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Abstract— This work deals with aspects of support vector machine « convergence properties [6],
learning for large-scale data mining tasks. Based on a deesition « parameter selection methods [7], [8],
algorithm for support vector machine training t_hat can beiruserial « interpretational aspects [9],
as well as shared memory parallel mode we introduce a tranafo
tion of the training data that allows for the usage of an espen and many more.
generalized kernel without additional costs. We presepegments  |n addition to these fundamental issues, the ability to kand
for the Gaussian kernel, but usage of other kernel funci®m®SSI- 1 5plems of ever increasing size is of vital interest beeaus

ble, too. In order to further speed up the decompositionrdtgn we . licati th t of dat tiall
analyze the critical problem of working set selection fag&atraining In many applications the amount of data grows exponentally

data sets. In addition, we analyze the influence of the wgriset [10]. For these problems, SVM training time becomes a
sizes onto the scalability of the parallel decompositionesee. Our major concern, particularly when applying parameter selec
tests and conclusions led to several modifications of therdtgn  methods that force the user to perform dozens or hundreds of
and the improvement of overall support vector machine legm g\ trainings. Due to extreme training times complex SVM
pmeer;‘ﬁgrgs Tgeépotiﬂ:i;neegl]gsdsﬁlilfgvﬂi;Oggihnrg;ftenswe paranse@rch models and intelligent parameter tuning have peen empl_oyed
) o ) only rarely, so that users often ended up with suboptimal
Keywords— Support Vector Machine Training, Multi-Parameter;)ssifiers and started to use other parameter free datagnini
Kernels, Shared Memory Parallel Computing, Large Data methods with worse generalization properties.
For these reasons, research on efficient and fast SVM
. INTRODUCTION classification methods has been intensified during the last
URING the last years data mining tasks have shiftegkars, leading to approaches for
from applications on small data sets to large-scale prob-, ;¢ serial training [11], [12],
lems usually with a lot of noise and missing values in the data | qficient parameter selection methods [13],
At the same time industry requires complex models with well | oot multi-class learning [14], [15],
tuned parameters and promising results for test data and the parallel parameter tuning [16], [17],

new data to be classifigd. o « parallel validation methods [18], and
Support vector machines (SVMs) for classification and re- | parallel training methods [19], [20].

gression are powerful methods of supervised machine lggrni . .
They have been widely studied and applied to hard, but mostly!SSU€s Of parallel support vector machines are compalptive
small classification problems. Applications include fielee NEW- They emerged during the last few years. Really parallel
QSAR modeling [1] and text classification [2]. SVMs belon plleme.ntanons are rare since most of the para!lel algorst
to the so-called kernel methods [3]. They have excelle allz_e simple farming jobs like parall_el Cross yahdatteaks.
generalization properties, which means that the classdiza ~Ming reduces overall running time but is not able to
function is modeled in a way that makes it to work well on datq'Prove the performance of a smgle' SVM training. .
that have not been used during the training. However, Sy !N our work we now try to combine aspects of efficient
training methods suffer from high computational compkexitSVM training techniques with parallelization. Based on a

when used for large and noisy data. This particular issue 4§COMPosition algorithm for SVM classifier design that can
treated in this paper. be run in serial and parallel mode we discuss modifications of

Important classical SVM research issues for all kinds ¢f€ Program flow thatlead to significantly faster SVM tragin
data sets include for large data sets, both in serial and parallel mode.
. applicability [2], [4], T_he paper is organized as fo_IIows. In Sect. Il we review
o e basics of binary SVM classification. In Sect. 1l we describe
« generalization abilities [5], . . :
our serial and parallel SVM algorithm. Our computing system
T. Eitrich is with the Central Institute for Applied Mathetizs, Research as Well as the data set used for our experiments are intrdduce
o e v e A s Soanes 38 Snfoong M SECL: IV, In Sect. V we discuss the infuence of kemnel
i op P arpating computations onto training time and introduce our apprasch

Group, Department of Mathematics, University of Wupper@aérmany (e- - - -
mail: lang@math.uni-wuppertal.de). data transformation for efficient usage of the powerful mult
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parameter Gaussian kernel. The issue of optimal working $etbe set before training and can be adjusted via parameter
selection for SVM training is discussed in Sect. VI. optimization [16].
It is well known [23] that the optimal vecton® can be
Il. THE SUPPORTVECTORMACHINE LEARNING computed via the solution of the dual quadratic program (QP)
APPROACH

l
Support vector machine learning [21], [22] is a well known min  g(a) := 1ozTHoz — Zo‘i (2)
and reliable data mining method. We consider the problem of acR! 2 i=1

supervised binary classification which means to use a trginiWith

data set

(@) €R" x {=1,1}, i=1,...,1} HERY, Hy=ylll@agy (1<ij<l)

to learn a binary decision function constrained to

h(x) = sgn (f(x)), aTy =0

0<a;<C (i=1,...,0),
Oéi(yz"f(mi)—l—i-fi):O (i=1,...,1),

sgn(a) = {+1’ @20 (a € R). the latter constraints resulting from the evaluation of the
-1, <0 Karush—Kuhn—Tucker conditions [23]. The vec®e R, of

so called slack variables belongs to the primal problem of

(2) and reflects thd-norm soft margin approach for SVM

learning, which is used in most of the available software

packages to allow for training errors [26]-[29].

The paramete€ > 0 is important for a natural weighting
between the competing goals of training error minimization
and generalization. For details we refer to the work [23] and
In Fig. 1 a linear learning problem is shown. The margin ighe tutorial [30].

the value of the maximal separation between the classes. The computation of the thresholé* is based on the
so-called Karush—Kuhn—Tucker conditions [23] for the @im
form of the problem (2). Given the unique and global dual
solution a* (the vector of Lagrange multipliers) it is easy to

where we define the signum function in a modified form as

The real-valued nonlinear classification functigris defined
as [23]

l
=1

show that
0 = of (yi flz)+& —1)
0 = & (aj-0)
hold for alli =1, ...,1. Since we solve the dual problem, the

slack valueg are unknown. Therefore we have to use the so
called nonbound support vectors to compbite A nonbound
) ) ) . i support vectorz; is characterized by € (0,C) and must
?gZ. %] Linear separation of the labeled training data bygishe hyperplane have a zero slack value. See [23] for detailed information on
slack variables, support vectors and bounds. Using (1) we
derive
The kernel functionk [24], which can be interpreted as a
local measure of similarity between training points, isdus® I
avoid a so-called feature mapping of the data and to coristruc 0 = o | y; Z ajy; K(zi, @) + 0" | +& —1
nonlinear classifier based on a simple linear learning amro j=1
In this work we analyze the so-called Gaussian kernel, which o ]
is very popular. A definition of this kernel will be given infor all training points and thus
Sect. V.
The problem specific classification parameters R and
b € R of (1) are given implicitly through the training data and
some SVM specific learning parameters [25]. These learning
parameters, e.g. the kernel type and its parameter(s), h&weall nonbound support vectots;.

I
b =yi— Y iy K(mi,x))
=
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Note that (2) is a quadratic optimization problem with &ead to kernel values being re-computed several times when a
dense matrixd. For large data the solution of this problem—variablea; switches between the “inactive” and “active” states.
the so called training stage—is very expensive. In the folherefore most SVM software packages avoid recomputation
lowing section we shortly describe our efficient SVM traiin of the columns off. They implement caching of kernel values
method which provides a serial and a parallel mode. to speed up training time. For example, [28] uses the well-

known least-recently-used cache strategy. Unfortunatbby

I1l. EFFICIENT SERIAL AND PARALLEL SVM TRAINING  caching strategies are difficult and system dependent.

This work is based on the SVM training method describeéjf For complex learning models on large data a huge amount

in [31]. We briefly review the most important features of the, time is gqnsumed by the kernel funct|on.evaluat|ons n thg
decomposition step, where the kernel matrices are updated i

serial and parallel implementations. . . . LT .
We are working with the well known decomposition schemg &Y iteration. It is known [31] that training time is a fuiun

[32] for the solution of (2). This scheme is summarized ir?f the working set sizé that acts as a mediator between the

Fig. 2. It repeatedly performs the following four steps alternating work in t.he outer decomposition loop qnd theinn
T . ) ) o solver. Large working sets slow down the solution of each
1) Select! “active” variables from thel free variables q,aqratic subproblem, whereas small working sets lead to a
a;, the so-called working set. In our implementatiofy, qe number of decomposition iterations until convergsisc

the working set is made up from points violating thea hed which means that a lot of kernel function evalnatio
Karush—Kuhn—Tucker conditions; see [25] for more dgz place.

tails. The SVM training time also depends on the efficiency of the

2) Restrict the optimization in (2) to the active variableg,qqithm that solves the subproblems. We use the genedaliz
and fix the remaining ones. Prepare the submatrix \4iaple projection method introduced in [34] as an inner
Hoctive € RIxI solver.
Usually small working sets have been used to avoid ex-
for the restricted problem and the submatrix pensive subproblems [35]. However, our powerful computing
I RU-Dxi systems now allow for very large working sets. Thus we have
mixed € to determine the optimal value férthat minimizes the sum
for the stopping criterion. of times for inner solver computations and decomposition
3) Check for convergence. The solution of (2) is found ivorkload.
step 1 yields an empty working set. One way to improve the performance of SVM training is
4) Solve the restricted problem. parallelization. Our parallel SVM training method does not

implement a simple farming approach, but a real parallel.flow
It is based on the observation [31] that typically more than

start SVM 90% of the overall time is spent in the kernel evaluations and
training in the matrix—vector and vector—vector operations of theein
l solver; for very large data sets this fraction is even higher
create new We decided to address these computational bottlenecksawith
wor ki ng set |*—sol ve new QP shared memory parallelization, using OpenMP work sharing
subpr obl em for the kernel computations and relying on the parallelized
numerical linear algebra kernels available in tB8SLSMP
update kernel matrices library for the compute-intensive parts of the inner salver
for QP problem and Fig. 3 shows the parallel parts (shaded) of the decompasitio
stopping criterion scheme.

l However, in order to achieve optimum performance, the
check parallelization should be complemented with techniques th
convergence ~_Jst op SWM reduce the learning time also in the serial case. In Sect.dvV an

training VI we will discuss our approaches for faster SVM training

and their results.

Fig. 2. Iterative decomposition scheme for the serial SVMning with a
flexible working set size. V. CHARACTERISTICS OFDATA AND COMPUTING
SYSTEM

The idea of splitting the quadratic problem into active and For all tests reported here we used the so-called adult data
inactive parts iteratively is not new [33]. One feature thatet from [36], which is the data set with the largest number of
makes this approach particularly attractive for SVM tragi training instances in the database. The task for this sat is t
is the flexibility concerning the size Large values of place predict whether someone’s income exceeds a certain tHtesho
high demands on memory becauseolumns ofH (i.e.,/-I Thus we have a binary classification problem. The number
entries) must be stored. In the extreme chsel, the whole of training points is 32561. Out of the 14 attributes, 6 are
matrix H is required. On the other hand, choosing I may continuous, and 8 are discrete. There are plenty of missing

487



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:1, No:10, 2007

The division operation in (3) can be replaced with a less

start SVM . N .
training expensive multiplication by setting
1 T
0=5—%
create new ESSLSMWP 2.0
wor ki ng set once already before SVM training and evaluating the kernel
as
envP
e K9(x,z) = exp(—dllz— z||2) . 4

This simple modification is not possible for the generaljzed
multi-parameter Gaussian kernel [25]

'
check " (2 — 2k)2
conver gence Kj(x,z) = exp ( E M) . (5)

2
st op SWM — 20},
training

This kernel assigns a different width, > 0 for each feature
k (k = 1,...,n). For unbalanced data sets this kernel can
Fig. 3. Extension of the serial algorithm for shared memaayaliel SVM  |ead to significantly better SVMs than the standard kernel;
training. cf. [16]. Unfortunately the: divisions make this kernel rather

expensive and thus responsible for long SVM training times.

Therefore it is used only rarely [16].
values for the discrete attributes. These were replaced wit It is possible to avoid all parameter-dependent operations
either the value that occurred most frequently for the paldir  inside the kernel function. To this end we first rewrite the
attribute or with a new value, if the number of missing valudéernel (3) as
for the attribute was very high. n 2

. Tk — 2k
The adult data set was also used in [37], but only1f&(00 K9(x,z) = exp < Z ( 7 ) > )
training points. There, a new parallel MP| based SVM leagnin k=1 20
method for distributed memory systems has been describggus, an initial scaling of the training points according to
We used nearly all points for the training, i.80000. P
Our serial and parallel experiments were made on the t(x) == \/—7 (6)

Juelich Multi Processor (JUMP) at Research Centre Juelich 7
[38]. JUMP is a distributed shared memory parallel comput@lows the standard kernel to be evaluated as
consisting of41 frames (nodes). Each node contaiizsiIBM K9(®,z) = exp(—|[t(x)—t(2)]?). )
Power4+ processors running at 1.7 GHz, and 128 GB shared
main memory. All in all the 1312 processors have an aggreg&énilarly, the scaling

peak performance of 8.9 TFlop/s. We have tested on a single ~ T T
node of JUMP. Test results are given in the following two t(x) = (\/5 S > : 8
) o1 204
sections.
leads to
V. EFFICIENT KERNEL EVALUATIONS Ky(z,z) = exp(~lli(=) —i(2)]?)- 9)

As we discussed in Sect. | the training of support vectfote that in this formulation the generalized and the steshda
machines on large data is a challenging problem [35], [3giernel differ only in the initial transformation of the dafehe
A vast amount of time is always consumed by the expensilf@nsformation step has to be done before SVM training and
kernel function evaluations [31], no matter which kerngdety 1S independent of and other settings of the decomposition
is used. method.

In this section we present our new approach of efficient US2ge of our multi-parameter approach is not limited to
kernel evaluations that includes the usage of a multi-patem the Gaussian kernel. For example, the generalized polyaiomi
kernel. kernel of degreel € N

d
> (10)

The usual Gaussian kernel [21] "

Kh(x,z) = (1 L

o) = (10307

k=1
presented in [40] is suitable, too.

which is used in many data analysis tools, includes a singleWe will now assess the savings induced by our approach,

division operation for each kernel function evaluatien> 0 first with respect to the number of divisions and then to dvera

is the constant width of the kernel. This parameter is cénttaarning time.

for SVM learning with the Gaussian kernel. It has to be chosenFor a training set with/ instances anch attributes the

carefully to avoid overfitting effects. number of divisions in the initial transformation is simply

K9(x,2) = exp <_M> A3)

202
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given by the number of entries in the original data matrixdepends on the working set size, too, the effects can vary. We

that is, will analyze the influence of the working set size onto the
dr =1-n. overall training time in the next section.
For our implementation of the decomposition algorithm the TABLE I
number of divisions in the standard kernel function evadurst  INFLUENCE OF THE KERNEL EVALUATION METHOD ONTO THE OVERALL
is given by TRAINING TIME.
dg=D-1-1, . —
pre-scaling] training
where D is the number of decomposition steps ani$ the % - iigg?
working set size. For the generalized kerng&l, is higher by K _ | 24123
a factor ofn. Ky 0.01 | 1122.3
Since our approach replaces the divisions of the kernel Ks 0.02 | 11223

evaluations with those of the data transformation, the aler
number of divisions is reduced by a factordyf/dr. In Table From Table Il we conclude the following:

I we show these ratios for the adult data set. We computed the Replacing the division with a multiplication, i.e. replace
numberdg for the (standard) kernel evaluations and different

X ) K, by K,, gives only a minor improvement on our
working set sizes. Note that for all tests we have

machine [38].

dr = 30000 - 14 = 420000. « For our example the initial data transformation reduces
the overall training time by0% for the standard kernel
and by more than 50% for the generalized kernel.

« The preceding discussion suggests that the training time
results forK, and K5 should be equal, which indeed is
true. This means that the multi-parameter kernel essen-

TABLE |
NUMBERS OF DIVISIONSdg FOR THE USUALGAUSSIAN KERNEL (3) AND
THE CORRESPONDING NORMALIZATIONS USING THE FIXED VALUEIT.

j D a5 dp/dr tially comes for free—except for the fact that it involves
5000 | 37 | 5550 10° | 13200 more learning parameters, which must be set before the
10000 | 16 | 4800-106 | 11400 training.

58888 1g ;1888-}86 1%88 « The time for the initial transformation is negligible. It

25000 | 2 | 1500 - 106 3600 might be reduced even further with an easy-to-implement
30000 | 1| 900-10° 2100 parallel version.

The data indicate that the savings are highest for small VI. OPTIMAL WORKING SET SIZE

values ofi. However, a large factor does not automatically !N this section we analyze the influence of the working set

minimize the overall time. We will analyze overall runningSiZ€! on the number of decomposition ste, the number

time for different working set sizes in the next section. ~ Of kernel evaluationsE, and the training time. In [31] we
Now we consider the execution time for different way§bserved that for a data set wili000 points and working

of kernel computations. We measure the time that is speiftt Sizes betweem000 and 7000 points there were nearly

to transform the data as well as the time used to solve th@ differences between the training times. The situation is

quadratic optimization problem, i.e., the ensuing tragmndlfferent for the much larger adult data set with #8000

which includes the kernel computations. We consider tfRQINts: . .

following five variants for kernel evaluation: In Table Ill we summarize the test results we achieved for
serial SVM training. All tests were performed with the kdrne
(9), which is the most efficient one. The training times do

K+ standard kernel (3) including a single division opers; inclyde the transformation times, which are negligée

ation, . . ) . do not depend om. Computation times are given in seconds
K. standard kernel (4) including a single multiplication,s pefore. In addition to medium-sized working sets we also
oper_at|on, ) ) . consider very small and extremely large working sets.
K3 : multi-parameter kernel (5) including division op- Comparing the graphs fdr and the time in Fig. 4 confirms
erations,

) . the dominating effect of the kernel evaluations on the ingn
K4: standard kernel (7) with the proposed pre-scalingme From the serial experiments we conclude that the rge
and ) ) possible working set minimizes the training time.
K5 : multi-parameter kernel (9) with the proposed pre- now we consider the problem of working set selection for
scaling. parallel SVM training. For the parallel mode we try to find
out whether for a fixed number of threads the same nurhber
In Table Il we show the training time (in seconds) of oualso leads to the minimal consumption of time or not. Since
support vector machine for these kernels. We performed tber decomposition algorithm consists of two parallelizadtp
tests for a working set size df0000 to show the amount of that show different behavior for varying working set sizes w
time that can be saved. Since the number of kernel evalsati@annot predict the effects for the parallel algorithm easil
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TABLE lIl
NUMBER OF DECOMPOSITION STEPS AND OF KERNEL EVALUATIONSAND
TRAINING TIMES FOR DIFFERENT WORKING SET SIZES

For example, since the number of decomposition steps—and
therefore of kernel matrix updates—is only one, the retativ
contribution of this perfectly scalable routine is smaller

l D E time
50 | 5831 | 8.747-109 | 1869.3 TABLE IV
100 2828 8.484 - 109 1779.6 SPEEDUP VALUES FOR TWO DIFFERENT WORKING SET SIZES USING UP TO
500 497 | 7.455-10° | 1618.1 8 THREADS.
1000 238 | 7.140-10° | 1508.2
2000 113 | 6.780-10° | 1449.6 I = 15000 1 = 30000
5000 37 5.550 - 109 1212.1 time speedup time Speedup
10000 16 | 4.800-10° | 1108.0 serial 1108.0 — 12678 —
15000 10 | 4.500-10° | 1099.1 2 threads | 535.6 2.1 | 144.6 1.9
20000 5 | 3.000-10° 780.2 3 threads| 345.1 3.2 | 106.9 2.5
25000 2 | 1.500 - 10° 430.4 4 threads | 263.4 4.2 78.6 3.4
30000 1 | 0.900 - 10° 267.8 5 threads | 223.2 5.0 66.8 4.0
6 threads| 231.9 4.8 56.8 4.7
7 threads | 220.7 5.0 48.8 5.5
8 threads| 229.7 4.8 49.9 5.4

kernel evaluations (in billions)

Our shared memory parallelization vyields satisfactory
speedups for small numbers of processors, but it does not
scale to high numbers of processors. Indeed, the speeddips di
not exceed andb5.5, and these were obtained withand 7
processors. Note that the SVM training involves at mostlieve
2 numerical linear algebra kernels, which can make only very
limited use of the processors’ caches. Therefore the number
3 e e ] of data accesses increases with the number of threads, until
i i i I i the maximum bandwidth of the memory is reached.

The restriction of our shared memory parallelization to
small numbers of processors is, however, not a severe lim-
itation. If large numbers of processors are available, then
two additional levels of parallelism may be exploited with
the message passing paradigm: Théold cross validation,
which requires training ok SVMs on different data, is easily
parallelized with a farming approach, and a parallel openi
can be used to determine adequate settings for the learning
parameters, such &3 and theo;.

The settingl = 30000 and 7 threads led to the minimal
training time. Since the data transformation neede@R

0 5000 10000 15000 20000 25000 30000 seconds, the overall time for the generalized kernel is also
working set size 48.8 seconds. Comparing this value with tB¢12.3 seconds
given in Table Il we observe that combining the pre-scalarg,
Fig. 4. Number of kernel evaluations and training time fdfedent values optimal working set size, and a moderate degree of pasatieli
of L. may result in an overall speedup of almést

Based on the results in Sect. V and the Tables IIl and IV we

propose the following settings for efficient training of paoypt

OFRLNWMOUOITONOWOO

However, some aspects are already known. The efficien§Ctor machines:

of the parallel numerical linear algebra kerneBSGLSMP  « a priori transformation of the training data according to

routines on the JUMP) is low for small working set sizes since  (6) or (8),

the problem sizes within the QP solver solely correspond tos implementation of the modified kernel (7) and (9) respec-

the working set size and not to the overall problem giZEhe tively,

definition of “small” is somewhat vague and depends on thee choice of working sets as large as the available memory

computing system to be used as well as the number of threads, allows, and

but of course a valué= 1000 is not sufficient for satisfactory ~« usage of an appropriate number of threads for parallel

speedups oESSLSMRoutines. training; 6 may be a reasonable upper bound, as it can
In Table IV we show results of parallel SVM training for ~ b€ seen in Table IV.

two large working set sizes and different numbers of threads

For [ = 15000 the speedups tend to be slightly larger than for VII. CONCLUSIONS ANDFUTURE WORK

the extreme casé = [. This is due to the fact that fdr = We proposed several ideas and techniques for the efficient

30000 the influence of sequential parts of the code is highererial and parallel training of support vector machines for
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large data sets. We introduced an a priori transformation [af] V. Ruggiero and L. Zanni, “On the efficiency of splittirmd projection

the training data that heavily reduces training time fogd‘ﬁr m_ethqu for large strictly convex quadratic program&pplied Opti-
. . . mization pp. 401-413, 1999.
data sets. In addition, this transformation allows for @sa [12] H. YU, J. Yang, and J. Han, “Classifying large data s SVMs

multiple kernel parameters without additional costs. e th  with hierarchical clusters,” ifProceedings of the Ninth ACM SIGKDD

extreme case the user may assign a single kernel parameterlnternational Conference on Knowledge Discovery and Dataihg,
h feat in the data. Wk | d the behavi f Washington, DC, USA, August 24 - 27, 2003 Getoor, T. E. Senator,
to each feature In the data. We analyzed the behavior of our p pomingos, and C. Faloutsos, Eds. ACM, 2003, pp. 306-315.

serial and parallel support vector machine learning mefbnd [13] S. S. Keerthi, “Efficient tuning of SVM hyperparametewsing ra-

varying numbers of working set sizes. In combination wité th ﬂgigaﬁg&fﬁgcﬂl alng ;tsfefg’fs al'gfz’gth%%EEE Transactions on
choice of a reasonable working set size the improvement [91] R. Collobert, S. Bengio, and V. Bengio, “A parallel mixe of SVMs

support vector learning performance can be substantial. for very large scale problemsNeural Computationvol. 14, no. 5, pp.

In the future we plan to combine our parallel support 1105-1114, 2002. _ _
. . . . . L 15] C. Hsu and C. Lin, “A comparison of methods for multissasupport
vector learning algorithm with efficient parameter optiatian vector machines JEEE Transactions on Neural Networksol. 13, pp.

methods [16]. This combination would lead to a fully auto-  415-425, 2002.

mated approach for fast and reliable support vector machia@ T- Eitrich and B. Lang, “Parallel tuning of support vecmachine learn-
ing parameters for large and unbalanced data setsCamputational

learning for the class_lflcatlon 9f large data sets-. In additve _ Life Sciences, First International Symposium, ComplLif@52&onstanz,
work on the comparison and improvement of different quality ~Germany ser. Lecture Notes in Computer Science, M. R. Berthold,

measures. A good quality measure is the crucial component of gl-or?n'gg'r goggedsgicggé% oxohibacher, and |. Fischer, Edsl, 3695.
the SVM parameter optimization stage, since the valueseof t!17] T. P. Ru’narsso‘n and S. Sigurdsson, “Asynchronous Iph@folution-

quality measure are the only information given iterativedy ary model selection for support vector machine¥gural Information
the optimizer. In an automated approach where the user is Pl%} Processing - Letters and Reviewl. 3, no. 3, pp. 59-67, june 2004.
y

I d k . . Il defined l S. Celis and D. R. Musicant, “Weka-parallel: machinarféng in
allowed to take any corrective actions a well defined quali parallel” Carleton College, Computer Science Technioapdrt 2002b,

measure may ensure success. 2002.
[19] J.-X. Dong, A. Krzyzak, and C. Y. Suen, “A fast parallgitinization for
training support vector machines,” IProceedings of 3rd International
ACKNOWLEDGEMENTS Conference on Machine Learning and Data MininB. Perner and
A. Rosenfeld, Eds., 2003, pp. 96—-105.
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