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Abstract—This work presents a comparison study between the 

state-space and polynomial methods for the design of the robust 

governor for load frequency control of steam turbine power systems. 

The robust governor is synthesized using the two approaches and the 

comparison is extended to include time and frequency domains 

performance, controller order, and uncertainty representation, 

weighting filters, optimality and sub-optimality. The obtained results 

are represented through tables and curves with reasons of similarities 

and dissimilarities. 

 

Keywords—Robust control, load frequency control, steam 

turbine, H∞-norm, system uncertainty, load disturbance. 

I. BACKGROUND AND MOTIVATION  

OWER system stability can be defined as that property of 

a power system that enables it to remain in state of 

operating equilibrium under normal operating conditions and 

to regain an acceptable state of equilibrium after being 

subjected to a disturbance. The quality of power supply must 

meet certain minimum standard requirements with special 

attention being given to the constancy of frequency [1], [2]. 

Our main concern in work paper concerns the above issue. 

Most universal method of electric generation is accomplished 

using thermal generation, and the most common machine for 

this production is the steam turbines. In the world most of the 

generation is powered by steam-turbine-driven generators [2]. 

Poor balancing between generated power and demand can 

cause the system frequency to deviate away from the nominal 

value, and create inadvertent power exchanges between 

control areas. to avoid such a situation, load frequency 

controllers (LFC) are designed and implemented to 

automatically balance between generated power and the 

demand power in each control area [1], [3], [4]. 

The problem of load frequency control has been 

investigated by many researchers. In [5] speed governors have 

been designed based on PID techniques with different 

philosophies because of its simplicity and ease of 

implementation. Fuzzy sliding mode controller for LFC has 

been designed in [6] to account for the system’s parameters 

variations and the governor backlash. Genetic algorithm (GA) 

is a global search optimization technique. The researchers in 
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[7] used GA for tuning the control parameters of the 

proportional-integral (PI) control subject to the ∞H  

constraints in terms of LMI. Modern control techniques have 

been reported in [8], [9] in which a load frequency controller 

for power systems has been designed using LQR techniques. 

The work in [10] investigated the design problem or robust 

load frequency controller using LMI methods for solving the 

∞H  control problem. This paper is organized as follows: 

Section II describes the modeling of steam turbine system, 

Section III presents the design formulation for the ∞H  

governor using polynomial and state-space approaches, 

Section IV is devoted to the performance evaluation of the 

robust governors. The conclusions are summarized in Section 

V. 

II. STEAM TURBINES AND SPEED GOVERNING SYSTEM  

A steam turbine converts stored energy of high pressure and 

high temperature steam into mechanical energy, which is in 

turn converted into electrical energy by the generator. The 

heat source for the boiler supplying the steam may be a 

nuclear reactor or a furnace fired by fossil fuel (coal, oil, or 

gas) [1], [2]. A typical mechanical-hydraulic speed governing 

system consists of a Speed Governor (SG), a Speed Relay 

(SR), a Hydraulic Servomotor (SM), and Governor-Controller 

Valves (CVs). In steam turbine-generator system, the 

governing is accomplished by a speed transducer, a 

comparator, and one or more force-stroke amplifiers. Fig. 1 

depicts the complete system block diagram of a steam turbine 

generator [2]. 

Speed Governor (SG): 

 

R
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where R  is the steady-state speed regulation. The value of R  

determines the steady-state speed load characteristic of the 

generating unit.        

Speed Relay (SR): 
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where SRT  is the time constant of the speed relay.       
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Fig. 1 Block diagram of steam turbine control system 

 

Servo Motor (SM): 

 

 

Fig. 2 Servo Motor transfer function representation 

SMT  is the time constant of the servo motor 

 

Steam Turbine (ST): 
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where COT , RHT , CHT  are the time constants for the cross over, 

reheater, and steam chest respectively.    

Machine Dynamics (MD): 
 

 
Fig. 3 Transfer function representation of the synchronous machine

MT is the mechanical starting time, ∆Pm is the incremental change of 

the mechanical power, ∆PL is the incremental change of load power, 

∆Pa is the incremental change of accelerating power, ∆ωr is the 

deviation of the angular speed of the synchronous generator 
 

The model of the complete steam turbine system has been 

derived with typical values of the listed in Table I [1], [2], 

[11]. This model is applicable to a tandem-compound single 

reheat turbine of fossil-fuelled units. 

III. ROBUST GOVERNOR DESIGN PROCEDURE  

A different configuration for the problem of LFC of steam 

turbine has been proposed in this work as shown in Fig. 4. 

 

TABLE I 

DESCRIPTION OF THE STEAM TURBINE SYSTEM PARAMETERS 

Parameter Description Value Unit 

KD 
Damping factor 

 = torque (pu) / speed (pu) 
2 pu 

TM Mechanical starting time 8 sec 

FIP IP  turbine power fraction 0.4 - 

FLP LP turbine power fraction 0.3 - 

FHP HP turbine power fraction 0.3 - 

TCO Crossover time constant 0.4 sec 

TSR Speed relay time constant 0.1 sec 

TSM Servomotor time constant 0.2 sec 

TCH Steam chest time constant 0.25 sec 

TRH Reheater time constant 7 sec 

PV max Maximum valve position 1 pu 

PV min Minimum valve position  0 pu 

fo Speed disturbance bandwidth  0.5-2 Hz 

 

 

Fig. 4 Proposed configuration for LFC of steam turbine 

 

IN the proposed configuration the controller (governor) is 

placed in the feed forward path in contrast to the conventional 

governor in which the controller is positioned in the feed 

backward path. In what follows the above proposed 

configuration together with the robustness tools will be used to 

setup the problem within the framework of the ∞H  design 

methodology using the polynomial methods.  

A.  Formulation of the Design Problem: A Polynomial 

Approach 

Fig. 5 represents the mixed sensitivity problem for steam 

turbine plant which includes the performance shaping filters (

)(sV  and )(1 sW ) and the uncertainty filters )(2 sW  where 

additive uncertainty is used to compensate for neglected 

dynamics which is represented as unstructured uncertainty 

through )(2 sW , ∆Stable unknown transfer function. The 
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design of the shaping filters is highly depends on the model at 

hand and certain  considerations have to be taken in the design 

of these shaping filters like uncertainty, high frequency roll-

off, and integral control.  

 

 

Fig. 5 Mixed Sensitivity Configuration 
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Fig. 5 defines the standard problem whose generalized plant 

has the following transfer function matrix [12]-[13]: 
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The mixed sensitivity problem schematized above is the 

problem of minimizing the ∞H - norm of the closed-loop 

transfer function matrix [12]-[13]: 
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Now the problem can be stated as: 

Design a stabilizing controller such that the ∞H -norm 

∞
)(sTzw  of the above closed-loop transfer function is 

minimized, i.e. γ≤
∞

)(sTzw . Knowing that zwT  is the 

closed-loop transfer matrix defined as [12], [13]: 

21
-1

221211  )-(),( PKPIKPPKPFT lzw +==
   

(6) 

 

γ is the solution of the ∞H optimization, and ),( KPFl

lower linear fractional transformation. In the SISO case the 

∞H -norm of  zwT is given by [14], [15]: 
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where sup is the supremum or the least upper bound. With 

suitably chosen weighting filters matrices 1W , 2W  and V  a 

suitably chosen shaping matrix. The selection of the weighting 

filters is not an easy task for a specific design problem and 

often involves ad hoc, and fine-tuning. It is very hard to give a 

general formula for the weighting filters that will work in 

every case. Finally, the selection of the uncertainty weighting 

filter depends on the dynamics of the system and the nominal 

model chosen. After a thorough analysis, the weighting filters 

are found to be: 
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B.  Formulation of the Design Problem: A State-Space 

Approach 

The block diagram of the augmented plant including the 

performance and uncertainty weighting filters together with 

plant is shown in Fig. 6 where an output multiplicative 

uncertainty is assumed in the system as indicated by the 

uncertainty weighting filter )(sWI  and the input 1d . In 

symbolic notations:  
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According to these definitions, the open loop generalized 

plant can be obtained as [16], [17]: 
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The control input u , and the measured output y  are related 

to the )(sK  as follows: 

 

      )( )(  )( sysKsu =         (10)  

 

 

Fig. 6 Augmented Plant for the H∞ Control Problem. 

 

The weighted closed-loop transfer function matrix zwT  is 

given by [16], [17]: 
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It is obtained by connecting the measured output y  with 

the control input u  through the controller )(sK .  

Now the problem has been set up and the last step to do 

before the ∞H  controller design is the selection of the 

weighting filters which is highly depending on the application 

and usually the optimum set of weighting filters is reached by 

an ad hoc procedure. After a deep analysis, these weighting 

filers are selected as: 
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The problem has been solved via both the state-space and 

the polynomial approaches and the obtained results are 

evaluated in the following section. 

IV. SIMULATIONS AND RESULTS 

Concerning time domain performance, the polynomial 

approach is evidently faster than the state-space approach as 

shown in Fig. 7, where the transient response of the output 

frequency deviation rω∆  is drawn using both approaches 

when the system is subjected to sudden increase in the load of 

04.0 p.u (i.e. 04.0∆ =LP ). As shown in Fig. 7, polynomial 

approach has less settling time ( 4.10 sec) with overshoot of 

peak 31048.1 −∗  at 7.4  sec as compared to state-space 

approach ( 3.20 sec). This means that the polynomial approach 

satisfies time domain specifications and gives better results 

than the state-space approach. The reason behind this 

improved and fast response lies in the flexibility added to the 

design using the polynomial approach, whereas partial pole-

placement process enables the designer to get some control on 

the location of some of the closed-loop poles and the ability to 

determine nature of the response through placing the poles in 

different places in the open left half s-plane. Table II shows 

the time response of the output frequency deviation ( rω∆ ). 

The orders of the resulting controllers using both approaches 

are shown in Table III. It can be concluded that with improper 

weighting filter )(2 sW  used and applying the design on the 

original model )(sG , the polynomial approach gives a 

controller with an order always less than at least by one than 

the order of its counterpart using the state-space approach. 

While the gain in the order reduction will be two if the 

weighting filter )(2 sW  is constant (i.e. csW 1)(2 = ). 

Furthermore, applying the design procedure on the nominal 

model )(sGnom  with improper weighting filter )(2 sW , the 

gain in the reduction will be at least two, while order reduction 

will be three if )(2 sW  used in the design is a constant. 

Moreover, the zeros of the designed controller in the state-

space approach includes the poles of the weighting filter 

)(sWU  
and )(sWI , and the stable open-loop poles of the 

original plant )(sG . While its poles includes the poles of 

)(sWP . In the polynomial approach, the poles of the 

controller includes the poles of )(1 sW . However, its zeros 

involves the zeros of )(sM  that represent the open-loop poles 

of the original plant. Regarding the frequency domain 

requirements of the system, the polynomial approach exhibits 

obvious reductions in the gain and phase margins from their 

corresponding values in the state-space approach. Table IV 

lists the values using both approaches. Finally yet importantly, 

increasing or decreasing the bandwidth is more flexible with 

the polynomial approach than the state-space approach. The 

reason behind this is that the closed-loop bandwidth is tightly 

related to radius of the desired complex conjugates poles that 

are pre-assigned through a partial pole placement process in 

the polynomial approach. While in the state-space approach, 

the bandwidth of the system is determined through the 

selection of the frequency Bω  which is the cutoff frequency of 

the performance filter PW . 
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(a) 

 

(b) 

Fig. 7 Transient response of rω∆  in response to, (a) Speed 

disturbance step change, (b) Load disturbance step change 

 

Finally, Integral control can be designed easily in the 

polynomial approach than the state-space approach. The 

reason is state-space approach doesn't accept a pole on ωj -

axis in the weighing functions or the plant )(sG , while there 

is no such limitation in the polynomial approach. Furthermore, 

high frequency roll-off can be obtained by using improper 

weighting filters in the design procedure. This can be done in 

the polynomial approach by using improper )(2 sW  which is 

not allowed in the state-space approach. 

 
TABLE II 

TIME DOMAIN SPECIFICATIONS OF THE CLOSED LOOP SYSTEM 

Parameter 

State-Space Approach Polynomial Approach 

Without 
uncertainty 

With 
uncertainty 

Without 
uncertainty 

With 
 uncertainty 

Settling time /sec 

Undershoot 

23.7 20.3 7.06 10.4 

8.58*10-3 8.46*10-3 5.56*10-3 4.27*10-3 

 

TABLE III 
ORDERS OF H∞ CONTROLLER FOR DIFFERENT APPROACHES 

Parameter 

State-Space Approach Polynomial Approach 

Without 

uncertainty 
With uncertainty 

Without 

uncertainty 

With 

uncertainty 

Formula ord(G)+ord(WP)+ord(WU)+ord(WI) ord(G)+ord(1/W2) 

Order 8 6 7 5 

Order after 

reduction 
5 4 3 2 

 
TABLE IV 

FREQUENCY DOMAIN SPECIFICATIONS OF THE CLOSED-LOOP SYSTEM 

Parameter 

State-Space Approach Polynomial Approach 

Without 

uncertainty 

With 

uncertainty 

Without 

uncertainty 

With 

uncertainty 

Phase Margin  78 o 72 o 37 o 32 o 

Gain Margin /dB 25 56 8.3 11 

Phase crossover 

frequency rad/sec 
2.68 3.91 3.58 2.375 

Gain crossover 

frequency rad/sec 
0.227 0.26 1.4 0.965 

V. CONCLUSION 

In this research, a comparison study is introduced to solve 

the problem of the load frequency control for the steam 

turbines of the power systems. Both approaches result in a 

proposed robust controller which ensures both robust stability 

and robust performance and satisfy time and frequency 

domains specifications but it is important to stress that better 

results, with respect to the transient response characteristics 

are obtained by using the polynomial approach while state-

space approach achieves slightly better results in the 

frequency domain than the polynomial approach. Finally, 

problem formulation and satisfying the design requirements is 

much easier to do with the polynomial approach than with the 

state-space one. 
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