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Abstract—In this paper, we study the existence, the boundedness
and the asymptotic behavior of the positive solutions of a fuzzy
nonlinear difference equations

xn+1 = A+
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i=0

Bi

xn−i
, n = 0, 1, · · · .

where (xn) is a sequence of positive fuzzy numbers, A,Bi and the
initial values x−k, x−k+1, · · · , x0 are positive fuzzy numbers. k ∈
{0, 1, 2, · · ·}.
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I. INTRODUCTION

IT is known that difference equation appears naturally as
discrete analogous and as numerical solutions of differ-

ential equations and delay differential equation having many
applications in economics, biology, computer science, control
engineering, etc.(see, for example, [1-5] and the references
therein). Recently there has been a lot of work concerning
the oscillatory behavior, the periodicity, and the boundedness
of nonlinear difference equations. Moreover similar results in
[6] have been derived for systems of two nonlinear difference
equations. A fuzzy difference equation is a difference equation
where constants and the initial values are fuzzy numbers, and
its’ solutions are sequences of fuzzy numbers. Recently there
is an increasing interest concerning with investigation of fuzzy
difference equation(see, for example, [7-13]).

In [10] G. Papaschinopoulos and B. K. Papadopoulos stud-
ied the following fuzzy difference equation

xn+1 = A+
B

xn
, n = 0, 1, · · · , (1)

where (xn) is a sequence of fuzzy numbers and A,B, x0 are
positive fuzzy numbers.

In this paper we study the following fuzzy nonlinear differ-
ence equation

xn+1 = A+
k∑
i=0

Bi
xn−i

, n = 0, 1, · · · , (2)
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where (xn) is a sequence of positive fuzzy numbers, A,Bi
and the initial values x−k, x−k+1, · · · , x0 are positive fuzzy
numbers. k ∈ {0, 1, 2, · · ·}.

We need the following definitions:
A is said to be a fuzzy number if A : R → [0, 1] satisfies the
below (i)-(iv)
(i) A is normal, i.e. there exists an x ∈ R such that A(x) = 1;
(ii) A is fuzzy convex, i.e. for all t ∈ [0, 1] and x1, x2 ∈ R
such that

A(tx1 + (1− t)x2) ≥ min{A(x1), A(x2)};
(iii) A is upper semi-continuous;
(iv) The support of A, suppA =

⋃
α∈(0,1][A]α =

{x : A(x) > 0} is compact.
The α−cuts of A are denoted by [A]α = {x ∈ R : A(x) ≥

α}, α ∈ [0, 1], it is clear that the [A]α are closed interval.
We say that a fuzzy number is positive if suppA ⊂ (0,∞).

It is obvious that if A is a positive real number then A is
a fuzzy number and [A]α = [A,A], α ∈ (0, 1]. Then we say
that A is a trivial fuzzy number.

Let A,B be fuzzy numbers with [A]α = [Al,α, Ar,α],
[B]α = [Bl,α, Br,α], α ∈ (0, 1] . We define a norm on fuzzy
numbers space as follows:

‖A‖ = sup
α∈(0,1]

max{|Al,α|, |Ar,α|}.

We take the following metric:

D(A,B) = sup
α∈(0,1]

max{|Al,α −Bl,α|, |Ar,α −Br,α|}.

The fuzzy analog of the boundedness and persistence (see
[9,11]) as follows: we say that a sequence of positive fuzzy
numbers (xn) persists (resp. is bounded) if there exists a
positive real number M (resp. N ) such that

suppxn ⊂ [M,∞)(resp. suppxn ⊂ (0, N ]), n = 1, 2, · · · .
We say that xn is bounded and persists if there exist positive

real numbers M,N > 0 such that

suppxn ⊂ [M,N ], n = 1, 2, · · · .
We say (xn), n = 1, 2, · · ·, is an unbounded sequence if the

norm ‖xn‖, n = 1, 2, · · · , is an unbounded sequence.
We say that xn is a positive solution of (2) if (xn) is a

sequence of positive fuzzy numbers which satisfies (2). We
say a positive fuzzy number x is a positive equilibrium for (2)
if

x = A+
k∑
i=0

Bi
x
.

On the fuzzy difference equation
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Let (xn) be a sequence of positive fuzzy numbers and x is
a positive fuzzy number, Suppose that

[xn]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, 2, · · · , (3)

and
[x]α = [Lα, Rα], α ∈ (0, 1] (4)

We say that the sequence (xn) converges to x with respect
to D as n → ∞ if limn→∞ D(xn, x) = 0.

Suppose that (2) has a unique positive equilibrium x. We say
that the positive equilibrium x of (2) is stable if for every ε > 0
there exists a δ = δ(ε) > 0 such that for every positive solution
xn of (2), which satisfies D(x−i, x) ≤ δ, i = 0, 1, · · · , k we
have D(xn, x) ≤ ε for all n > 0.

Moreover, we say that the positive equilibrium x of (2) is
asymptotically stable, if it is stable and every positive solution
of (2) tends to the positive equilibrium of (2) with respect to
D as n → ∞.

The purpose of this paper is to study the existence of posi-
tive solutions of (2). Furthermore, we give some conditions
so that every positive solution of (2) is boundedness and
persistence. Finally, under some conditions we prove that (2)
has a unique positive equilibrium x which is asymptotic stable.

II. MAIN RESULTS

Firstly we study the existence of the positive solutions
of (1). We need the following lemma which is a slight
generalization of Lemma 2.1 of [11].

Lemma 2.1. Let f : R+
2k+3 → R+ be continuous , Ai, i =

0, 1, · · · , 2k + 3, are fuzzy numbers, Then

[f(A0, · · · , A2k+3)]α = f([A0]α, · · · , [A2k+3]α), α ∈ (0, 1].

Theorem 2.1. Consider equation (2) where A,Bi are positive
fuzzy numbers. Then for any positive fuzzy numbers x−i, i =
0, 1, · · · , k, there exists a unique positive solution xn of (2).

Proof. Suppose that there exists a sequence of fuzzy numbers
(xn) satisfying (2) with the initial values x−k, x−k+1, · · · , x0.
Consider the α−cuts, α ∈ (0, 1], n = −k,−k + 1, · · · ,⎧⎨

⎩
[xn]α = [Ln,α, Rn,α], [A]α = [Al,α, Ar,α],

[Bi]α = [Bi,l,α, Bi,r,α], i = 0, 1, · · · , k
(5)

Then from (2), (5) and Lemma 2.1 it follows that

[xn+1]α = [Ln+1,α, Rn+1,α] =

[
A+

k∑
i=0

Bi
xn−i

]
α

= [A]α +
k∑
i=0

[Bi]α
[xn−i]α

= [Al,α, Ar,α] +
k∑
i=0

[Bi,l,α, Bi,r,α]

[Ln−i,α, Rn−i,α]

=

[
Al,α +

k∑
i=0

Bi,l,α
Rn−i,α

, Ar,α +
k∑
i=0

Bi,r,α
Ln−i,α

]

from which we have that for n = 0, 1, · · · , α ∈ (0, 1]⎧⎪⎨
⎪⎩

Ln+1,α = Al,α +
∑k
i=0

Bi,l,α

Rn−i,α
,

Rn+1,α = Ar,α +
∑k
i=0

Bi,r,α

Ln−i,α

(6)

Then it is obvious that for any (Lj,α, Rj,α), j = −k,−k +
1, · · · , 0, there exists a unique solution (Ln,α, Rn,α) with the
initial conditions (Lj,α, Rj,α), j = −k,−k + 1, · · · , 0, α ∈
(0, 1].

Conversely we prove that [Ln,α, Rn,α], where (Ln,α, Rn,α)
is the solution of the system (6) with the initial values
(L−i,α, R−i,α), i = 0, 1, · · · , k, determines the solution xn of
(2) with the initial values x−k, x−k+1, · · · , x0 such that (3)
holds.

From Theorem 2.1 of [14] and since A,Bi, x−i, i =
0, 1, · · · , k, are positive fuzzy numbers for any α ∈ (0, 1],
α1 ≤ α2, we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 < Al,α1 ≤ Al,α2 ≤ Ar,α2 ≤ Ar,α1

0 < Bl,α1
≤ Bl,α2

≤ Br,α2
≤ Br,α1

0 < L−i,α1
≤ L−i,α2

≤ R−i,α2
≤ R−i,α1

(7)

We claim that

Ln,α1
≤ Ln,α2

≤ Rn,α2
≤ Rn,α1

, n = 0, 1, 2, · · · . (8)

We prove it by induction. It is obvious from (7) that (8)
holds true for n = 0. Suppose that (8) are true for n = m.
Then from (6) and (7) it follows that

Lm+1,α1
= Al,α1

+
k∑
i=0

Bi,l,α1

Rm−i,α1

≤ Al,α2
+

k∑
i=0

Bi,l,α2

Rm−i,α2

= Lm+1,α2

= Al,α2 +

k∑
i=0

Bi,l,α2

Rm−i,α2

≤ Ar,α2 +

k∑
i=0

Bi,r,α2

Lm−i,α2

= Rm+1,α2

= Ar,α2
+

k∑
i=0

Bi,l,α2

Rm−i,α2

≤ Ar,α1
+

k∑
i=0

Bi,r,α1

Lm−i,α1

= Rm+1,α1

Therefore (8) are satisfied. Moreover from (6) we have, for
α ∈ (0, 1],

L1,α = Al,α +
k∑
i=0

Bi,l,α
R−i,α

, R1,α = Ar,α +
k∑
i=0

Bi,r,α
L−i,α

, (9)

Since A,B, x−i, i = 0, 1, · · · , k are positive fuzzy numbers,
then we have that Al,α, Ar,α, Bl,α, Br,α, L−i,α, R−i,α are left
continuous. So from (9) we have that L1,α, R1,α are also left
continuous. By induction we can get that Ln,α, Rn,α, n =
1, 2, · · ·, are left continuous.
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We prove now that the support of xn, suppxn =⋃
α∈(0,1][Ln,α, Rn,α] is compact. It is sufficient to prove⋃
α∈(0,1][Ln,α, Rn,α] is bounded. Let n = 1. Since A,Bi,

x−i, i = 0, 1, · · · , k, are positive fuzzy numbers there exist
positive real numbers K,L,Mi, Ni, P−i, Q−i, i = 0, 1, · · · , k
such that for all α ∈ (0, 1]⎧⎨

⎩
[Al,α, Ar,α] ⊂ [K,L],
[Bi,l,α, Bi,r,α] ⊂ [Mi, Ni],
[L−i,α, R−i,α] ⊂ [P−i, Q−i].

(10)

Therefore from (9) and (10) it can follows easily that

[L1,α, R1,α] ⊂
[
K +

k∑
i=0

Mi

Q−i
, L+

k∑
i=0

Ni

P−i

]
, α ∈ (0, 1]

from which it is obvious that, α ∈ (0, 1],

⋃
α∈(0,1]

[L1,α, R1,α] ⊂
[
K +

k∑
i=0

Mi

Q−i
, L+

k∑
i=0

Ni

P−i

]
. (11)

Relation (11) implies that
⋃
α∈(0,1][L1,α, R1,α] is compact and⋃

α∈(0,1][L1,α, R1,α] ⊂ (0,∞). Working inductively we can
easily prove that

⋃
α∈(0,1][Ln,α, Rn,α] is compact and

⋃
α∈(0,1]

[Ln,α, Rn,α] ⊂ (0,∞), n = 1, 2, · · · . (12)

Therefore from Theorem 2.1 of [14], relations (8), (12) and
since Ln,α, Rn,α are left continuous we have that [Ln,α, Rn,α]
determines a sequence of positive fuzzy numbers (xn) such
that (3) holds.

We prove now that xn is the solution of (2) with the initial
conditions x−i, i = 0, 1, · · · , k. Since for all α ∈ (0, 1]

[xn+1]α = [Ln+1,α, Rn+1,α]

=

[
Al,α +

k∑
i=0

Bi,l,α
Rn−i,α

, Ar,α +
k∑
i=0

Bi,r,α
Ln−i,α

]

It follows that xn is the solution of (2) with the initial
conditions x−i, i = 0, 1, · · · , k.

Suppose that there exists another solution x̄n of (2) with the
initial conditions x−i, i = 0, 1, · · · , k. Then arguing as above
we can easily prove that

[x̄n]α = [Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, · · · . (13)

Then from (3) and (13) we have [xn]α = [x̄n]α, α ∈
(0, 1], n = 0, 1, · · · from which it follows that xn = x̄n, n =
0, 1, · · ·. Therefore the proof of theorem 2.1 is completed.

In the following theorem we study the boundedness and
persistence of the positive solution of (2). We first give a
lemma of [10].

Lemma 2.2 Let X,Y be fuzzy numbers and [X]α =
[Xl,α, Xr,α], [Y ]α = [Yl,α, Yr,α], α ∈ (0, 1] be the α−cuts
of X,Y respectively. Let Z be a fuzzy number such that
[Z]α = [Zl,α, Zr,α], α ∈ (0, 1].Then

MIN{X,Y } = Z, (resp.MAX{X,Y } = Z)

if and only if

min{Xl,α, Yl,α} = Zl,α, min{Xr,α, Yr,α} = Zr,α

(resp. max{Xl,α, Yl,α} = Zl,α, max{Xr,α, Yr,α} = Zr,α).

Theorem 2.2. Every positive solution of (2) is bounded
and persists, where A,Bi, i = 0, 1, · · · , k are positive fuzzy
numbers.

Proof. Let xn be a positive solution of (2). Suppose (5) is
satisfied. From (6) it is clear that n = k + 2, k + 3, · · · ,

Al,α ≤ Ln,α, Ar,α ≤ Rn,α, α ∈ (0, 1], (14)

Then from (14) we get

[min{Ln,α, Al,α},min{Rn,α, Ar,α}] = [Al,α, Ar,α] (15)

So from (15) and Lemma 2.2 it follows that

MIN{xn, A} = A, n ≥ k + 2. (16)

Moreover relations (6) and (14) imply that n = k+2, k+3, · · · ,
Ln,α ≤ Dl,α, Rn,α ≤ Dr,α, α ∈ (0, 1], (17)

where ⎧⎪⎨
⎪⎩

Dl,α = Al,α + 1
Ar,α

∑k
i=0 Bi,l,α,

Dr,α = Ar,α + 1
Al,α

∑k
i=0 Bi,r,α

(18)

Using relation (7) for 0 < α1 ≤ α2 we get

0 < Dl,α1
≤ Dl,α2

≤ Dr,α2
≤ Dr,α1

(19)

From Theorem 2.1 of [14] and (18) we have Dl,α, Dr,α are
left continuous. Moreover from (18) and (7) we have

[Dl,α, Dr,α] ⊂
[
K +

1

L

k∑
i=0

Mi, L+
1

K

k∑
i=0

Ni

]

from which it is obvious that
⋃
α∈(0,1][Dl,α, Dr,α] is compact.

Hence from Theorem 2.1 of [14], (19) and since Dl,α, Dr,α

are left continuous there exists a fuzzy number D such that
[D]α = [Dl,α, Dr,α]. Using (17) and Lemma 2.2 it follows
that

MAX{xn, D} = D, n ≥ k + 2. (20)

Hence from (16) and (20) it follows that every positive solution
xn of (2) is bounded and persists. The proof is complete.

In the following we study the existence of a unique positive
equilibrium x of (2) which is asymptotically stable. We need
the following lemma.

Lemma 2.3. Consider the following system of difference
equations n = 0, 1, 2, · · · ,

yn+1 = a+

k∑
i=0

pi
zn−i

, zn+1 = b+
k∑
i=0

qi
yn−i

, (21)

where k ∈ {0, 1, 2, · · ·}, y−k, y−k+1, · · · , y0, z−k, z−k+1, · · · , z0
are positive constants and a, b, pi, qi, i = 0, 1, · · · , k are
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positive real numbers. Then the following statements are true:
(i) Every positive solution (yn, zn) of (21) satisfies n ≥ k+2,

a ≤ yn ≤ a+
1

b

k∑
i=0

pi, b ≤ zn ≤ b+
1

a

k∑
i=0

qi. (22)

(ii) System (21) has a unique positive equilibrium (y, z) given
by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y =
ab−
∑k

i=0
(qi−pi)

2b

+

√[∑k

i=0
(qi−pi)−ab

]2
+4ab

∑k

i=0
qi

2b

z =
ab−
∑k

i=0
(pi−qi)

2a

+

√[∑k

i=0
(pi−qi)−ab

]2
+4ab

∑k

i=0
pi

2a

(23)

(iii) Every positive solution of system (21) converges the
positive equilibrium (y, z) of (21) as n → ∞.

Proof. (i) Let (yn, zn) be a positive solution of (21), from (21)
it is obvious that

a ≤ yn, b ≤ zn, n ≥ k + 2. (24)

Moreover from (25) and using (21) we have n ≥ k + 1,⎧⎪⎪⎨
⎪⎪⎩

yn+1 = a+

∑k

i=0
pi

zn−i
≤ a+ 1

b

∑k
i=0 pi,

zn+1 = b+

∑k

i=0
qi

yn−i
≤ b+ 1

a

∑k
i=0 qi.

(25)

From (24) and (25) it follows that (22) holds.
(ii) Let y, z be positive real numbers such that

y = a+

∑k
i=0 pi
z

, z = b+

∑k
i=0 qi
y

(26)

Then from (26) we have that the positive real numbers y, z
are given by (23).

(iii) From (22) we have⎧⎨
⎩

limn→∞ sup yn = L1 < ∞, limn→∞ inf yn = l1 > 0,

limn→∞ sup zn = L2 < ∞, limn→∞ inf zn = L1 > 0.
(27)

from (21) and (27) we have

L1 ≤ a+
1

l2

k∑
i=0

pi, l1 ≥ a+
1

L2

k∑
i=0

pi,

L2 ≤ b+
1

l1

k∑
i=0

qi, l2 ≥ b+
1

L1

k∑
i=0

qi.

From which it follows that

bL1+
k∑
i=0

qi ≤ al2+
k∑
i=0

pi, aL2+
k∑
i=0

pi ≤ bl1+
k∑
i=0

qi. (28)

Then relation (28) implies that bL1 + aL2 ≤ al2 + bl1, from
which it follows that

bL1 + aL2 = al2 + bl1. (29)

We claim that
L1 = l1, L2 = l2. (30)

Suppose on contrary that l1 < L1. Then from (29) it follows
that bL1+aL2 = al2+bl1 < al2+bL1 and so L2 < l2 which
is a contradiction. Hence L1 = l1. Similarly we can prove that
L2 = l2. Therefore (30) are true. Hence from (21) and (30)
there exist the lim yn and lim zn as n → ∞ such that

lim
n→∞ yn = y, lim

n→∞ zn = z

where (y, z) is the unique positive equilibrium of (21). The
proof is completed.

Theorem 2.3 Consider Eq.(2) where A,Bi, i = 0, 1, · · · k are
positive fuzzy numbers. Suppose that

L2+
∑k

i=0
(Ni−Mi)

2K

+

√[∑k

i=0
(Mi−Ni)−L2

]2
+4L2

∑k

i=0
Ni

2K <
(∑k

i=0 Mi

) 1
2

(31)
Then the following statements are true

(i) Eq.(2) has a unique positive equilibrium x.
(ii) The unique equilibrium x is asymptotically stable.

Proof. (i) Consider the following system, for α ∈ (0, 1],⎧⎪⎨
⎪⎩

Lα = Al,α + 1
Rα

∑k
i=0 Bi,l,α,

Rα = Ar,α + 1
Lα

∑k
i=0 Bi,r,α,

(32)

Then the positive solution (Lα, Rα) of (32) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lα =
Al,αAr,α−

∑k

i=0
(Bi,r,α−Bi,l,α)

2Ar,α

+

√[∑k

i=0
(Bi,r,α−Bi,l,α)−Al,αAr,α

]2
+4Al,αAr,α

∑k

i=0
Bi,r,α

2Ar,α

Rα =
Al,αAr,α−

∑k

i=0
(Bi,l,α−Bi,r,α)

2Al,α

+

√[∑k

i=0
(Bi,l,α−Bi,r,α)−Al,αAr,α

]2
+4Al,αAr,α

∑k

i=0
Bi,l,α

2Al,α

(33)
Let xn be a positive solution of (2) such that [xn]α =
[Ln,α, Rn,α], α ∈ (0, 1], n = 0, 1, · · ·. Then using Lemma
2.3 to the system (6) we have

lim
n→∞Ln,α = Lα, lim

n→∞Rn,α = Rα. (34)

Hence relations (7) and (34), for 0 < α1 ≤ α2 ≤ 1, imply
that

0 < Lα1
≤ Lα2

≤ Rα2
≤ Rα1

(35)

Since Al,α, Ar,α, Bi,l,α, Bi,r,α, i = 0, 1, · · · , k are left contin-
uous from (33) it follows that Lα, Rα are also left continuous.
Moreover from (33) and (10) we get

Rα ≤ d =
L2+
∑k

i=0
(Ni−Mi)

2K

+

√[∑k

i=0
(Mi−Ni)−L2

]2
+4L2

∑k

i=0
Ni

2K .

(36)
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Then from (10), (32) and (36) we have

Lα ≥ c = K +

∑k
i=0 Mi

d
. (37)

Hence relations (36) and (37) imply that [Lα, Rα] ⊂ [c, d] and
so
⋃
α∈(0,1][Lα, Rα] ⊂ [c, d]. From which it is clear that

⋃
α∈(0,1]

[Lα, Rα] is compact and
⋃

α∈(0,1]

[Lα, Rα] ⊂ (0,∞)

(38)
So from Theorem 2.1 of [14], relations (35), (38), (5), (32) and
since Lα, Rα are left continuous we have that [Lα, Rα], α ∈
(0, 1] determines a fuzzy number x such that

x = A+
1

x

k∑
i=0

Bi, [x]α = [Lα, Rα], α ∈ (0, 1]

and so x is a positive equilibrium of (2).
Suppose there exists another positive equilibrium x of (2).

Then there exist functions Lα : (0, 1] → (0,∞), Rα : (0, 1] →
(0,∞) such that

x = A+
1

x

k∑
i=0

Bi, [x]α = [Lα, Rα], α ∈ (0, 1]. (39)

From (39) it follows that

Lα = Al,α +
1

Rα

k∑
i=0

Bi,l,α, Rα = Ar,α +
1

Lα

k∑
i=0

Bi,r,α

(40)
and so Lα = Lα, Rα = Rα, α ∈ (0, 1]. Therefore x = x. This
completes part (i).

(ii) From (34) we have

lim
n→∞D(xn, x) = lim

n→∞ sup
α∈(0,1]

{max{|Ln,α−Lα|, |Rn,α−Rα|}}
(41)

Let ε be a positive real number, we consider the positive
real number δ as follows

δ < min{ε, c, c+K − d} (42)

where c, d are defined in (36) and (37).
Let xn be a positive solution of (2) such that

D(x−i, x) ≤ δ < ε, i = 0, 1, 2, · · · , k. (43)

From (43) it follows that i = 0, 1, · · · , k,
|L−i,α − Lα| ≤ δ, |R−i,α −Rα| ≤ δ, α ∈ (0, 1] (44)

From (6), (7), ( 32) and (44) we have

L1,α − Lα = Al,α +

k∑
i=0

Bi,l,α
R−i,α

− Lα

≤ Al,α +
1

Rα − δ

k∑
i=0

Bi,l,α − Lα

≤ δ
Lα −Al,α
Rα − δ

≤ δ
Rα −Al,α
Rα − δ

(45)

≤ δ
Rα −K

Rα − δ

from (42) and (45) we get

|L1,α − Lα| < δ < ε, α ∈ (0, 1]. (46)

Moreover from (6), (7), (32) and (44) we have

R1,α −Rα = Ar,α +
k∑
i=0

Bi,r,α
L−i,α

−Rα

≤ δ
Rα −Ar,α
Lα − δ

≤ δ
d−K

c− δ
(47)

From (31), (42) and (47) we get

|R1,α −Rα| < ε, α ∈ (0, 1] (48)

From (47) and (48), working inductively we can easily prove
that

|Ln,α − Lα| < ε, |Rn,α −Rα| < ε, α ∈ (0, 1] (49)

and so D(xn, x) < ε, n ≥ 0. Therefore the positive equilib-
rium x is stable, and noting (41). So the positive equilibrium
x is asymptotically stable. The proof is complete.

III. CONCLUSION

In this paper, we study the existence of positive solution
to fuzzy difference equation xn+1 = A+

∑k
i=0

Bi

xn−i
, n =

0, 1, · · · . Under certain conditions, we prove that the positive
solutions are bounded and persists. Furthermore, we prove
that the equation has a unique positive equilibrium which is
asymptotically stable.
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