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On the Flow of a Third Grade Viscoelastic Fluid
in an Orthogonal Rheometer

Carmen D. Pricind, E. Corina Cipu, and Victor Tigoiu

Abstract—The flow of a third grade fluid in an orthogonal
rheometer is studied. We employ the admissible velocity field
proposed in [5]. We solve the problem and obtain the velocity field
as well as the components for the Cauchy tensor. We compare the
results with those from [9]. Some diagrams concerning the velocity
and Cauchy stress components profiles are presented for different
values of material constants and compared with the corresponding
values for a linear viscous fluid.

Keywords—Non newtonian fluid flow, orthogonal rheometer,
third grade fluid.

1. INTRODUCTION

HE flow occuring in the orthogonal rheometer has been

studied by many authors. For instance in [5] was
investigated the flow of asecond grade fluid and in [9] was
studied the flow of BKZ fluid in the same domain.

The apparatus has two parallel plates rotating with the
same constant angular velocity Q arround two parallel and
different axes (d is the distance between the plates, see Fig.
1). The fluid to be tested fills the space between them (the
distance between axes of rotation is a).
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Fig. 1 Scheme of the orthogonal rheometer

In this paper we study the flow of an incompressible fluid
of third grade. The boundary conditions arised from the
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adherence conditions on the two plates, and the bilocal
problem obtained from the described mechanical problem is
solved exactly. We calculate the hydrostatic pressure and
the stresses on plates.

Some numerical experiments concerning the velocity
field and Cauchy stress components are presented and
discussed.

II. EQUATIONS OF MOTION

We assume that the motion occuring in the orthogonal
rheometer can be represented by:

V=-0Q(y-g(2)i+Qx-f(2)]> (D

where (X,y,z) is a fixed cartesian co-ordinate system (see
[5D-

It follows from (1) that the velocity gradient L has the
following representation:

0 -Q Qg'(2)
L=|Q 0 -0f(z)]. )
0 0 0

The Cauchy’s stress tensor T for the incompressible fluid
of third grade is given by:

T=—pl+pA; +a (A, ~ A7) +BiA;

. 3)
+Ba(ALA, + AYA)) + B3 (rAD)A,

where p is the hydrostatic pressure, p,o;, By, B,,B; are

constant constitutive coefficients, | is the identity tensor,
tr(-) is the trace operator, and A;, A,, A; are the Rivlin-

Ericksen tensors (A, =Vv+ (V?/)T , and for n=23,...

A, =Ani+A, L+LT A ).
The components of the stress tensor are given by:

T, =-p- o, Q%% - 2B, Qg

Ty, = —p— o, Q" +2B,Q°f,

Ty =—p+a, Q3 (f7 +g),

Ty, = 0‘192f'g' + BzQ3 (f/2 - gyz),

T3 = pQg' — o, Q°f' =B, Qg +2(B, +B;)Q (% + "),
Tyy = —pQf’ — 0, Qg + B, Q" - 2(B, +B5)Q° (7 + £2).

From the form of velocity field proposed results the
acceleration:

“4)
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Vo2 Neh 30080 +20° (B, +B5)- (Bg” +£72)]
a )~ 0% - e@)] O 0,07 + 407 B, +y) 1]
+4Q7 (B, +Bo)[2g (1" +g'g") + g (7 +g")] =pQ*f"
~"Q-B\Q° +20° (B, +5)- (B +¢™)]
+g"T-a,Q? —4Q° (B, +f5) - Fg]

We also assume that the specific body force b is
conservative and hence derivable from a potential ¢ :

(12)

b=—grad¢ . (6)  —4Q°(B, +B)2f"(F" +g'g") +f'(f"* +g"*)]=pQ7g.
The local form of the balance of linear momentum is: We denote:
pa = pb + divT (D hy(2) = g'[nQ-B,Q° +20° B, +B;)- B + )]

+T-a, Q% +4Q° (B, +B;) - 2],
hy(2) =—"[uQ -B,Q° +20° B, +B5)- B> +g*)]  (13)
P, +pd, —pQ’ (x —f(2)) =pQg" -, Q*f" - B,Q’g" + g0, Q2 — 403 (B, + ;) ]
+20° (B, +PB5)- (2f g +£°g" +3g"°g"), hs(2) = 20, Q% (F" + g'g"),
py +pd, —pQ’(y—g(2) = —pQf " -0, Q%" +B,Q " (8)
—20° (B, +PB3)- (B " + g +2fg'g"),
P, +po, =20,Q* (" +g'g"), h, =pQ%f’, h, =pQlg’ (14)

and implies that:

and thus the system (12) can be expressed as:

where we have denoted e, e the derivatives of the and the system (8) as:

functions with respect to the indices. The boundary
conditions for the velocity field arise from the adherence  p, +pd, —pQZ(x—f (2))=h,(2),
conditions upon the upper, at z=d, and lower, at z=0, Py +pb, —pQ2 (y—g(2)) = h,(2), (15)
plates of the orthogonal rheometer:
P, +p¢, =h;(2).

vl =-Q(a/2+ T+qu',
|z=0 ( y) ] After integrating the system (14) we obtain:

v, =Q(a/2-y)i+Qxj, )
_ 2 _ 2 16
U=v-i—>Foo,v=v-j—>+m0,v-k =0, when x,y — +oo. by =pQ7f+s, hy =pQig+a, (16)
with s and q constants.

From (9) it follows that: We can write:

f(0)=f(d)=0,g(0)=-a/2,g(d)=a/2. (10) .
2o 001 + PP+ 1920 - 22
In order to use the curl operator the system (8) could be P L) (17
written as: . —2-"2dy + —jh3 (z)dz +C

[MQg" — o, Q" — B, Q%" +2Q° (B, +B5)

for p=p+pd, with dp/p=(p,dx+p,dy+p,dz)/p.
CRFFY + 178" + 3% g1 +[-pQf” — a,Q%g" + B, Q"

From (16) we have:

_ 3 . 2en " 12 1t n ~ 2.2 2.2 2
20, +p)-GEOF YR (D @ s 0% a0 w0f o
+20, Q3 (FF" + gk = [p, + phy —pQ* (x ~F(2)]i PP 2w
+py +pdy —pQ*(y— (@i +[p, +pd, Ik Lixtayire Cxe e (et

In order to ensure the symmetry of the velocity
III. - SOLUTION FOR EQUATIONS OF MOTION distribution on the plane z=d we set s=q =0, therefore:

Using the curl operator in (11) we find that:

2
p= LT (x ey + @, @20 g 4 pC
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PQ2 2 2 2,012 "2
:T(X Yy )+, Q"+ g ) +p(C-¢)-

Following the procedure by [9], we put s=q=0 in (16),
then:

pQ’f = g"TuQ —B,Q2° +20° (B, +B5) - 3g”” +7)]
+ -, Q° +4Q° (B, +B;) - £, a8
pQPg =—f"TuQ - B,Q° +2Q° (B, +B3) - 3" + g'*)]

+ g”[_algz -4Q° (B, +B3)-f2].

We shall linearise the system (18) under the constitutive
restrictions:

n>0,0,20,B, <0,B, +2(B, +B3)=0.

We can also obtain a linear system if we make the
hypothesis B, + 5 =0, that implies B, =0. The solution

will be similar with those obtained in [9], for the case of
linear viscoelasticity, but with different coefficients.
The system (18) becomes:

PO =~ Q" + (B, ),

2 3\pr 2.n (19)
pQ7 g =—(nQ-B,Q°)f" -0, Q7g"

If we write the corresponding dimensionless system we
find:

Re, f=—a,f"+2’, 19y
Rem g =—f"- am§"~

Here @ denote the dimensionless quantities, and Re,, the
modified Reynolds number:

2
Re, =P g - 4@ (20)
n-pQ n—pQ2
The system (19)’ could be written as:
o Rem = f_35
f P (_ mf - g):
1+a, (19)"
—// R m
= (f 08
I+a
The system (19)’, with dimensionless boundary
conditions:
F0)=F(1)=0,8(0) ==, 81) = — (10y
T Y T

is solved for f and g and leads to:

(\{%2 No:4, 20Q8

{sm Bcosha - [cosPzsinhaz

f(z)=
+ cosB(z —1)sinho(z —1)] - cosPsinha

. [sin Bzcoshaz + sinB(z —1)cosho(z —

D,

@1
g(z )— {cosBsmh(x [cosPzsinhoz
+cos B(z —1)sinho(z —1)] + sin fcosh a
-[sinfzcoshaz + sin3(zZ — 1)cosh a(z — 1)]}
where
A =4-(sinh? o +sin’ B),
2 Lz( 1+a, - o), (22)
2(1+a,)
2 Re

m - 2 | =
=——m S+, o).
201+ a,%) oo

If we evaluate the difference between the normal stresses
(in fixed X points) on the two plates we have:

ATH i = —Ap + ATt i,

where n is the normal versor on the plates and for A we
understand Ae = e(X,y,0)—o(x,y,]).

Using the pressure given by (17) and the stress tensor (4)
we obtain:

. 0?
Ti-5 = —p+ Tey) =Pl (< +y*) +4-Cl. (23)

We consider the stress vector field t =Tn and we obtain
for its components in a (x,y) plane:

= T13 _ Mng_(XlQZF!_B1Q3—v’

_ . 24
ty =T% =—pQf' -0, Q°g+p,Q°f’
We simply see that:
2
o P2 5 g,
Re,,
Q%d? e
ty p ( f’ ~ _l).
Re,,
The jumps At,,At, will be:
242
At =P 5 AFeAT)
Re,,
P g A
Aty = Re. ——(-Af'-a,Ag")
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IV. NUMERICAL EXPERIMENTS
representations we consider

For modified

For numerical
d=15-10%m, a=d, p=1000kg-m™.
Reynolds number we use different values: Re,, =0.01, 1 or

10 for the dimensionless functions f and g and
Re,, =0.001 for the traction t, . The constant o, has also

different values: 1, 0.95, 0.5 or 0 (for the linear viscous
fluid).

V. CONCLUSION
In Fig. 2 and Fig. 3 we represent the dimensionless
functions f and g respectively, for various values of the

modified Reynolds number.
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Fig. 2 The dimensionless function f(Z). Q =40rad-s™',
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Fig. 3 The dimensionless function g(z). Q =40rad- s,

o, =1

In Fig. 4 we represent the dimensionless component t,

of the pressure vector t for the third grade fluid and for the
linear viscous fluid.
In Fig. 5 the
Q=80rad-s™".
Similar comparisions can be made with a second grade
fluid, but there are no relevant conclusions (distinct from

same comparision is made for
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Fig. 4 The dimensionless component t,, . Q = 40rad- s,
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Fig. 5 The dimensionless component t, . Q = 80rad-s™!,
Re,, =0.001
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