed of a

reaction. Since a molecule has more energy when it is heated,

then the more energy it has, the more chances it has to collide

with other reactants. Thus, at a higher temperature, more

collisions occur. More importantly however, is the fact that

heating a molecules affects its kinetic energy, and therefore

the ”energy” of the collision.

The reaction rate coefficient k has a temperature depen-

dency, which is usually given by the empirical Arrhenius law:

k = A exp

[
−

Ea

RT

]
(36)

Ea is the activation energy and R is the gas constant.

Since at temperature T the molecules have energies given

by a Boltzmann distribution, one can expect the number of

collisions with energy greater than Ea to be proportional

to exp[−Ea/RT ]. A is the frequency factor. This factor

indicates how many collisions between reactants have the

correct orientation to lead to the products. The values for A
and Ea are dependent on the reaction.

It can be seen that either increasing the temperature or

decreasing the activation energy (for example through the use

of catalysts) will result in an increase in rate of reaction.

While remarkably accurate in a wide range of circum-

stances, the Arrhenius equation is not exact, and various

other expressions are sometimes found to be more useful in

particular situations. One example comes from the ”collision

theory” of chemical reactions, developed by Max Trautz and

William Lewis in the years 1916-18. In this theory, molecules

react if they collide with a relative kinetic energy along their

line-of-centers that exceeds Ea This leads to an expression

very similar to the Arrhenius equation, with the difference

that the pre-exponential factor ”A” is not constant but instead

is proportional to the square root of temperature. This reflects

the fact that the overall rate of all collisions, reactive or not, is

proportional to the average molecular speed which in turn is

proportional to
√

T . In practice, the square root temperature

dependence of the pre-exponential factor is usually very slow

compared to the exponential dependence associated with Ea.

Another Arrhenius-like expression appears in the Transition

State Theory of chemical reactions, formulated by Wigner,

Eyring, Polanyi and Evans in the 1930’s. This takes various

forms, but one of the most common is:

k =
kBT

h
exp

[
−

∆G

RT

]

where ∆G is the Gibbs free energy of activation, kB is

Boltzmann’s constant, and h is Planck’s constant. At first
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sight this looks like an exponential multiplied by a factor that

is linear in temperature. However, one must remember that

free energy is itself a temperature dependent quantity. The

free energy of activation includes an entropy term as well

as an enthalpy term, both of which depend on temperature,

and when all of the details are worked out one ends up

with an expression that again takes the form of an Arrhenius

exponential multiplied by a slowly varying function of T . The

precise form of the temperature dependence depends upon the

reaction, and can be calculated using formulas from statistical

mechanics (it involves the partition functions of the reactants

and of the activated complex).

Catalysts

A catalyst is a substance that accelerates the rate of a chem-

ical reaction but remains unchanged afterward. The catalyst

increases rate reaction by providing a different reaction mech-

anism to occur with a lower activation energy. In autocatalysis

a reaction product is itself a catalyst for that reaction possibly

leading to a chain reaction. Proteins that act as catalysts in

biochemical reactions are called enzymes. Michaelis-Menten

kinetics mentioned in Chapter 1 describes the rate of enzyme

mediated reactions.

The formulation of stochastic chemical kinetics of Gillespie

assumes that temperature and volume of container do not

change in time. However in the biological context these

assumption are too strong and may lead to obtain wrong

simulation results. We will see in the next chapter how to

give up this assumption.

C. Zeroth-order reactions

These reactions have the following form

Rµ: ∅
cµ
−→ X (37)

Although in practice things are not created from nothing, it is

sometimes useful to mode a constant rate of production of a

chemical species (or influx from another compartment) via a

zeroth-order reaction. In this case, cµ is the propensity of a

reaction of this type occurring, and so

aµ(Y, cµ) = cµ (38)

For a reaction of this nature the deterministic rate law is

k Ms−1, and thus for a volume V , X is produced at a rate

nAV kµ molecules per second, where kµ is the deterministic

rate constant for the reaction Rµ. As the stochastic rate law

is just cµ molecules per second, we have

cµ = nAV kµ (39)

D. First-order reactions

Consider the first-order reaction

Rµ: Xi

cµ
−→ . . . (40)

Here cµ represents the propensity that a particular molecule of

Xi will undergo the reaction. However, if there are xi molecule

of of Xi, each of which having a propensity of cµ of reacting,

the combined propensity for a reaction of this type is

aµ(Y, cµ) = cµxi (41)

First-order reactions of this nature represent the spontaneous

change of a molecule into one or more other molecules or the

spontaneous dissociation of a complex molecule into simpler

molecules. They are not intended to model the conversion of

one molecule into another in presence of a catalyst, as this

is really a second-order reaction. However, in the presence of

a large pool of catalyst that can be considered not to vary

in concentration during the time evolution of the reaction

network, a first-order reaction provides a good approximation.

For a first-order reaction, the deterministic rate law is kµ[X]

M s−1, and so for a volume V, a concentration [X] correspond

to x = nA[X]V molecules. Since [X] decreases at rate

nAkµ[X]V = kµx molecules per second. Since the stochastic

rate law is cµx molecules per second, we have

cµ = kµ (42)

i. e. for first-order reactions, the stochastic and the determin-

istic rate constants are equal.

E. Second-order reactions

The form of the second-order reaction is the following

Rµ: Xi + Xk

cµ
−→ . . . (43)

Here, cµ represents the propensity that a particular pair of

molecules of type Xi and Xk will react. But, if there are

xi molecule of Xi and xk molecules of Xk, there are xixk

different pairs of molecules of this type, and so this gives the

combined propensity of

aµ(Y, cµ) = cµxixk (44)

There is another type of second-order reaction, called ho-

modimerization reaction, which needs to be considered:

Rµ: 2Xi

cµ
−→ . . . (45)

Again, cµ is the propensity of a particular pair of molecules

reacting, but here there are only xi(xi − 1)/2) pairs of

molecules of species Xi, and so

aµ(Y, cµ) = cµ

xi(xi − 1)

2
(46)

For second-order reactions, the deterministic rate law is

kµ[Xi][Xk] M s−1. Here for a volume V , the reaction

proceeds at a rate of nAkµ[Xi] [Xk]V = kµxixk/(nAV )
molecules per second. Since the stochastic rate law is cµxixk

molecules per second, we have

cµ =
kµ

nAV
(47)

For homodimerization reaction, the deterministic law is

kµ[Xi]
2, so the concentration of Xi decreases at rate

nA4kµ[Xi]
2V = 2kµx2

i /(nAV ) molecules per second. The

stochastic rate law is cµxi(xi − 1)/2 so that molecules Xi
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are consumed at a rate of cµxi(xi − 1) molecules per second.

These two laws do not match, but for large xi, xi(xi −1) can

be approximated by x2
i , and so to the extent that the kinetics

match, we have

cµ =
2kµ

nAV
(48)

Note the additional factor of two in this case.

By equating Eq. (47) with Eq. (35) we obtain the following

expression for the deterministic rate of a second-order reaction

of type (43)

kµ = nAv12πr2
12 exp

[
Eµ

kBT

]
(49)

while for a second-order reaction of type (45), the determin-

istic rate constant is

kµ =
1

2
nAv12πr2

12 exp[
Eµ

kBT
] (50)

F. Higher-order reactions

Most (although not all) reactions that are normally written

as a single reaction of order higher than two, in fact represent

the combined effect of two or more reactions of order one

or two. In these cases it is usually recommended to model

the reactions in detail rather than via high-order stochastic

kinetics. Consider, for example, the following trimerization

reaction

cµ: 3X
cµ
−→ X3

The rate constant cµ represents the propensity of triples of

molecules of X coming together simultaneously and reacting,

leading to a combined propensity of the form

aµ(Y, cµ) = cµ

(
x

3

)
= cµ

x(x − 1)(x − 2)

6
(51)

However, in most cases it is likely to be more realistic to

model the process as the pair of second-order reactions

2X −→ X2

X2 + X −→ X3

and this system will have a quite different dynamics to the

corresponding third-order system.

VIII. FUNDAMENTAL HYPOTHESIS OF STOCHASTIC

CHEMICAL KINETICS

Let now generalize using a more formal approach the

concepts exposed in the previous section. If we apply the

foregoing arguments specifically to reactive collisions (i. e.

to those collisions which results in an alteration of the state

vector), the chemical reactions are more properly characterized

by a reaction probability per unit time instead of a reaction

rate. Thus, suppose that S1 and S2 molecules can undergo the

reactions

R1: S1 + S2 → 2S1 (52)

Then in analogy with the Eq. (33), we may assert the existence

of a constant c1, which depends only on the physical properties

of the two molecules and the temperature of the system, such

that

c1dt = average probability that a particular 1-2

molecular pair will react according to R1

in the next infinitesimal time interval dt (53)

More generally if, under the assumption of spatial homogene-

ity (or thermal equilibrium) the volume V contains a mixture

of Xi molecules of chemical species Si, (i = 1, 2, . . . , N ), and

these N species can interact through M specified chemical

reaction channels cµ (µ = 1, 2, . . . , M ), we may assert the

existence of M constants cµ, depending only on the physical

properties of the molecules and the temperature of the system.

Formally, we assert that

cµ = average probability that a particular combination

of cµ reactant molecules will react accordingly to

cµ in the next infinitesimal time interval dt. (54)

.

This equation is regarded both as the definition of the

stochastic reaction constant cµ, and also as the fundamental

hypothesis of the stochastic formulation of chemical kinetics.

This hypothesis is valid for any molecular system that is kept

”well-mixed”, either by direct stirring or else by simply requir-

ing that non-reactive collisions occur much more frequently

that reactive molecular collisions.

Let finally note that the master equation, that de-

scribe the time-evolution of the probability function

P ({X1, X2, . . . , XN}, t), may be derived from (54). To de-

rive the master equation from the fundamental hypothesis

of stochastic chemical kinetics, P ({X1, X2, . . . , XN}, t) is

expressed using the sum and the multiplication laws of proba-

bility theory. Thus P ({X1, X2, . . . , XN}, t) is the sum of the

probabilities of the M +1 different ways in which the system

can reach the state ( �X = X1, X2, . . . , XN ) at time t + dt:

P ({X1, X2, . . . , XN}, t + dt) =

P ({X1, X2, . . . , XN}, t)(1 −

M∑
µ=1

aµdt) +

M∑
µ=1

Bµdt

(55)

where

aµdt ≡

cµ × {no. of distinct molecular combinations in the state �X}

= probability that a cµ reaction will occur in V in (t = dt),

given the system is in the state (X1, X2, . . . , XN ) at time t.(56)

The first term in Eq. (55) is the probability that the system

will be in the state (X1, X2, . . . , XN ) at time t, and then re-

mains in that state (i. e. it undergoes no reactions) in (t, t+dt).
The quantity Bµdt gives the probability that the system is one
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cµ reaction removed from the state (X1, X2, . . . , XN ) at time

t, and the n undergoes an cµ reaction in (t, t + dt). Namely,

Bµ will be the product of P evaluated at the appropriate once-

removed state at t, times cµ, times the number of cµ molecular

reactant combinations available in that once-removed state.

Thus, Eq. (55) leads directly to the master equation

∂

∂t
P (X1, . . . , XN ; t) =

M∑
µ=1

[Bµ − aµP (X1, . . . , XN : t)

(57)

IX. GENERAL DERIVATION OF THE STOCHASTIC RATE

CONSTANT

Here, we report the a general derivation for cµ, developed

by Wolkenhauer et. al. in [26]. Then we will compare it with

the derivation of Gillespie. Let consider a reaction pathway

involving N molecular species Si. A network, which may

include reversible reactions, is decomposed into M unidirec-

tional basic reaction channels Rµ

Rµ: lµ1Sp(µ,1) + lµ2Sp(µ,2) + · · · + lµLµ
Sp(µ,Lµ)

kµ
−→ . . .

where Lµ is the number of reactant species in channel Rµ,

lµj is the stoichiometric coefficient of reactant species Sp(µ,j),

and the index p(µ, j) selects those Si participating in Rµ. kµ

is the rate constant. Assuming a constant temperature and a

homogeneous mixture of reactant molecules, the generalized

mass action models (GMA) consist of N differential rate

equations

d

dt
[Si] =

M∑
µ=1

νµikµΠ
Lµ

j=1
[Sp(µ,j)]

lµj (58)

where νµ denotes the change in molecules of Si resulting from

a single reactions Rµ. We write for concentrations and count

of molecules, respectively

[S] =
〈S〉

V
(59)

and

#S = S × NA (60)

where NA is the Avogadro’s number. The units of [S] are mol

per liter, M = mol/liter. In this context, S is the number of

moles and #S is the count of molecules.

Let use the following example for a chemical reaction

S1 + αS2

k1−→ βS3

k2−→ αS2 + γS4

which for the purpose of a stochastic simulation is split into

two reactions channels

R1: S1 + αS2

k1−→ βS3

R2: βS3

k2−→ αS2 + γS4

. (61)

The GMA representation of these reactions if given by the

following rate equations




d[S1]

dt
= −k1[S1][S2]

α

d[S2]

dt
= −αk1[S1][S2]

α + αk2[S3]
β

d[S3]

dt
= βk1[S1][S2]

α − βk2[S3]
β

d[S4]

dt
= γk2[S3]

β

(62)

Substituting (59) and (60) in (58) gives

d

dt
〈#Si〉 =

M∑
µ=1

νµikµ

(NAV )Kµ−1
Π

Lµ

j=1
〈#Sp(µ,j)〉

lµj (63)

where

Kµ =

Lµ∑
j=1

lµj

denotes the molecularity of the reaction channel Rµ. The

differential operator is justified only with the assumption of

large numbers of molecules involved, such that near continu-

ous changes are observed. Now, the “particle-O.D.E.” for the

temporal evolution of 〈#Si〉 is

d

dt
〈#Si〉 =

M∑
µ=1

νµik
′
µΠ

Lµ

j=1
〈#Sp(µ,j)〉

lµj (64)

Comparing (63) with (64) we find

k′
µ =

kµ

(NAV )Kµ−1
(65)

This equation than describes the interpretation of the rate

constant, dependent on whether we consider concentrations

or counts of molecules.

Let us now arrive to a general expression for the propensity

aµ. Note that from (64), the average number of reactions Rµ

occurring in (t, t + dt) is

〈Rµ〉 = k′
µΠ

Lµ

j=1
〈#Sp(µ,j)〉

lµj dt (66)

Let #Rµ be the number of reaction Rµ. If we consider

#Rµ a discrete random variable with probability distribution

function prµ
= Prob{#Rµ = rµ}, where rµ is the value

assumed by the random variable #Rµ, the expectation value

〈#Rµ〉 is given by

〈#Rµ〉 =
∑
rµ

rµ〈prµ
〉 rµ = 0, 1, 2, . . . (67)

where

prµ
=




aµdt + o(dt) if rµ = 1
1 − aµdt + o(dt) if rµ = 0
o(dt) if rµ > 0

(68)

where o(dt) is a negligible probability for more than one Rµ

reaction to occur during dt. Since prµ
is randomly varying and

then the average 〈prµ
〉 over the ensemble in (67), the equation

(67) becomes

〈#Rµ〉 = 0 · p0 + 1 · p1 +
∑
rµ>1

rµ〈prµ
〉

From (67) and (68) we then have
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〈#Rµ〉 = 〈aµdt〉 + o(dt) (69)

where from (66) and (69) the propensity of Rµ reaction to

occur in dt is given as

〈aµ〉 = k′
µΠ

Lµ

j=1
〈#Sp(µ,j)〉

lµj (70)

As already seen in the previous section, the propensity aµ

for a reaction Rµ is expressed as the product of the stochastic

rate constant cµ and the number hµ of distinct combination of

reactant molecules of Rµ

aµ = cµ · hµ (71)

In the literature hµ is knows as redundancy function. This

function varies over time in the following way

hµ(n)

{
Π

Lµ

j=1

(
np(µ,j)

lµj

)
for np(µ,j) > 0

0 otherwise
(72)

If np(µ,j) is large and lµj > 1, terms like (np(µ,j) −
1), . . . , (np(µ,j)− lµj +1) are not much different from np(µ,j)

and we may write

hµ ≅ Π
Lµ

j=1

(np(µ,j))
lµj

lµj !
=

Π
Lµ

j=1
(np(µ,j))

lµj

Π
Lµ

j=1
lµj !

(73)

We can write an alternative expression for aµ by substituting

(73) into (71) and considering the average

〈aµ〉 = cµ ·

〈
Π

Lµ

j=1
(#Sp(µ,j))

lµj

Π
Lµ

j=1
lµj !

〉
(74)

where #Sp(µ,i) is the random variable whose value is np(µ,j).

Comparing (70) with (74), we obtain

k′
µΠ

Lµ

j=1
〈#Sp(µ,j)〉

lµj =

cµ

〈
Π

Lµ

j=1
〈#Sp(µ,j)〉

lµj

〉

Π
Lµ

j=1
lµj !

Making the assumption of zero covariance (i. e. 〈#Si#Sj〉 =
〈#Si〉〈#Sj〉 means for i �= j nullifying correlation, and for

i = j nullifying random fluctuations) gives

k′
µ =

cµ

Π
Lµ

j=1
lµj !

(75)

which can be turned into an expression for cµ

cµ = k′
µ · Π

Lµ

j=1
lµj ! (76)

Inserting (65) for k′
µ, we arrive at

cµ =

(
kµ

(NAV )Kµ−1

)
· Π

Lµ

j=1
lµj ! (77)

Equation (77) is the law of conversion of the deterministic rate

constant kµ into the stochastic rate constant cµ and is used

in most implementation of Gillespie-like stochastic simulation

algorithms. Note if above we substitute 〈S〉/V in (58) for [S]
instead of 〈#S〉/(NAV ), the only difference to (65) and (77)

is that NA would not appear in these equations.

This derivation is different from the one given by Gillespie

in [10]. The difference is that Wolkenhauer et al. introduced

the average number of reactions (Eq. (66)) to move from the

general GMA representation (58), which is independent of

particular examples, to an expression that allow to derive pa-

rameter cµ of the stochastic simulation (77) without referring

to the temporal evolution of moments of CME. This makes

the derivation more compact. Moreover, in [10] the temporal

evolution of the mean is derived for examples of bi- and tri-

molecular reactions only.

Finally, we add some comments to this derivation and

its implications in a simulation algorithm. First, using the

approximation (73) for hmu is valid for large numbers of

molecules with lµj > 1. In the simulations presented in

this thesis this does not lead to significant differences. More

important however is the fact that the derivation (77) relies on

the rate constant of the GMA model. Nevertheless, this does

not mean that the CME approach relies on the GMA model,

since to derive rather than postulate a rate equation, one must

first postulate a stochastic mechanism from which the GMA

arises as a limit.

The existence of a relationship between deterministic and

stochastic models, makes to suppose the existence of a way

to compare these two approaches. In principle we can assert

that the GMA model (58) has the following advantage with

respect to the CME model: its terms and parameters are

the direct translation of the biochemical reaction diagrams

that capture the biochemical relationships of the molecules

involved.On the contrary, rate equations are in virtually all

cases simpler than CME. However for any realistic pathway

model a formal analysis is not always feasible and a numerical

solution (simulation) is the only way to compare two models.

In this case the Gillespie algorithm, that will be presented in

the following sections, provides an efficient implementation to

generate realization of the CME (i. e. it is a realization of a

time-continuous Markov process).

X. THE REACTION PROBABILITY DENSITY FUNCTION

In this section we introduce the foundation of the stochastic

simulation algorithm of Gillespie. If we are given that the

system is in the state �X = {X1, . . . , XN} at time t, computing

its stochastic evolution means “moving the system forward in

time”. In order to do that we need to answer two questions.

1) When will the next reaction occur ?

2) What kind of reaction will it be ?

Because of the essentially random nature of chemical in-

teractions, these two questions are answerable only in a

probabilistic way.

Let introduce the function P (τ, µ) defined as the probability

that, give the state �X at time t, the next reaction in the volume

V will occur in the infinitesimal time interval (t + τ, t + τ +
dτ), and will be an Rµ reaction. P (τ, µ) is called reaction

probability density function, because it is a joint probability

density function on the space of the continuous variable τ
(0 ≤ τ < ∞) and the discrete variable µ (µ = 1, 2, . . . , M)
(i. e., according to the notation introduced in subsection IV-D,

we are referring to a CDS model).
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The values of the variables τ and µ will gives us answer

to the two questions mentioned above. Gillespie showed

that from the fundamental hypothesis of stochastic chemical

kinetics (see section VIII) it is possible to derive an analytical

expression for P (τ, µ), and then use it to extract the values for

τ and µ. Gillespie showed how to derive from the fundamental

hypothesis and from an analytical expression of P (τ, µ). First

of all, P (τ, µ) can be written as the product of P0(τ), the

probability that given the state �X at time t, no reaction

will occur in the time interval (t, t + dt), times aµdτ , the

probability that an Rµ reaction will occur in the time interval

(t + τ, t + τ + dτ)

P (µ, τ)dτ = P0(τ)aµdt (78)

In turn P0(τ) is given by

P0(τ
′ + dτ ′) = P0(τ

′)
[
1 −

M∑
i=1

aidτ ′
]

(79)

where [1−
∑M

i=1
aidτ ′] is the probability that no reaction will

occur in time dτ ′ from the state �X . Therefore

P0(τ) = exp
[
−

M∑
i=1

aiτ (80)

Inserting (79) into (78), we find the following expression for

the reaction probability density function

P (µ, τ) =

{
aµ exp(−a0τ) if 0 ≤ τ < infty
0 otherwise

(81)

where aµ is given by (71) and

a0 ≡

M∑
i=1

ai ≡

M∑
i=1

hici (82)

The expression for P (µ, τ) in (81) is, like the master equation

in (31), a rigorous mathematical consequence of the funda-

mental hypothesis (54). Notice finally that P (τ, µ) depends on

all the reaction constants (not just on cµ) and on the current

numbers of all reactant species (not just on the Rµ reactants).

XI. THE STOCHASTIC SIMULATION ALGORITHMS

In this section we review the three formulations of stochastic

simulation variants of Gillespie algorithm: Direct, First Reac-

tion, and Next Reaction Method.

A. Direct Method

On each step the Direct Method generates two random

numbers r1 and r2 from a set set of uniformly distributed

random numbers in the interval (0, 1). The time for the next

reaction to occur is given by t + τ , where τ is given by

τ =
1

a0

ln

(
1

r1

)
(83)

The index µ of the occurring reaction is given by the smallest

integer satisfying

µ∑
j=1

aj > r2a0 (84)

The system states are updated by X(t + τ) = X(t) + νµ,

then the simulation proceeds to the next occurring time.

Algorithm

1) Initialization: set the initial numbers of molecules for

each chemical species; input the desired values for the

M reaction constants c1, c2, . . . , cM . Set the simulation

time variable t to zero and the duration T of the

simulation.

2) Calculate and store the propensity functions ai for all

the reaction channels (i = 1, dots,M), and a0.

3) Generate two random number r1 and r2 in Unif(0, 1).
4) Calculate τ according to (83)

5) Search for µ as the smallest integer satisfying (84).

6) Update the states of the species to reflect the execution

of µ (e. g. if Rµ:S1 + S2 → 2S1, and there are X1

molecules of the species S1 and X2 molecules of the

species S2, then increase X1 by 1 and decrease X2 by

1). Set t ← t + τ .

7) If t < T then go to step 2, otherwise terminate.

Note that the random pair (τ, µ), where τ is given by (83)

and µ by (84), is generated according to the probability density

function in (81). A rigorous proof of this fact may be found in

[8]. Suffice here to say that (83) generates a random number

τ according to the probability density function

P1(τ) = a0 exp(−a0τ) (85)

while (84) generates an integer µ according to the probability

density function

P2(µ) =
aµ

a0

(86)

and the stated result follows because

P (τ, µ) = P1(τ) · P2(µ)

Note finally that, to generate random numbers between 0

and 1 we can do as follows. Let FX(x) be a distribution

function of an exponentially distributed variable X and let

U ∼ Unif [0, 1) denote an uniformly distributed random

variable U on the interval 0 to 1.

FX(x) =

{
1 − e−ax if x ≥ 0
0 if x < 0

(87)

FX(x) is a continuous non-decreasing function and this

implies that it has an inverse F−1

X . Now, let X(U) = F−1

X (U)
and we get the following

P (X(U) ≤ x) = P (F−1

X (U) ≤ x)

= P (U ≤ FX(x) (88)

= FX(x) (89)

It follows that
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F−1

X (U) = −
ln(1 − U)

a
∼ Exp(a) (90)

In returning to step 1 from step 7, it is necessary to

re-calculate only those quantities ai, corresponding to the

reactions Ri whose reactant population levels were altered in

step 6; also a0 must be re-calculated simply by adding to

it the difference between each newly changed ai value and

its corresponding old value. This algorithm uses M random

numbers per iteration, takes time proportional to M to update

the ai’s and takes time proportional to M to identify the

smallest putative time.

B. First Reaction Method

The First Reaction Method generates a τk for each reaction

channel Rµ according to

τi =
1

ai

ln
( 1

ri

)
(91)

where r1, r2, . . . , rM are M statistically independent sam-

plings of Unif(0, 1). Then τ and µ are chosen as

τ = min{τ1, τ2, . . . , τM} (92)

and

µ = the index of min{τ1, τ2, . . . , τM} (93)

Algorithm

1) Initialization: set the initial numbers of molecules for

each chemical species; input the desired values for the

M reaction constants c1, c2, . . . , cM . Set the simulation

time variable t to zero and the duration T of the

simulation.

2) Calculate and store the propensity functions ai for all

the reaction channels (i = 1, dots,M), and a0.

3) Generate M independent random numbers from

Unif(0, 10.

4) Generate the times τi, (i = 1, 2, . . . , M) according to

(91).

5) Find τ and µ according to (92) and (93), respectively.

6) Update the states of the species to reflect the execution

of reaction µ. Set t ← t + τ .

7) If t < T then go to step 2, otherwise terminate.

The Direct and the First Reaction methods are fully equiv-

alent to each other [9], [8]. The random pairs (τ, µ) generated

by both methods follow the same distribution.

C. Next Reaction Method

Gibson and Bruck [7] transformed the First Reaction

Method into an equivalent but more efficient new scheme.

The Next Reaction Method is more efficient than the Direct

method when the system involves many species and loosely

coupled reaction channels. This method can be viewed as an

extension of the First Reaction Method in which the unused

M − 1 reaction times (92) are suitably modified for reuse.

Clever data storage structures are employed to efficiently find

τ and µ.

Algorithm

1) Initialize:

• set the initial numbers of molecules, set the simula-

tion time variable t to zero, generate a dependency

graph G;

• calculate the propensity functions ai, for all i
• for each i, (i = 1, 2, . . . , M), generate a putative

time τi, according to an exponential distribution

with parameter ai

• store the τi values in an indexed priority queue P .

2) Let µ be the reaction whose putative time τµ stored in

P , is least. Set τ ← τµ.

3) Update the states of the species to reflect the execution

of the reaction µ. Set t ← τµ.

4) For each edge (µ, α) in the dependency graph G

• update a0

• if α �= µ, set

τα ←
aα,old

aα,new

(τα − t) + t (94)

• if α = µ, generate a random number r and compute

τα according to the following equation

τα =
1

aα(t)
ln

(1

r

)
+ t (95)

• replace the old τα value in P with the new value

5) Go to step 2.

Two data structures are used int his method:

• Thedependency graph G is a data structure that tells

precisely which ai should change when a given reaction

is executed. Each reaction channel is denoted as a node

in the graph. A direct edge connects Ri to Rj if and

only if the execution of Ri affects the reactants in Rj .

The dependency graph can be used to recalculate only

the minimal number of propensity functions in step 4.

• The indexed priority queue consists of a tree structure of

ordered pairs of the form (i, τi), where i is a reaction

channel index and τi is the corresponding time when

the next Ri reaction is expected to occur, and an index

structure whose ith element points to the position in the

tree which contains (i, τi). In the tree, each parent has

a smaller τ than either of its children. The minimum τ
always stays in the top of the node and the order is only

vertical. In each step the update changes the value of

the node and then bubbles it up or down according to its

value to obtain the new priority queue. Theoretically, this

procedure takes at most ln(M) operations. In practice,

usually there are a few reactions that occur much more

frequently. Thus, the actual update takes less than ln(M)
operations.

The Next Reaction Method takes some CPU time to main-

tain the two data structures. For a small system, this cost
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dominated the simulation. For a large system, the cost of

maintaining the data structures may be relatively smaller

compared with the savings. The argument for the advantage of

the Next Reaction Method over the Direct Method is based on

two observations: first, in each step, the Next Reaction Method

generates only one uniform random number, while the Direct

Method requires two. Second, the search for the index µ of

the next reaction channel takes O(M) time for Direct Method,

while the corresponding cost for the Next Reaction Method is

on the update of the indexed priority queue which is O(ln(M))

XII. TIME-DEPENDENT EXTENSION OF FIRST REACTION

METHOD

The Gillespie algorithm has been used on numerous occa-

sion to analyze biochemical kinetics. Its success is due to its

proved equivalence with Master Equation and its efficiency

and precision: no time is wasted on simulation iterations in

which no reactions occur, and the treatment of the time as a

continuum allows the generation of exact series of τ values

based on rigorously derived probability density function. How-

ever, all the formulations of the algorithm consider the reaction

rate constant in time and have not taken into account for the

effects of temporal changes of volumes, temperature, activa-

tion energy and presence of catalysts concentration. In this

section, we provide an extension of First Reaction Methods

to the case of time-depending rates. Our extension is inspired

inspired to [22], and focuses on the time dependence of the

kinetic rates on volume and temperature deterministic changes.

This re-formulation has been adapted to be incorporated in the

framework of stochastic π-calculus and its implementation has

been succesfully applied to a sample simulation in biology: the

passive glucose cellular transport [19], [18].

Let suppose that the volume Vs(t) contains a mixture of

chemical species, Xi (i = 1, . . . , N ) which may interact

through the reaction channels Rµ, µ = 1, . . . , M . Let suppose

furthermore that a subset of these channels is characterized by

the time-dependent propensities

as(t) = a′
s/V (t), s = 1, . . . , S (96)

and an other sub-set is characterized by the time-dependent

propensities

aq(t) = a′
q/V (t), q = S + 1, . . . , M (97)

where a′
s and (a′

q) are the time-independent propensities, that

have to be computed using the Eqs. (38), (41), (44), according

to the type of reaction.

Following the Gillespie approach, let introduce these prob-

abilities:

1) P (τ, µ|Y, t)dτ : probability that, given the state Y =
(X1, . . . , XN ) at time t, the next reaction will occur

in the infinitesimal time interval (t + τ, t + τ + dτ), at

it will be reaction Rµ

2) aµ(t)dt: probability that, given the state Y =
(X1, . . . , XN ) at time t, reaction Rµ will occur within

the interval (t, t + dt).

P (τ, µ|Y, t)dτ is computed as a product of the probabilities

that no reaction will occur within (t, t+τ) times the probability

that Rµ will occur within the subsequent interval (t + τ, t +
τ + dτ)

P (τ, µ|Y, t)dτ = P0(τ |Y, t) · aµ(τ + t)dτ (98)

where, summing over all reaction channels µ = 1, . . . , M and

splitting the sum in the two terms over s and q

P0(τ + dτ |Y, t) =

P0(τ |Y, t)

[
1 − dτ

S∑
s=1

as(t + τ) − dτ

M∑
q=S+1

aq(t + τ)

]

With the initial condition P0(τ = 0|Y, t) = 1, the solution

of this differential equation is

P0(τ |Y, t) =

exp

[
−

∑
s

∫ t+τ

t

as(t + τ ′)dτ ′ −
∑

q

∫ t+τ

t

aq(t + τ ′)dτ ′

]

(99)

Now, by combining Eq. (98) with the Eq. (99), we obtain

P (τ, µ|, Y, y) = aµ(t + τ) ×

exp

[
−

∑
s

∫ t+τ

t

as(t + τ ′) −
∑

q

∫ t+τ

t

aq(t + τ ′)dτ ′

]

(100)

By introducing two functions fs(τ) and fq(τ) describing

the variation of volume in time, the time-dependence of the

volumes can be described by these expressions:

Vs(t + τ) = Vs(t)fs(τ) and Vq(t + τ) = Vq(t)fq(τ).

Consequently, the propensities are

as(t + τ) = as(t)/fs(τ) and aq(t + τ) = aq(t)/fq(τ).

Substituting these expressions in Eq. (100), and introducing,

for convenience

As ≡
∑

s

as(t) and Aq ≡
∑

q

aq(t)

Fs(τ) ≡

∫ t+τ

t

1

fs(τ ′)
dτ ′ and Fq(τ) =

∫ t+τ

t

1

fq(τ ′)
dτ ′

so that Eq. (100) can be re-written as

P (τ, µ|Y, t) =

{
as(t)

fs(τ)
· exp

[
− AsFs(τ) − AqFq(τ)

]
aq(t)

fq(τ)
· exp

[
− AsFs(τ) − AqFq(τ)

]
(101)

Finally, the probability of any reaction occurring between time

t and the time t+T , is obtained by integrating Eq. (101) over

time and summing over all channels:
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∫
T
0

∑
µ P (τ,µ|Y,t)dτ=




∫ T

0

∑S
s′=1

as′(t)

fs(τ)
· exp

[
− AsFs(τ) − AqFq(τ)

]
dτ∫ T

0

∑M
q′=S+1

aq′(t)

fq(τ)
· exp

[
− AsFs(τ) − AqFq(τ)

]
dτ

(102)

Generalizing, in systems where the physical reaction space

is divided into n sub-spaces whose volumes change in time,

the probability density function of reaction is split into n
exponential terms multiplied by the ratio between reaction

propensity and volume of the subspace. The volume of

each sub-spaces can follow a different temporal behavior.

Consequently a different reaction probability and a different

expression of reaction time are obtained for each sub-regions

of the space.

The effect of temperature changes on the probability density

function can be simulated by expressing the time dependence

of the propensity of a reaction µ as aµ(t + τ) = aµ(t) · T (τ),
where T (τ) = exp(1/(a + bτ)) models the variation of

the propensity function following the Arrhenius formula (for

instace, il Lecca [18] a = 37◦C and b = 1 ◦C/min).

XIII. SPATIO-TEMPORAL ALGORITHMS

Previous sections cover the stochastic algorithms for model-

ing biological pathways with no spatial information. However,

the real biological world consists of components which interact

in a three dimensional space. Within a cell compartment,

the intracellular material is not distributed homogeneously in

space and molecular localization plays an important role, e.

g. diffusion of ions and molecules across membranes and

propagation of an action potential along a nerve fiber’s axon.

Thus, basic assumption of spatial homogeneity and large

concentration diffusion is no longer valid in realistic biological

systems [4]. In this context, stochastic spatio-temporal simu-

lation of biological system is required.

The enhancement on the performance of Gillespie Al-

gorithms has made the spatio-temporal simulation tractable.

Stundzia and Lumsden [31], and Elf et al. [4], extended the

Gillespie Algorithms to model intracellular diffusion. They

formalized the reaction-diffusion master equation and the

diffusion probability density functions. The entire volume of

a model was divided into multiple subvolumes and by treat-

ing diffusion processes as chemical reactions, the Gillespie

Algorithm was applied without much modification. Stundzia

has showcased the application of the algorithm on calcium

wave propagation within living cells and has observed regional

fluctuations and spatial correlations in the small particles limit.

However, this approach requires detailed knowledge about

the diffusion processes to be available, in order to estimate

the probability density function for diffusion. Furthermore,

the algorithms have only been applied to small systems with

finite number of molecular species but require large amount

of computational power.

Shimizu in [30] also extended the Stochsim algorithm to

include spatial effects of the system. In his approach, spatial

information was added to the attributes of each molecular

species and a simple two dimensional lattice was formed to

enable interaction between neighboring nodes. The algorithm

was applied to study the action of a complex of signaling

proteins associated with the chemotactic receptors of coliform

bacteria. He showed that the interactions among receptors

could contribute to high sensitivity and wide dynamic range

in the bacterial chemotaxis pathway.

Another way of simulating stochastic diffusion is to di-

rectly approximate the Brownian movements of the individual

molecules (MCell [2]). In this case, the motion and direction

of the molecules are determined by using random numbers

during the simulation. Similarly, collisions with potential

binding sites and surfaces are detected and handled by using

only random numbers with a computed binding probability.

MCell is capable of treating stochastic and a 3-dimensional

biological model that involves a discrete number of molecules.

Though MCell incorporates 3D spatial partitioning and parallel

computing to increase algorithmic efficiency, the simulation is

limited to the microphysiological processes such as synaptic

transmission due to high computational requirement.

Apart from the enhancements on various algorithms, the

simulation of a spatio-stochastic biological system is still a

challenging problem. To address it the author recently pro-

posed a new mathematical treatment of diffusion that can be

incorporated in a stochastic algorithm simulating the dynamics

of a reaction-diffusion system is presented [20], [21]. The

movement of a molecule A from a region i to a region j

of the space is represented as a first order reaction Ai
k
−→ Aj ,

where the rate constant k depends on the diffusion coefficient.

The diffusion coefficients are modeled as function of the

local concentration of the solutes, their intrinsic viscosities,

their frictional coefficients and the temperature of the system.

The stochastic time evolution of the system is given by the

occurrence of diffusion events and chemical reaction events.

At each time step an event (reaction or diffusion) is selected

from a probability distribution of waiting times determined

by the intrinsic reaction kinetics and diffusion dynamics. To

demonstrate the method the simulation results of the reaction-

diffusion system of chaperone-assisted protein folding in cy-

toplasm are shown.

XIV. THE LANGEVIN EQUATION

While internal fluctuations are self-generated int he system,

and they can occur in closed and open systems as well,

external fluctuations are determined by the environment of the

system. We have seen that a characteristic property of internal

fluctuations is that they scale with the system size and tend

do vanish in the thermodynamics limit. External noise has a

crucial role in the formation of ordered biological structures.

External noise-induced ordering was introduced to model the

ontogenetic development and plastic behavior of certain neural

structures [5]. Moreover, it was demonstrated that noise can

support the transition of a system from a stable state to another

stable state. Since stochastic models might exhibit qualitatively

different behavior than their deterministic counterpart, external



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:3, No:4, 2009

232

noise can support transitions to states which are not available

(or even do not exist) in a deterministic framework [15].

In the case of extrinsic stochasticity, the stochasticity is

introduced by incorporating multiplicative or additive stochas-

tic terms into the governing reaction equations. These terms,

normally viewed as random perturbations to the deterministic

system, are also known as stochastic differential equations.

The general equation is:

dx

dt
= f(x) + ξx(t) (103)

The definition of the additional term ξx differs according

to the formalism adopted. In Langevin Equations [12], ξx is

represented by Eq. (104) Other studies [14] adopt a different

definition where ξi(t) is a rapidly fluctuating term with zero

mean ({ξi(t)} = 0). The statistics of i(t) are such that

({ξi(t)ξi(t
′)} = 0) = Dδij(t − t′) to maintain independence

of random fluctuations between different species (D is pro-

portional to the strength of the fluctuation).

ξx(t) =

M∑
j=1

Vij
√

αjX(t)Nj(t) (104)

where Vij is the change in number of molecules of species i
brought by one reaction j and Nj are statistically independent

normal random variables with mean 0 and variance 1.

A. Use and abuse of Langevin equation

The way in which Langevin introduced fluctuations into

the equation of molecular population level evolution does

not carry over nonlinear systems. This section briefly sketch

the difficulties to which such a generalization leads. External

noise denotes fluctuations created in an otherwise deterministic

system by the application of a random force, whose stochastic

properties are supposed to be known. Internal noise is due

to the fact that the system itself consists of dicrete particles.

It is inherent in the mechanism by which the state of the

system evolves and cannot be divorced from its evolution

equation. A Brownian particle, with its surrounding fluid is a

cloded physical system with internal noise. Langevin, however,

treated, the particle as a mechanical system subject to the force

exerted by the fluid. This force he subdivided in a deterministic

damped force and a random force, which he treated as external,

i. e. its properties as a function of time were supposed to be

known. For the physical pictures, these properties will not be

altered if an additional force on the particle is introduced.

In more recent years, however, Eq. (103) has been used also

in modeling the evolution of biochemical systems, although

the noise source in a chemical reacting network is internal and

no physical basis is available for a separation into a mechanical

part and a random term with known properties. The strategy

used in the application of Langevin equation in modeling

the evolution of a system of chemical reacting particles is

the following. Suppose to have a system whose evolution is

described phenomenologically by a deterministic differential

equation

dx

dt
= f(x) (105)

where x stands for a finite set of macroscopic variables, but

for simplicity in the present discussion we take the case that x
is a single variable. Let suppose to know that for some reason

there must also be fluctuations about this macroscopic values.

Therefore, we supplement (105) with a Langevin term

dx

dt
= f(x) + L(t) (106)

Note now, that on averaging (106) one does not find that

〈x〉 obeys to the phenomenological equation (105), rather than

∂t〈x〉 = 〈f(x)〉 = f(〈x〉) +
1

2
〈(x − 〈x〉)2〉∂2

t (〈x〉) + . . .

It follows that 〈x〉 does not obey any differntial equation

at all. This reveals the basic flaw in the application of the

Langevin approach to the internal noise of systems whose

phenomenological law is nonlinear. The phenomenological

equation (105) holds only in the approximation in which

fluctuations are neglected. That implies that f(x) is determined

phenomenologically with an inherent margin of uncertainty of

the order of fluctuations. If we deduce a certain form of f(x)
from a theory or experiment in which fluctuations are ignored

there is no justification for postulating that f(x) is to be used

in (106). There may be a mismatch between both of the same

size as the fluctuations; thta would not show up in macroscopic

results, but cannot of course be neglected in the equation of

the fluctuations themselves.

XV. HYBRID ALGORITHMS

Biological system are stiff by nature in the sense that

processes with very different time scales are coupled. Some

molecues are quickly synthesized and degenrated (typically

metabolites) and take a long time to run over (typically

macromolecules). Some biochemical reactions involve a chain

of many steps, while other reactions just involve a single asso-

ciation of dissociation event. We have already seen in section

III-B1 that this difference in time scales can be exploited by

assuming quasi-equilibrium and usign the equilibrium constant

to eliminate from the model some components, and thus to

reduce its complexity.

Stochastic algorithms suffer from the same ”stiffness” prob-

lems as that of deterministic algorithms. In order to capture

the fast dynamics of the system, entire simulation is slowed

down significantly. Hence, the basic idea of hybrid algorithms

aims to exploit the advantages of other algorithms to offset

the disadvantages of the stochastic algorithms.

Several attempts have been made to illustrate the relevance

and feasibility of hybrid algorithms. Bundschuh et al [28],

Haseltine and Rawlings [13], and Puchalka and Kierzek [27],

have used a similar approach to integrate ODE/Langevin with

Gillespie algorithms. In both cases, the modeler has to identify

methods and criteria to partition the system into fast dynamics

and slow dynamics sub-systems. The fast dynamics subsystem

can be handled by either ODE or Langevin Equations while

the slow dynamics subsystem can be handled by Gillespie

algorithms. In addition, numerical treatment such as the ”slow

variables” in [28], and the ”probability of no reaction” in
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Haseltine and Rawlings [13], is required to maintain accuracy

of the solutions. The algorithms show promising results and

the results are consistent with those from Gillespie algorithms.

Haseltine and Rawlings in [13], showed the applicability of

hybrid algorithms by simulating the effect of stochasticity to

the bi-modality of an intracellular viral infection model using

the algorithm. Kiehl et al. [17], also tested the algorithms on

the λ phage model.

The relevance of hybrid algorithms has been pointed out in

several papers (Alur et al. [1]; Matsuno et al. [24]; Bockmayr

and Courtois [3]). Bockmayr and Courtois used hybrid con-

straint programming methods to model an alternative splicing

regulation model. This implementation is very useful under

circumstances where detailed knowledge about the model is

unavailable. Meanwhile, Alur et al. used CHARON, a formal

description language of hybrid system which combines ODE

with ”mode switching” mechanism to model the quorum

sensing phenomenon in Vibrio fischeri, a marine bacterium that

involves the Lux regulon. A Hybrid Petri Net [24] approach

has been employed to model a hybrid system using ODEs

and discrete events. This method has been used to model the

growth pathway control of λ phage.

Hybrid algorithms aim to close the gap between macro-

scopic and mesoscopic scales of the system. In particular, the

relevance of hybrid modeling has been proved necessary to

capture the behavior of a real biological system. Moreover, hy-

brid algorithms have substantially cut down the computational

cost of large scale modeling and simulation. One major draw-

back here is that by introducing additional numerical treatment

to the algorithms, more parameters have to be defined and

the accuracy of the solutions is dependent on the accuracy

of parameters. Mostly, the simulations result in solutions of

highly tuned parameters. Although these hybrid approaches

show significant improvements in the computational cost, there

are still lots of computational issues to be resolved before it

can be applied to a realistic problem. Some of the issues are:

• accuracy of results,

• consistency of system parameters between different levels

of abstraction,

• highly non-linear system,

• methodology to separate the systems into different sub-

systems, dynamic switching between different mathemat-

ical formalisms.

XVI. CONCLUSIONS

We end this paper by noticing that the biochemical approach

to understand biological processes is essentially one of simu-

lation. A biochemist typically prepares a cell-free extract that

can mediate a well-described physiological process. Once the

extract is fractioned to purify the components that catalyze

individual reactions, the physiological process in reconstructed

in vitro. The validity of this approach is measured by how

closely the in vitro reconstructed process matches physiolog-

ical observations.

Similarly, the validity of a model in its conceptual frame-

work is measured by how closely its simulation matches

physiological observations. Unfortunately, often controlled ex-

periments cannot be performed on the system to validate our

model (for example, how can the model be validated if only

a single historical dataset exists ?). The validation becomes

difficult also when the model is stochastic, i. e. it has random

elements. However, whatever the nature of the model is, in

general validation ensures that the model meets its intended

requirements in terms of the methods employed and the results

obtained. The ultimate goal of model validation is to make the

model useful in the sense that the model addresses the right

problem, provides accurate information about the system being

modeled, and to makes the model actually used [23], [29].
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[16] P. S. Jöberg. Numerical solution of the Fokker-Planck approximation

of the chemical master equation. Master’s thesis, Dept. of Information
Technology, Uppsala University, 2005.

[17] T. R. Kiehl, R. M. Mattheyses, and M. K. Simmons. Hybrid simulation
of cellular behavior. Bioinformatics, 20:316–322, 2004.

[18] P. Lecca. Simulating the cellular passive transport of glucose using
a time-dependent extension of gillespie algorithm for stochastic π -
calculus. Int. Journal of Data Mining and Bioinformatics, 1(4), 2006.

[19] P. Lecca. A time-dependent extension of gillespie algorithm for
biochemical stochastic π-calculus. In SAC ACM ’06, 2006.
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