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On the existence and global attractivity of solutions
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Abstract—Using the concept of measure of noncompact-
ness, we present some results concerning the existence, uni-
form local attractivity and global attractivity of solutions for
a functional integral equation. Our results improve and extend
some previous known results and based on weaker conditions.
Some examples which show that our results are applicable
when the previous results are inapplicable are also included.
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I. INTRODUCTION

Integral equations are one of useful mathematical
tools in both pure and applied analysis. This is par-
ticularly true of problems in mechanical vibrations
and the related fields of engineering and mathemat-
ical physics, where they are not only useful but
often indispensable even for numerical computa-
tions. Many problems of mathematical physics can
be stated in the form of integral equations. In fact,
there is almost no area of applied mathematics and
mathematical physics where integral equations do
not play a role [5], [7].
In this paper we consider the existence and uniform
local attractivity of solutions of the following func-
tional integral equation

x(t) = f(t, x(α(t)))

+h(
∫ β(t)

0
g(t, s, x(γ(s)))ds), t ∈ [0,∞). (1)

This equation includes several classes of integral
equations. Banaś and Dhage [1] studied the
existence and behavior of solutions for the
equation (1) where h(x) = x under the following
assumptions:
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(1) The functions α, β, γ : R+ = [0,∞) → R+ are
continuous and α(t) → ∞ as t→ ∞.

(2) The function f : R+×R → R is continuous and
there exist positive constants L, M such that

|f(t, x) − f(t, y)| ≤ M |x− y|
L+ |x− y| ,

for t ∈ R+ and for x, y ∈ R. Moreover, assume
that M < L.

(3) The function t → f(t, 0) is bounded on R+

with F̄ = sup{f(t, 0) : t ∈ R+}.
(4) The function g : R+×R+×R → R is continuous

and there exist functions a, b : R+ → R+ such
that

|g(t, s, x)| ≤ a(t)b(s),

for t, s ∈ R+. Moreover, assume that

lim
t→∞ a(t)

∫ β(t)

0
b(s)ds = 0,

and gave their main result as:

Theorem A. Under the above assumptions
the functional integral equation

x(t) = f(t, x(α(t)))

+
∫ β(t)

0
g(t, s, x(γ(s)))ds, t ∈ R+, (2)

has at least one solution in the space BC(R+).
Moreover, solutions of equation (2) are globally
asymptotically stable.

Here BC(R+) is the Banach space of all bounded
and continuous function x : R+ → R equipped with
the standard norm

||x|| = sup{|x(t)| : t ∈ R+}, x ∈ BC(R).

In this paper we study the uniform local attractiv-
ity and existence of solution for equation (1) and
present some new conditions which our results sub-
stantially extend and improve previous results. We
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will use the concept of measure of noncompactness
and Darbo type fixed-point theorem which proved
by Banaś and Goebel [3]. Also among definitions of
measure of noncompactness, we take the axiomatic
definition, given by Banaś and Goebel [3] which is
more useful and convenient in applications.
This paper is organized as follows: in Section 2 we
present some definitions and preliminary results and
in Section 3 we give our main results and provide
some examples to show that these results are appli-
cable where the previous results are inapplicable.

II. PRELIMINARIES

In this section we present some definitions and
results which will be needed in this paper. Let
(E, ||.||) be an infinite Banach space with zero
element θ. We write B(x, r) to denote the closed
ball centered at x with radius r and X̄, ConvX to
denote the closure and closed convex hull of X ,
respectively. Moreover let mE indicates the family
of all nonempty bounded subsets of E and nE

indicates the family of all relatively compact sets.
We use the following definition of the measure of
noncompactness was given in [2].

Definition 1.2. A mapping μ : mE → R+ is
said to be a measure of noncompactness in E if it
satisfies the following conditions:
10 The family kerμ = {X ∈ mE : μ(X) = 0} is

nonempty and kerμ ⊂ nE ,
20 X ⊂ Y ⇒ μ(X) ≤ μ(Y ),
30 μ(X̄) = μ(X),
40 μ(ConvX) = μ(X),
50 μ(λX+(1−λ)Y ) ≤ λμ(X)+(1−λ)μ(Y ) for

λ ∈ [0, 1],
60 If (Xn) is a sequence of close sets from mE

such that Xn+1 ⊂ Xn(n = 1, 2, ...) and if
limn→∞ μ(Xn) = 0, then the intersection set
X∞ =

⋂∞
n=1Xn is nonempty.

In the following we state a fixed-point theorem
of Darbo type proved by Banaś and Goebel [2].

Theorem 1.2. Let C be a nonempty, closed,
bounded, and convex subset of the Banach space
E and let F : C → C be a continuous mapping.
Assume that there exist a constant k ∈ [0, 1) such
that μ(FX) ≤ kμ(X) for any nonempty subset of
C. Then F has a fixed-point in the set C.

For any nonempty bounded subset X of BC(R+),
x ∈ X, T > 0 and ε ≥ 0 let

wT (x, ε) = sup{|x(t) − x(s)| : t, s ∈ [0, T ],

|t− s| ≤ ε},
wT (X, ε) = sup{wT (x, ε) : x ∈ X},
wT

0 (X) = lim
ε→0

wT (X, ε),

w0(X) = lim
T→∞

wT
0 (X),

X(t) = {x(t) : x ∈ X},
diamX(t) = sup{|x(t) − y(t)| : x, y ∈ X},

and

μ(X) = w0(X) + lim
t→∞ sup diamX(t). (3)

Banaś has shown in [4] that the function μ is a
measure of noncompatness in the space BC(R+).
Let F be an operator from Ω ⊂ BC(R+) into itself
and consider the solutions of equation

(Fx)(t) = x(t). (4)

Now we review the concept of attractivity of
solutions for equation (4).

Definition 2.2. (See [1].) Solutions of equation (4)
are locally attractive if there exist a ball B(x0, r) in
the space BC(R+) such that for arbitrary solutions
x = x(t) and y = y(t) of equations (4) belonging
to B(x0, r)

⋂
Ω we have that

lim
t→∞(x(t) − y(t)) = 0. (5)

When the limit (5) is uniform with respect to
B(x0, r)

⋂
Ω, solutions of equation (4) are said to

be locally attractive (or equivalently that solutions
of (4) are asymptotically stable).

Definition 3.2. (See [1].) The solution x = x(t) of
equation (4) is said to be globally attractive if (5)
hold for each solution y = y(t) of (4).

If condition (5) is satisfied uniformly with
respect to the set Ω, solutions of equation (4)
are said to be globally asymptotically stable (or
uniformly globally attractive).
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III. MAIN RESULTS AND EXAMPLES

In this section we study the functional integral
equation (1). Here we consider the following con-
dition:
(4

′
) The function g : R+×R+×R → R is continuous

and there exist y0 ∈ R and positive constant D such
that

∫ β(t)

0
|g(t, s, y0)|ds ≤ D, t ∈ R+. (6)

Moreover,

lim
t→∞

∫ β(t)

0
|g(t, s, x(s)) − g(t, s, y(s))|ds = 0,

∫ β(t)

0
|g(t, s, x(s)) − g(t, s, y(s))|ds <∞, (7)

for any t ∈ R+ and uniformly respect to x, y ∈
BC(R+) .
Remark 1.3. If a function g : R+ × R+ × R → R

satisfies the condition (4) in Theorem A then we
infer that
∫ β(t)

0
|g(t, s, x)|ds ≤ sup

t∈R+

{a(t)
∫ β(t)

0
b(s)ds :} <∞,

uniformly respect to x in R, also

lim
t→∞

∫ β(t)

0
|g(t, s, x(s)) − g(t, s, y(s))|ds

≤ 2 lim
t→∞ a(t)

∫ β(t)

0
b(s)ds = 0,

for x, y ∈ BC(R+). Consequently the condition
(4

′
) holds.

Now we formulate our main theorem as:

Theorem 1.3. Suppose that the conditions
(1), (3) and (4

′
) hold and f is Lipschitz continuous

with constant k ∈ [0, 1). Also h : R → R is a
continuous function such that

|h(x) − h(y)| ≤ ρ|x− y|σ, x, y ∈ R. (8)

for some positive constants ρ, σ. Then the equation
(1) has at least one solution in BC(R+). Moreover,
the solutions of (1) are uniformly locally attractive.

Proof. First of all we define operator F, such
that for any x ∈ BC(R+)

(Fx)(t) = f(t, x(α(t)))

+ h(
∫ β(t)

0
g(t, s, x(γ(s)))ds),

By considering conditions of theorem we infer that
Fx is continuous on R+. Now we prove that Fx ∈
BC(R+) for any x ∈ BC(R+). For arbitrarily fixed
t ∈ R+ we have

|(Fx)(t)| ≤ |f(t, x(α(t))) − f(t, 0)| + |f(t, 0)|
+ |h(

∫ β(t)

0
g(t, s, x(γ(s)))ds)|,

By using condition (4
′
) and inequality (8) we obtain

|h(
∫ β(t)

0
g(t, s, x(γ(s)))ds)|

≤ |h(
∫ β(t)

0
g(t, s, x(γ(s)))ds)

−h(
∫ β(t)

0
g(t, s, y0)ds)| + |h(

∫ β(t)

0
g(t, s, y0)ds)|

≤ ρ|
∫ β(t)

0
{g(t, s, x(γ(s))) − g(t, s, y0)}ds|σ

+|h(
∫ β(t)

0
g(t, s, y0)ds)| ≤M1,

where

M1 = sup{ρ|
∫ β(t)

0
{g(t, s, y(s)) − g(t, s, y0)}ds|σ

: t ∈ R+, y ∈ BC(R+)}
+ max{|h(r)| : r ∈ [−D,D]}, (9)

and D is given by (6). Thus

|(Fx)(t)| ≤ k|x(α(t))| +M0. (10)

Here M0 = sup{|f(t, 0)| : t ∈ R+} + M1.
Hence Fx ∈ BC(R+). Equation (10) yields that F
transforms the ball Br = B(θ, r) into itself where
r = M0

1−k
. Now we show that F is continuous on the

ball Br. Let us fix arbitrary ε > 0 and take x, y ∈ Br

such that ||x− y|| ≤ ε. Then

|(Fx)(t) − (Fy)(t)|
≤ |f(t, x(α(t))) − f(t, y(α(t)))|
+|h(

∫ β(t)

0
g(t, s, x(γ(s)))ds)

−h(
∫ β(t)

0
g(t, s, y(γ(s)))ds))|

≤ k|x(α(t)) − y(α(t))|
+ρ{

∫ β(t)

0
|g(t, s, x(γ(s)))

−g(t, s, y(γ(s)))|ds}σ, (11)
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Furthermore, with due attention to the condition (4
′
)

there exist T > 0 such that for t ≥ T we have
∫ β(t)

0
|g(t, s, x(γ(s))) − g(t, s, y(γ(s)))|ds ≤ (

ε

ρ
)

1
σ ,

(12)
and then from (11) and (12) for t ≥ T we have

|(Fx)(t) − (Fy)(t)| ≤ (k + 1)ε.

Now we assume that t ∈ [0, T ], then by using
continuity of g on [0, T ] × [0, βT ] × [−r, r], where
βT = sup{β(t) : t ∈ [0, T ]}, we can obtain
∫ β(t)

0
|g(t, s, x(γ(s))) − g(t, s, y(γ(s)))|ds→ 0.

as ε → 0. Thus F is continuous on Br. In the
sequel we show that for any nonempty set X ⊂
Br, μ(FX) ≤ kμ(X). To do this fix arbitrarily
T > 0 and ε > 0 now let us choose x ∈ X and
t1, t2 ∈ [0, T ] with |t2 − t1| ≤ ε, also without lose
of generality suppose that β(t1) ≤ β(t2) thus we
have

|(Fx)(t2) − (Fx)(t1)|
≤ |f(t2, x(α(t2))) − f(t2, x(α(t1)))|
+|f(t2, x(α(t1))) − f(t1, x(α(t1)))|
+|h(

∫ β(t2)

0
g(t2, s, x(γ(s)))ds)

−h(
∫ β(t1)

0
g(t1, s, x(γ(s)))ds)|

≤ k|x(α(t2)) − x(α(t1))| + wT
r (f, ε)

+ρ|
∫ β(t2)

0
g(t2, s, x(γ(s)))ds

−
∫ β(t1)

0
g(t1, s, x(γ(s)))ds)|σ

≤ kwT (x,wT (α, ε)) + wT
r (f, ε)

+ρ2σ(
∫ β(t2)

0
|g(t2, s, x(γ(s)))

−g(t1, s, x(γ(s)))|ds)σ

+ρ2σ(
∫ β(t2)

β(t1)
|g(t1, s, x(γ(s)))|ds)σ

≤ kwT (x,wT (α, ε)) + wT
r (f, ε)

+ρ2σ{(
∫ βT

0
wT

r (g, ε)ds)σ + (wT (β, ε)Gr
T )σ},

where

wT
r (f, ε) = sup{|f(t2, x)−f(t1, x)| : t1, t2 ∈ [0, T ],

|t2−t1| ≤ ε, x ∈ [−r, r]},

βT = sup{β(t) : t ∈ [0, T ]},
wT

r (g, ε) = sup{|g(t2, s, x)−g(t1, s, x)| :

t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, s ∈ [0, βT ], x ∈ [−r, r]}
and

GT
r = sup{|g(t, s, x)| : t ∈ [0, T ], s ∈ [0, βT ],

x ∈ [−r, r]}.
Now by using the above estimate we have

wT (FX, ε) ≤ kwT (X,wT (α, ε)) + wT
r (f, ε)

+ρ2σ{(
∫ βT

0
wT

r (g, ε)ds)σ + (wT (β, ε)Gr
T )σ}.

From continuity of f and g on compact sets [0, T ]×
[−r, r] and [0, T ]× [0, βT ]× [−r, r] respectively, we
find wT

r (f, ε) → 0, wT
r (g, ε) → 0 as ε→ 0 and GT

r

is a finite constant. Similarly we get wT (β, ε) → 0,
wT (α, ε) → 0 as ε→ 0 thus we obtain

wT
0 (FX) ≤ kwT

0 (X),

by taking T → ∞ we have

w0(FX) ≤ kw0(X), (13)

and for an arbitrarily fixed t ∈ R and x, y ∈ X we
obtain the following estimate:

|(Fx)(t) − (Fy)(t)| ≤ k|x(α(t)) − y(α(t))|
+ρ{

∫ β(t)

0
|g(t, s, x(γ(s))) − g(t, s, y(γ(s)))|ds}σ

≤ kdiamX(α(t)) +M(t),

where

M(t) = sup{ρ(
∫ β(t)

0
|g(t, s, x(s))

− g(t, s, y(s))|ds)σ : x, y ∈ BC(R+)}.
By using conditions (4

′
) and α(t) → ∞ as t→ ∞,

we deduce that

lim
t→∞ sup dim(FX)(t) ≤ k lim

t→∞ sup dimX(t). (14)

Consequently by considering μ defined by (3) we
have

μ(FX) ≤ kμ(X), (15)

where k ∈ [0, 1). Thus from Theorem 1.2 we obtain
that the operator F has a fixed point x in Br and
thus the functional integral equation (1) has at least
one solution in BC(R+).
Now we should investigate uniform local attractivity
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for solutions of equation (1). Let us assume that
x0 is a solution of equation (1) with conditions of
Theorem 1.3. Consider ball B(x0, r0) with r0 = M2

1−k
where

M2 = sup{M(t) : t ∈ R+}.
Take y in B(x0, r0) we have

|(Fy)(t) − x0(t)| = |(Fy)(t) − (Fx0)(t)|
≤ k||y − x0|| +M2 ≤ r0,

thus we observe that F is continuous function
such that F (B(x0, r0)) ⊂ B(x0, r0). Similar to the
calculations in (13) and (14) we can show that

μ(FX) ≤ kμ(X), (16)

for any nonempty subset X of B(x0, r0). Let us
taking C0 = B(x0, r0), Cn = Conv(FCn−1) for
n = 1, 2, ..., thus we obtain that Cn+1 ⊂ Cn

(n=1,2,...) and Cns are nonempty, closed and convex
sets. By using (16) we have

μ(Cn) ≤ knμ(C0), (17)

for any n = 1, 2, .... But from the definition of
wT (X, ε) and diamX(t) we can easily understand
that wT (X, ε) ≤ 2r0 + wT (x0, ε), diamX(t) ≤ 2r0
and then μ(X) ≤ 4r0 for any nonempty subset X
of B(x0, r0). Consequently we obtain

lim
n→∞μ(Cn) = 0,

thus from condition 60 of Definition 1.2 we get that
the set

C∞ =
∞⋂

n=0

Cn,

is nonempty, bounded, closed, convex and μ(C∞) =
0. Then

lim
t→∞ sup diamC∞(t) = 0,

and this yields that

lim
t→∞ |z(t) − y(t)| = 0, ∀z, y ∈ C∞.

We deduce that all solutions of the functional
integral equation (1) with conditions of Theorem
1.3 are uniformly locally attractive in the sense of
Definition 2.2. �

Remark 2.3. Condition (4
′
) can be satisfied

in various ways. For instance, one can assume that

The function g : R+ × R+ × R → R be continuous
and there exist y0 ∈ R and positive constant D
such that

∫ β(t)

0
|g(t, s, y0)|ds ≤ D, t ∈ R+. (18)

Moreover, there exist function M(t, s) : R+×R+ →
R+ such that

|g(t, s, x) − g(t, s, y)| ≤M(t, s), ∀x, y ∈ R,

lim
t→∞

∫ β(t)

0
M(t, s)ds = 0.

We can easily deduce condition (4) in Theorem A
implies this condition but the converse is not true.
To investigate this claim we give some examples
which show that our theorem can be applied but
the previous results [1], [2], [6] are inapplicable.

Example 1.3. Consider the integral equation

x(t) =
t

1 + t2
sin(x(t))

+
∫ t

0

sx2(s) + s3(x4(s) + 1)

(x4(s) + 1)(t4 + 1)
ds, (19)

where α(t) = β(t) = γ(t) = t, and

f(t, x) =
t

1 + t2
sin(x),

g(t, s, x) =
sx2 + s3(x4 + 1)

(x4 + 1)(t4 + 1)
.

By simple calculation we obtain that

lim
t→∞

∫ t

0
|g(t, s, x)|ds = lim

t→∞
t2x2

2(x4 + 1)(t4 + 1)

+ lim
t→∞

t4

4(t4 + 1)
=

1

4
, x ∈ R.

So the condition (4) in Theorem A is not hold and
this theorem is inapplicable for equation (19). Also
by considering M(t, s) = s

1+t4
, for every x, y ∈ R

we have

|g(t, s, x) − g(t, s, y)| ≤ s

1 + t4
= M(t, s).

lim
t→∞

∫ t

0
M(t, s)ds = lim

t→∞
t2

2(t4 + 1)
= 0,

We can easily satisfy another conditions in Theorem
1.3. Then the integral equation (1) has at least
one solution and solutions of this equation are
uniformly locally attractive.
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Remark 3.3. In Example 1.3 we observe that
the condition (4) in Theorem A cannot be satisfied.
In addition to if g has the form

g(t, s, x) = ψ1(x)ψ2(t, s) + ψ3(t, s), (20)

where ψi, i = 1, 2, 3 are continuous and positive
functions such that

ψ1(x) ≤ k1, lim
t→∞

∫ t

0
ψ2(t, s)ds = 0,

lim
t→∞

∫ t

0
ψ3(t, s)ds <∞,

where k1 is a positive constant. Then we have

lim
t→∞

∫ t

0
|g(t, s, x)|ds = lim

t→∞

∫ t

0
ψ3(t, s)ds,

|g(t, s, x) − g(t, s, y)| ≤ k1ψ2(t, s) = M(t, s),

lim
t→∞

∫ t

0
M(t, s)ds = k1 lim

t→∞

∫ t

0
ψ2(t, s)ds = 0,

for x, y ∈ R. If

0 < lim
t→∞

∫ t

0
ψ3(t, s)ds, (21)

then we cannot use Theorem A for the integral
equation (1) with this g. The functions below are
the examples of function g which satisfied the above
assumptions and inequality (21) :

gn(t, s, x) =
|x|sn−2 + sn−1(x2 + 1)

(1 + x2)(tn + 1)
, n > 1,

g(t, s, x) =
ln(1 + s|x|) + sinh(s)(1 + x2)

(1 + x2)(1 + cosh(t))
.

We can easily see

lim
t→∞

∫ t

0
|gn(t, s, x)|ds =

1

n
,

|gn(t, s, x) − gn(t, s, y)| ≤ sn−2

tn + 1
= M(t, s)

lim
t→∞

∫ t

0
M(t, s)ds = lim

t→∞
tn−1

1 + tn
= 0,

and

lim
t→∞

∫ t

0
|g(t, s, x)|ds = lim

t→∞
cosh(t)

1 + cosh(t)
= 1,

|g(t, s, x) − g(t, s, y)| ≤ 2 + 2s

1 + cosh(t)
= M(t, s),

lim
t→∞

∫ t

0
M(t, s)ds = lim

t→∞
2t+ t2

(1 + cosh(t))
= 0.

Thus all of results presented by Banaś and Rezepka
[2], Banaś and Dhgae [1] and Liu and Kang [6]

which in their theorem have the condition (4), are
inapplicable to integral equation (1) with h(x) = x
and g satisfied in above examples. But by using
our theorem we can find this integral equation has
at least one solution which is uniformly locally
attractive.

Corollary 1.3. If in Theorem 1.3 in addition
to Lipschitz continuous with constant k ∈ [0, 1), f
be bounded then the solutions of functional integral
equation (1) are globally attractive.

Proof. Suppose that

|f(t, x)| ≤M3, ∀t ∈ R+, ∀x ∈ R,

then for any x ∈ BC(R+) we have

|(Fx)(t)| ≤M3 +M1 = r1, (22)

where M1 is the constant in (9). The inequality (22)
yields that F (BC(R+)) ⊂ Br1 = B(θ, r1) then all
solutions of the equation (1) are in Br1 . Similar to
the proof of Theorem 1.3 we can show that

μ(FX) ≤ kμ(X),

for any nonempty subset of Br1 and we can find the
subset C∞ such that this set includes all solutions
of equation (1) and μ(C∞) = 0 i.e.

lim
t→∞ |x(t) − y(t)| = 0, ∀x, y ∈ C∞,

thus solutions of functional integral equation (1)
are globally attractive. �

Example 2.3. Consider the following integral
equation:

x(t) =
ln(1 + x2)

3(1 + x2)(1 + t2)

+ arctan(
∫ t2

0

ln(1 + s|x(√s)|) + s(1 + x2(
√
s))

(1 + t4)(1 + x2(
√
s))

ds).

(23)
Notice that the equation (23) is a special case of
equation (1) where

h(x) = arctan(x), α(t) = γ(t) =
√
t,

β(t) = t2, f(t, x) =
ln(1 + x2)

3(1 + x2)(1 + t2)
,

g(t, s, x) =
ln(1 + s|x|) + s(1 + x2)

(1 + t4)(1 + x2)
.
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By simple calculation we can find that f, α, β, γ
and h satisfy in conditions of Theorem 1.3 and f is
a bounded function and

lim
t→∞

∫ t2

0
|g(t, s, x)|ds = lim

t→∞

∫ t2

0

s

1 + t4
ds =

1

2
,

|g(t, s, x) − g(t, s, y)| ≤ 1 + s

1 + t4
= M(t, s),

lim
t→∞

∫ t2

0
M(t, s)ds = lim

t→∞
2t+ t2

2 + 2t4
= 0.

Hence the conditions in corollary 1.3 are provided
thus the equation (23) has at least one solution and
solutions of this equation are globally attractive.
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[4] J. Banaś, Measures of noncompactness in the space of continuous
tempered functions, Demonstratio Math. 14(1981)127133.

[5] H. Hochstadt, Integral Equations, John Willy and Sons 1973.
[6] Z. Liu, S.M. Kang, Existance and asymptotic stablity of solutions

to functional-integral equation, Taiwanese Journal of Mathematics.
11(2007)187-196.

[7] F.G. Tricomi, Integral Equations, University Press Cambridge
1957.

Asadollah Aghajani Asadollah Aghajani is a Professor at the Iran
University of Science and Technology. He graduated from the Sharif
University of Technology and obtained a PhD in Mathematics in 1999
from the Tarbiat Modares University. He was an Assistant Professor
at the Damghan University of Basic Science during the years 2000-
2006. He has published more than 20 papers and his main mathemati-
cal interests are Ordinary Differential Equations, Functional Analysis,
Difference Equations and Mathematical Biology.
e-mail: aghajani@iust.ac.ir

Yaghoub Jalilian P.H.D student of pure mathematics, School of
Mathematics, Iran University of Science & Technology Narmak,
Tehran 16844
e-mail: yajalilian@iust.ac.ir


