
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

176

Abstract—System-level design based on high-level abstractions

is becoming increasingly important in hardware and embedded
system design. This paper analyzes meta-design techniques oriented
at developing meta-programs and meta-models for well-understood
domains. Meta-design techniques include meta-programming and
meta-modeling. At the programming level of design process, meta-
design means developing generic components that are usable in a
wider context of application than original domain components. At the
modeling level, meta-design means developing design patterns that
describe general solutions to the common recurring design problems,
and meta-models that describe the relationship between different
types of design models and abstractions. The paper describes and
evaluates the implementation of meta-design in hardware design
domain using object-oriented and meta-programming techniques.
The presented ideas are illustrated with a case study.

Keywords—Design patterns, meta-design, meta-modeling, meta-
programming.

I. INTRODUCTION
ARDWARE (HW) and software (SW) components are
essential parts of any embedded system. The complexity

of such systems is growing continuously. For example,
complexity of System-on-Chip (SoC) in terms of logic
transistors that can be integrated on a chip is increasing at the
rate of 58% per year (Moore's law). However, the design
productivity is increasing at the rate of 21% per year only.
This fact is known in the Electronic Design Automation
(EDA) community as design productivity gap [62].

Due to the ever-increasing complexity of such systems,
their development must inevitably rely on the usage of higher-
level models and abstractions. Most of current research efforts
in the domain are aimed at bridging design productivity gap as
well as raising the level of abstraction, increasing IP
(Intellectual Property) reuse and unifying HW and embedded
SW design methodologies [67]. The researchers have to
analyze and evaluate the existing HW modeling and design
techniques as well as to develop or adopt the new ones that
can provide higher productivity and shorten time-to-market. In
general, reuse-oriented system engineering can be categorized
into as Domain Engineering or Application Engineering [36].

Manuscript received March 10, 2006.
R. Damaševičius is with the Software Engineering Department, Kaunas

University of Technology, Studentu 50, 415, 51368 Kaunas, Lithuania
(phone: 370-37-300399; fax: 370-37-300352; e-mail:
robertas.damasevicius@ktu.lt).

Domain Engineering is a design-for-reuse methodology for
creating families of domain assets. It aims at creating new
solutions or/and inventing new design technologies, such as
product lines [21]. Domain Engineering usually requires
careful technical and economic analysis and goes through all
system development phases.

 Application Engineering is a design-with-reuse
methodology of producing specific systems by using the pre-
designed assets used to solve recurring design problems in the
domain. The original design effort is applied only once. The
successful implementation of this approach leads to systematic
design reuse for a specific set of domain products and
systems.

The main difference between these two categories of
system engineering is in the level of abstraction and
generalization. Design-for-reuse requires the development of
generic domain models and components that can be applicable
in many contexts, whereas design-with-reuse deals with
specialization of the already developed generic components to
the given context of application. This separation of concerns
in design allows raising the abstraction level in the domain to
a meta-level and increasing design productivity.

Here we consider meta-design – design of systems at a
meta-level of abstraction. The aim of this paper is (1) to
analyze the basic concepts of meta-design, including high-
level abstractions and models, (2) to describe the main
techniques of meta-design used for meta-modeling and meta-
programming, and (3) to demonstrate how meta-design can be
applied for designing HW systems using object-oriented and
meta-programming techniques.

Our previous research has been focused on generic
component models and meta-programming for describing
variability and generalization in a domain [17, 18, 19, 64, 65].
The novelty of this paper is (1) a unified view at meta-
modeling and meta-programming as separate stages of the
same process, the meta-design, and (2) formulation of the
main principles of meta-design in the context of HW design.

The remainder of this paper is structured as follows. Section
2 analyses the basic concepts of meta-design, its stages, main
techniques and levels of abstraction. Section 3 presents a case
study for the application of meta-modeling and meta-
programming in HW design domain. Section 4 presents
discussion on meta-design. Finally, Section 5 presents the
conclusions.

On the Application of Meta-Design Techniques
in Hardware Design Domain

R. Damaševičius

H

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

177

II. BASIC CONCEPTS OF META-DESIGN
Meta-design [29, 30] is an emerging system engineering

methodology that extends the traditional system design
beyond the development of a specific system to include design
for change, modification and reuse. A particular emphasis is
given to (1) increasing participation of users in system design
process, and (2) evolutionary development of systems during
their use time when dealing with future uses and problems
unanticipated at domain analysis and system design stages.
Such systems must be flexible and evolve, because they
cannot be completely designed prior to their use [30].

Meta-design focuses on designing “design processes” [19]
or “product lines” [70] rather than designing the specific
content or system. It focuses on general (generic) structures
and processes, rather than on fixed objects and contents. To
support evolvability and adaptability of designed systems to
changing user requirements and the context of usage, meta-
design focuses on the development of unified system design
frameworks and meta-environments [37], development of
generic component models [64], definition of languages and
language meta-models [65], abstract definition of architectural
and behavioral models (“well-proven” models, patterns)
commonly used in the domain [18], development of
mechanisms that permit users to implement complex design
transformations and customizations [17], and application of
automatic domain analysis and design space exploration tools.

As traditional system development consists of three main
stages: analysis (identification of user/product/market
requirements), modeling (development and simulation of a
system model), and programming (implementation of a final
SW product), the process of meta-design can be separated into
three stages: (1) meta-analysis, (2) meta-modeling, and (3)
meta-programming. We explain these below in detail.

A. Meta-analysis
Meta-analysis [20] is analysis and knowledge mining of the

multidimensional design space using mathematical and
statistical methods (such as multidimensional scaling,
hierarchical clustering, etc.), automatic design space
exploration [74, 75, 76] and optimal solution search methods
such as optimization using genetic algorithms [77] or
Simulated Annealing [78], extraction and evaluation of
multiple design alternatives, automatic feature extraction and
analysis, search, retrieval and evaluation of Intellectual
Property (IP) components, design context analysis using
automatic analysis tools (such as parsers), analysis and
prediction of possible changes for anticipation.

As complexity of design systems is ever-growing, meta-
analysis of multi-dimensional design space can not be
achieved using a single domain analysis method, but rather by
using a combination thereof. Below, we present a brief survey
of methods that can be used in meta-analysis stage.

Multi-Dimensional Separation of Concerns [54]
understands design concerns in terms of a n-dimensional
design space, called a hyperspace. Each dimension is
associated with a set of similar concerns, such as a set of

component instances; different values along a dimension are
different instances. A hyperslice is a set of instances that
pertain to a specific concern. A hypermodule is a set of
hyperslices and integration relationships that dictate how the
units of hyperslices are integrated. The method is especially
useful in domains where a great variety of requirements exist
at different layers of abstraction such as in embedded system
design.

Multidimensional Scaling (MDS) [27] is a set of
mathematical techniques that allow uncovering hidden
structure in complex data. MDS can be used to identify similar
objects in multi-dimensional design space such as design
space of a component family. Suppose, we have a set of
domain objects characterized by a number of features and that
a measure of similarity between objects is known. MDS maps
each object of a high-dimensional space to a lower
dimensional (usually 2D or 3D) space in which each object is
represented by a point, and the distances between points
resemble the original similarity information. This geometrical
configuration of points reflects the hidden structure of the
domain data and may help to make it easier to understand.

Parsing [66] is a domain-specific analysis method for
automatic analysis of the abstract representation of the domain
- source code. It allows better understanding of the domain
and extracting the application-specific information for IP
customization. If used with other methods such as substring
amplification [79], it can help uncover hidden patterns or
templates in source code of designed systems.

The challenges for the meta-analysis are as follows: (1)
Analysis of multidimensional domain data to uncover its
particular structure (patterns, repeating commonalties,
templates) or peculiarities (anomalies, optimal solutions). (2)
Representation and interpretation of meta-data.

B. Meta-modeling
The basic motivation for meta-modeling [4, 6, 26, 32, 41,

42, and 46] is to improve productivity in SW and HW
development. It allows to achieve this by raising the level of
abstraction at which the primary SW artifacts are described
and developed. The result of meta-modeling is a meta-model –
a higher-level model that describes conceptual relationships
between lower-level models and elements thereof, design
methods, abstractions and tools.

Meta-modeling includes the following activities: (1)
definition of concepts for creating and using domain models,
(2) description of domain-specific modeling languages and
their notation, (3) description of relationship between real
world elements and system models, (4) description of reuse,
customization and transformation mechanisms applied to
models and their underlying meta-models, (5) definition of
design processes how to apply the meta-models and the
corresponding mechanisms, (6) definition of concepts and
standards to facilitate the interchange of meta-models and
models between different design teams and tools, (7)
definitions of concepts to facilitate user-defined mappings
from models to other SW artifacts (including domain code).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

178

The first order task for a meta-designer is to recognize the
well-understood domains, to extract the well-proven models
from them and to apply the models and abstractions in the
design of a system. Well-understood models are frequently
used high-level design abstractions, e.g., Finite State
Machines (FSMs) for describing behavior of complex systems
in the domain. Other examples are Triple-Redundancy Model
(TRM) in fault tolerant design [25] and communication
protocols in interface synthesis [56, 58].

Meta-modeling or model-driven [5, 11, 24, 52, 53] design is
deeply rooted in the domain of HW and embedded system
design. The designers use a variety of models, for instance,
models of computation (MoC) are formal and abstract
definitions of a component [44]. MoC allow analyzing the
intrinsic properties of a component such as execution time or
memory space of an algorithm while ignoring many
implementation issues. The design is iterative - a design is
transformed from an informal description into a detailed
specification usable for manufacturing. Examples of MoC are
Boolean circuits, Petri nets, discrete events, data flows, etc.

Component models such as Virtual Component [1],
MetaCore [50] or MetaRTL [72] usually deal with the
problems of representation, retrieval and reuse of HW/SW
components for IP libraries, IP providers and IP users. These
models either allow customization of components with respect
to user requirements for successful soft IP reuse, or enable
convenient soft IP retrieval and sharing. The design focuses
on design space exploration, parameterization, and generation
of soft IPs. The proposed solutions are usually language-
centric (pre-processing, extensions of languages, etc.).

Architectural models such as platforms [13, 39, 51, 60]
focus on embedded system design based on IP reuse.
Platforms are common architectures based on principal
components that remain fixed within a certain degree of
parameterization. Such platforms support a variety of
applications in a given domain thus achieving some
generalization. Platforms focus on the communication-based
design that is independent of the behavior of particular
components rather than on the design of functionality. A
specific application is derived from the platform using
refinement (specialization).

Abstract high-level models such as the ones described using
UML diagrams [12] are also beginning to be widely used for
HW and embedded system design [34, 49, 73]. The UML
models allow a high level specification of a system, provide
support for better soft IP reusability and adaptability, as well
as they improve the documentation for further reuse and
maintenance of a system.

Design patterns [31] are the abstraction for representing
common design solutions in an implementation-independent
way using UML class diagrams. Design patterns are widely
used in SW domain for creating SW systems using previous
successful design experience. Recently, they were also
adopted for HW and embedded system design [22, 23, 55, 61,
71].

The challenges for the meta-modeling are as follows: (1) To

discover and describe well-proven models and architectural
patterns that are generally used by designers in the domain.
(2) To describe the implementation of well-proven models in
terms of high-level abstractions and design techniques using a
well-known notation, and (3) to seek for the design
methodologies and tools that allow for implementing the well-
proven models (semi-)automatically.

C. Meta-programming
Meta-programming was known and used for a long time in

the past, especially in program synthesis [63]. Now the the
application of meta-programming is much wider and covers
domain language implementation, including compiler
generation [66], application and SW generators [9], product
lines [8], generic component design [10], program
transformations [48], program evaluation and specialization
[68], SW maintenance, evolution and configuration [16],
middleware applications [14], XML-based web applications
[47], etc. Furthermore, the meta-programming techniques
closely relate to the novel technologies, such as generative
[15] and aspect-oriented programming [40].

 From the perspective of abstraction, meta-programming
means programming at a higher level of abstraction. Ryman
[59], for example, gives the following definition. Meta-
programming is “the technique of specifying generic SW
source templates from which classes of SW components, or
parts thereof, can be automatically instantiated to produce new
SW components”. A meta-language, which is a mechanism
for introducing a higher-level of abstraction, does not appear
in this definition. It is assumed that source templates are
higher-level generic abstractions of the source language itself.

 A program written in a meta-language is a meta-program.
A meta-program is a program that treats another program as
data. According to Batory [7], a meta-program is “a program
that generates the source of the application ... by composing
pre-written code fragments”. Examples of meta-programs are
application generators, and building application generators
such as parser generators is an example of meta-programming.

 Commonly meta-programming is used to provide
mechanisms for writing generic code, i.e. explicitly
implementing generalization in the domain. Domain language
implements commonalties in a domain, while a meta-language
allows developers to specify variations to be implemented in
the domain system, and to synthesize customized
implementations by composing domain code fragments. The
generalization is achieved by the parameterization of
differences in different domain program representations,
which allows representing domain components with many
commonalties in a compact way. We use meta-programming
for implementing the generative technology in HW/SW
domain [64]. It provides capabilities for expressing domain
variability. The product of meta-programming is a meta-
program (or meta-program), which describes a family of the
related functionality in a narrow well-defined domain.

A meta-program consists of a generic interface and a family
of related domain program instances encapsulated with their

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

179

modification algorithm. A generic interface describes the
generic parameters of a meta-program. The modification
algorithm describes generation of a particular instance
depending upon values of the generic parameters. At a lower
layer of abstraction there is domain language code that
describes common parts of component family. At a higher
layer of abstraction there is meta-language code that describes
variable parts of component family. As a meta-program is a
concise representation of its instances, it can be treated as a
generic component, too. Together with its environment, a
meta-program is a domain program generator.

Flexibility of generalization and domain code generation
can be enhanced significantly either through extensions of the
domain languages or through the usage of the external meta-
language. Meta-language describes the syntax and semantics
of generalization, and meta-programming paradigm defines
the rules and methods for implementing generalization.

Summarizing, meta-programming can be defined as a
programming technique that achieves generalization via
manipulation with other program structures. Meta-programs
can be represented using the same programming principles
and constructs (if, case, for loop) as domain programs,
however they manipulate on program representations, not
data. In other words, meta-programming is a higher-order
programming technique for generalization.

To achieve the prescribed aims, meta-programming uses
separation of concerns, parameterization, and parameter
dependency knowledge. Separation of concerns separates each
domain problem into a distinct generic component or sets of
components used to generate target program. Parameterization
increases reusability by providing parameterized components,
which can be instantiated for different choices of parameters.
Parameter dependency knowledge allows capturing specific
information about the parameter dependencies, default settings
and illegal combinations.

The challenges for meta-programming are as follows: (1)
Identification similar (“look-alike”) components in a domain.
(2) Selection of a suitable meta-language for meta-
programming. (3) Selection of optimal size and number of
designed meta-programs. (4) Identification and separation of
dependable and undependable meta-parameters. (5)
Overgeneralization problem.

D. Basic techniques of meta-design

Here the analyze only the basic techniques of meta-design

as follows: separation of concerns for meta-analysis,
generalization for meta-modeling, and generation for meta-
programming. We explain these below in detail.

1) Separation of concerns

Separation of concerns is primarily focused on (1) the

separation of domain commonalities and variabilities.
Commonalities are fixed concepts that are common to all parts
of (sub-)domain. Variabilities are variable concepts that are

unique to every domain object (component, system, etc.), and
depend upon certain design concerns or aspects. Separation of
concerns leads to decomposition of SW into manageable and
comprehensible parts. The second task of separation of
concerns is (2) to identify different design concerns that are
meaningful to the anticipated user requirements.

Separation of concerns for meta-design must involve the
following activities:

(1) Formulation of anticipated design problems from the
client's perspective (i.e., functionality of the system as the
client expects it).

(2) Identification and separation of user- and application-
specific concerns along multiple and arbitrary dimensions of
design space.

(3) Partitioning and structuring of dependable and
orthogonal concerns into groups or dimensions. Dependable
concerns are closely related and depend upon each other (e.g.,
increasing speed would most certainly increase the
consumption of power in a chip, thus speed and power
concerns are dependable). Orthogonal concerns are
independent upon each other.

(4) The ability to handle new concerns or their dimensions
dynamically as they arise at use time.

(5) Concern-based composition of domain systems.

2) Generalization

Generalization is a design technique for expressing and

representing domain models and components at higher levels
of abstraction. Introduction of generalization usually means
transition to the higher level of abstraction where domain
knowledge can be represented and explained more
comprehensibly and effectively.

Generalization identifies commonalties among a set of
domain entities and widens an object (component, system) in
order to encompass a larger domain of objects (systems,
applications) of the same or different type. Commonality may
refer to essential features of a design entity such as attributes
or behavior, or may concern only the similarity in description.
The result of generalization is a generic component (model),
which compactly represents a set of similar components.

Therefore, we can describe generalization as a design
technique that is oriented at unifying similar domain objects
into a single generic component (model), which encapsulates
their similarities and differences. Thus, generalization allows
(1) to encapsulate related domain concepts thus simplifying,
both quantitatively and qualitatively, the design space; and (2)
to reduce the size and improve the structure of the domain
component libraries. Thus, generalization allows introducing
more simplicity into the domain.

Usually there are many levels of abstraction in the domain
of interest. Therefore, we can distinguish, for example,
generalization of models at a higher level of abstraction, and
generalization of domain components at a lower level of
abstraction. The latter is usually achieved by applying some
form of generative technologies such as pre-processing or

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

180

meta-programming, whereas the former is achieved using the
meta-modeling techniques. This results in a modeling of
domain information at different levels of abstraction.

3) Generation

Generation is a process of transformation between the

higher-level representation of a domain system (model) and
the lower-level implementation in domain language. To
implement generation, the designer must built a meta-model
that describes (1) a mapping between the modeling language
and domain language abstractions, and (2) a set of translation
rules that implement a mapping.

 Here, we analyze generation in HW design domain from
HW models described using UML into VHDL code. A
mapping is described semi-formally using UML meta-model,
i.e., the model that describes the syntax of UML diagrams
using a subset of UML. A meta-model consists of a class
diagram, where classes describe the syntactic components of
the used UML diagram. A meta-model for mapping UML to
VHDL was initially described in [19] and is extended now.
Below, we present a mapping between UML class diagrams
and a structural subset of VHDL (see Figure 1). VHDL
abstractions are shown in parentheses.

Elements of UML class diagrams are classifiers,
relationships and features. Classifiers are interfaces and
classes that describe basic design blocks. Relationships
(Figure 1, a) describe different types of connections and
associations between classifiers. Features (Figure 1, b)
describe parameters, attributes and methods of classifiers. We
map an abstract class (interface) to a VHDL entity. A class
that realizes an abstract class is mapped to VHDL
architecture. Class parameters are mapped to a VHDL generic
statement, class attributes - to the VHDL ports (public) and
signals (private), and class methods – to the VHDL processes
(procedures). The composition relationship describes
composition of a system from the components and is mapped
to a VHDL port map statement. The inheritance relationship
means that a VHDL entity inherits the I/O ports from a base
entity.

Once the mapping between UML and VHDL has been
defined, rules that describe the translation process between
UML and VHDL can be formulated. The aim of the
translation rules is to describe how an instance of a UML
meta-model (i.e., any UML model described using a subset of
UML defined in a meta-model) can be transformed into an
instance of a target model (i.e., a concrete VHDL specification
that describes the implementation of a HW model specified
using UML). These rules can be implemented manually by a
HW designer, or automatically using a dedicated translation
tool or code generator using a wide range of code generation
strategies [61].

Interface (entity)

Realization (of)

1

1

1

*
Inheritance

*

*

Composition (port map)

1

1 *

1
Class (architecture)

Classifier

ModelElement

Relationship

(a)

Method (process)

Interface (entity) Class (architecture)

Parameter (generic)

Public attribute (port)

Private attribute (signal)

1

*

1

*

1

*

1

*

ModelElement

Classifier

Feature

(b)

Fig. 1 A mapping between UML class diagrams and VHDL

structural abstractions: (a) relationships and (b) features

E. Levels of abstraction and generalization in domain
There are many levels of abstraction used to express the

domain content, therefore, generalization can also be
represented in many different forms [35].

(1) Hierarchy organizes the domain commonalties into a
tree-like structure. A hierarchical organization of components
based on a relationship of generalization/specialization (or "is-
a") is an important principle in object-oriented programming.

(2) Polymorphism captures commonality in different object
types in object-oriented (OO) design. The generality is
achieved by allowing the program to uniformly manipulate
objects of different classes provided that these share the
common properties.

(3) Genericity expresses the commonality using parameters.
Genericity captures some common component properties that
are expressed in terms of other unspecified abstractions that
are denoted by parameters defined externally. These
abstractions can be described using another higher-level
language, i.e., a meta-language.

(4) Pattern presents an abstract and general solution (the
key components and relationships between them) to a
commonly occurring design problem. A concept of pattern is
widely known in system modeling in general [2], and OO SW
development in particular [3, 31, 57].

Therefore, generalization can be introduced into the domain
as a multi-staged model having four different levels of
abstraction as follows:

(1) Domain abstraction level – the organization of domain
data (components) into the tree-like hierarchies, where a root
is a generalization of the descendants.

(2) Meta-program level – the development of the generic
components (programs) using the internal mechanisms of the
domain language (polymorphism) or an external language

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

181

(meta-language).
(3) Model level – the introduction of models that describe

a specific domain problem in general.
(4) Meta-model level – the representation of the model

semantics using more abstract meta-models. A composition of
several meta-models implements a platform.

While the first two levels are usually introduced using
textual languages (either object-oriented or the meta-
programming ones), the last two levels are can be introduced
using standard modeling language UML. Recently, UML also
began to be used more widely in HW and embedded system
domains [28, 34, 43, and 49].

Finally, in Figure 2, we demonstrate how different levels of
abstractions relate between themselves in the context of
platform-based design of embedded systems. At the highest
level of abstraction is a platform – a composition of several
different meta-models (design patterns), i.e., general, well-
proven and well-defined solutions for a narrow and well-
understood domain problem.

aComponent aWrapper
Meta-
program
level

Class Relationship
Model
level

G
en

er
al

iz
at

io
n

ALU Processor Handshake FIFO
Domain
abstraction
level

Wrapper pattern
Meta-
model
level

Composite pattern

Platform1
Platform
level Platform2

Fig. 2 Relationship between different levels of abstraction in

Wrapper design pattern

In our example, a meta-model under consideration is a

Wrapper design pattern [18], which is a generalization of
several UML class diagrams that describe the implementation
of communication control for different applications at the
meta-model level. The elements of class diagrams, such as
classes and relationships, are a generalization of the several
different generic domain components and relationships
between them at the model level. Finally, generic components,
such as aComponent and aWrapper, are a generalization of
specific domain components (e.g., ALU, Processor,
Handshake FSM, FIFO FSM) at the meta-program level. The
arrows show how the refinement is applied from the highest
level of abstraction until the final implementation on the
domain level is obtained.

III. CASE STUDY

A. Meta-modeling
Our aim is to obtain the invariant, variant, and specific parts

of the system and describe the relationship model between
these parts and between the high-level model of a system and
lower-level implementation. To do this we need to have some
knowledge about the domain and perform meta-modeling, i.e.
modeling of the domain at a higher abstraction level using a
general domain vocabulary.

Figure 3 demonstrates the generalization of similar UML
models into a design pattern for communication sub-domain.
Figure 3 a) and b) show an extension of two common
components: ALU and Processor with two different
implementations of communication protocols, Handshake and
FIFO, respectively. Figure 3 c) demonstrates a generalization
of communication models using a Wrapper design pattern [17,
18] for any HW component cComponent and any wrappers
cWrapper1, cWrapper2 that implement a particular
communication protocol.

In HW design domain, we interpret the Wrapper design
pattern as follows. The abstract class (entity in VHDL)
aWrapper inherits the I/O ports of the aComponent, and
declares new I/O ports for wrapper functionality. The class
(architecture in VHDL) cComponent implements the
functionality of entity aComponent. The architectures
cWrapper1 and cWrapper2 implement the functionality of
aWrapper and contains the aComponent. Essentially, this
description means that cWrapper1 (or cWrapper2) wraps
cComponent with a new functionality.

ALU

HandshakeALU

Processor

FIFOProcessor

aComponent

aWrapper

cComponent

cWrapper2 cWrapper1

(a) (b) (c)

Fig. 3 Generalization of UML models into a design pattern

The obtained meta-model describes the results of domain

analysis and does not provide details and concrete values. For
example, there is nothing stated about the degree of some HW
constraints such as timing and their design characteristics.
Those details require a more in deep expert knowledge,
because they a related with physical implementation of the
schematics at the technological library level. The result of
meta-modeling is only a domain-independent pattern of a
system, which must be further refined by introducing the
domain-specific details and constraints such as gate libraries
and timing in HW design domain.

The relationship between this design pattern and its
implementation must be described using another meta-model,
an example thereof is given in Figure 1.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

182

B. Modeling
To illustrate the application of generalization for modeling

domain entities, we present the UML class diagram for
representing different kinds of gates in a single gate hierarchy
(see Figure 4). Parameterized superclass Gate abstractly
represents all kinds of gates in the hierarchy, whereas other
parameterized classes (AndGate, OrGate, XorGate) represent
the particular implementations of the gate schematics. The
role of the generalization relationship is to denote a taxonomic
relationship between a more general element and elements that
are more specific. The generic parameters used in the model
represent the delay of a particular HW element (DELAY) and
the width of the I/O signals (WIDTH). The role of generic
parameters is to simplify the component hierarchy by hiding
as all HW elements of a particular type with different timing
and wiring characteristics behind a single parameterized class.

+process(in X1 : std_logic[WIDTH], in X2 : std_logic[WIDTH], out Y : std_logic[WIDTH])

+X1 : in std_logic[WIDTH]
+X2 : in std_logic[WIDTH]
+Y : out std_logic[WIDTH]

Gate

DELAY:time, WIDTH:int

AndGate

DELAY:time, WIDTH:int

for i in 1 to WIDTH do:
 Y[i] <= X1[i] and X2[i] after DELAY;

OrGate

DELAY:time, WIDTH:int

for i in 1 to WIDTH do:
 Y[i] <= X1[i] or X2[i] after DELAY;

XorGate

DELAY:time, WIDTH:int

for i in 1 to WIDTH do:
 Y[i] <= X1[i] xor X2[i] after DELAY;

Fig. 4 UML model of the gate schematics

Of course, the UML model of a real-world HW system

would be much larger than the one presented in Figure 4, and
would include all types of library-based HW components such
as gates, registers, adders, counters, etc. Its purpose is to allow
modeling of complex HW and HW/SW systems at a level of
abstraction that is higher than common programming language
code. Generalization here allows hiding the details that are
unnecessary at this level of the development of a system, or
are continuously repeating from component to component.

Returning back to our design problem, the object-oriented
model of a designed system is presented in Figure 5 and
explained below (only the top classes are shown). IP is an
abstract entity that describes an input interface of soft IP.
IP_protocol is an abstract entity that inherits the ports of IP,
and declares additional ports for I/O control. IP_handshake is
an abstract entity that represents a soft IP communicating
using a handshake protocol. Class Model1 is an
implementation of IP_handshake that contains
HandshakeFSM and an instance of IP. IP_fifo is an abstract
entity that represents a soft IP communicating using a FIFO
protocol. Class Model1 is an implementation of IP_fifo that
contains two FIFO components for storing input and output
signals and an instance of IP. FIFO is an abstract entity that
describes an interface of a FIFO buffer. FIFO_in is a

refinement of FIFO for storing the values of IP’s input signals.
FIFO_out is a refinement of FIFO for storing the values of
IP’s output signals. The user can select a communication
model to implement by selecting either Model 1 or Model 2
for generation.

Fig. 5 Simplified UML model of a target system

C. Meta-programming
To illustrate we usage of generalization in the context meta-

programming, we deliver a meta-program (Figure 6). Meta-
programming is used to implement component hierarchies,
especially the parameterized ones, obtained during the
modeling stage of system design.

Meta-program (see Figure 6, a) was developed using Open
PROMOL [65] as a meta-language and VHDL as a domain
language. Open PROMOL is a functional domain-independent
meta-language that allows performing text-based
modifications of a target program using a set of parameterized
functions. The role of the PROMOL functions @gen and
@sub in the meta-program can be easily understood from the
context.

 @- Generic Interface
$
“Select a function:” {AND,OR,XOR} func:=OR;
“Enter the width of inputs:” {1..8} width:=8;
“Enter the delay (in ns):” {1..10} delay:=5;
$
@- Gate Interface
ENTITY GATE IS
 PORT (X1, X2: IN STD_LOGIC

@if[width>1,{_VECTOR(@sub[width-1] DOWNTO 0)}];
 Y: OUT STD_LOGIC
@if[width>1,{__VECTOR(@sub[width-1] DOWNTO 0)}]);

END GATE;

@- Gate Functionality
ARCHITECTURE MODEL OF GATE IS
 BEGIN
 Y <= X1 @sub[func] X2 AFTER @sub[delay] ns;
END MODEL;

ENTITY GATE IS
 PORT (X1, X2: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

 Y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END GATE;

ARCHITECTURE MODEL OF GATE IS
 BEGIN
 Y <= X1 OR X2 AFTER 5 ns;
END MODEL;

(a)

(b)
Fig. 6 a) Gate meta-programs, domain language is VHDL and meta-

language is Open PROMOL, b) its instance in VHDL

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

183

Figure 6, b shows the domain program instance (one of 9

that can be generated from the specifications 1-3) for the type
(function) of gate equal to OR, I/O width equal to 8, and delay
equal to 5 ns.

The role of generalization here is to simplify the
development of soft IP libraries by encapsulating all
components with similar functionality under a single generic
component, which can be further used for design space
exploration and quick generation of a desired component
instance using a meta-language processor.

D. Implementation
To validate the described meta-modeling and meta-

programming techniques, we have designed the wrapper
generator to automatically generate two different wrappers for
communication control of third-party soft IP cores using
Handshake and FIFO protocols.

The wrapper generator implements a Wrapper design
pattern [18] for a specific class of soft IP. The structure of the
system is defined using system modeling techniques in UML
class diagrams. We use UMLStudio as a front-end tool to
draw UML diagrams. The designer develops an UML meta-
model and a script for translation from UML to VHDL using a
scripting language PragScript that provides straightforward
access to the data stored by UMLStudio projects. A PragScript
script provides a generic interface to UMLStudio. PragScript
interpreter uses UML model (class diagram) and a translation
script to generate a structural VHDL model.

Since the structural VHDL model is not enough for a
wrapper (class diagrams describe only a structure of the
system), and UML class diagrams cannot describe
functionality, several meta-programs in Java were developed.
These meta-programs capture the behavior of wrapper using
Java as a meta-language and VHDL as a domain language.
Each meta-program is a Java class, which encapsulates a
generic domain entity (e.g., FIFO buffer, voter, etc.). Java
processor processes meta-programs and generates specific
behavioral VHDL models for a target system using values of
the generic parameters specified via a class constructor.

well-proven
models

Meta-
specifications

(Java + VHDL)

UML metamodel
(mapping)

specification

VHDL
parser

UMLStudio

translationUML model
(class diagram)

PragScript
interpreter

script for
translation
into VHDL

VHDL
model(s)

(structural)
design

problem

parameters

scripting

Wrapper
pattern

soft IP
(VHDL)

third
party

generation VHDL
model(s)

(behavioral)

Target
system

(VHDL)

Java
processor

parameters

Fig. 7 Implementation of wrapping for well-proven models

The VHDL parser analyses supplied soft IP source code,

constructs a syntax tree, and extracts the values of the
parameters for generation. The wrapper generator performs
wrapping of the third-party soft IP by generating the instances
of the component instances that belong to a specified wrapper,
and the port map statements to map the signals of the wrapper
to the soft IP.

We use two kinds of meta-programs in our design flow (see
Figure 7): (1) a script developed using embedded UMLStudio
scripting language PragScript, and (2) the meta-programs of
behavioral VHDL models developed using an external meta-
language (Java). The first meta-program is for describing the
structural variability of a component family, while the second
one is for representing the behavioral variability.

E. Results
In our experiments, we have used freely available third-

party soft IPs as follows: 1) Free-6502 core [38] is a CPU core
compatible with 8-bit 6502 microprocessor. 2) DRAGONFLY
core [45] is a 8-bit controller that can be used for serial
communication management, FLASH and SDRAM control,
etc. 3) AX8 core [69] is a 16-bit AT90Sxxxx compatible
micro-controller core. 4) i8051 micro-controller [33] is
compatible with 8-bit micro-processor designed by Intel.

The wrapper generator was implemented as a set of meta-
programs using heterogeneous meta-programming (Java as a
meta-language, and VHDL as a domain language). Each meta-
program is a Java class, which encapsulates a generic domain
entity (e.g., FIFO buffer, FSM, voter, etc.) and generates a
specific instance of it in VHDL according to the values of the
generic parameters specified via the Java class constructor.

The synthesis results of the original soft IPs and the
generated wrappers (Synopsys; CMOS 0.35 um technology)
are presented in Table 1. The synthesis results show the
following average increase in chip area of the generated
wrappers with respect to the original soft IPs: 10% for the
Handshake wrapper, and 50% for the FIFO (size = 4)
wrapper.

IV. EVALUATION AND DISCUSSION
This paper has analyzed the application of meta-design

techniques for HW design domain. We have particularly
focused on generalization for developing domain meta-models
and meta-programs, and generation for generating customized
design solutions automatically. The systematic application of
generalization for designing domain systems allows to
concisely represent domain content, relationships between
domain entities, and to simplify representation of similar

TABLE I
SYNTHESIS RESULTS (FIFO AND HANDSHAKE COMMUNICATION MODELS)

Soft IP IP area,
cells

Wrapper area,
cells

(Handshake)

Over-
head

Wrapper
area,
cells

(FIFO)

Over-
head

Free-6502 4670 471 10 % 2210 47 %
Dragonfly 5883 921 16 % 4568 78 %

AX8 8020 836 10 % 4199 52 %
i8051 24258 1016 4 % 5063 21 %

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

184

domain entities. Generalization is introduced at different
levels of abstraction: for modeling domain models as well as
for programming generic domain components.

For modeling, generalization can be used in the context of
UML to represent domain component hierarchies, as well as
to develop meta-models (design patterns) for describing
common solutions to the recurring design problems.

For programming, generalization can be used in the context
of product family design to implement generic domain
components. Generic components are meta-programs that
describe families of the related domain functionality in a
narrow and well-defined domain. Generalization is introduced
using the meta-programming techniques. This usually
involves the usage of two separate languages in one meta-
program: a domain language expresses domain content, and a
meta-language expresses generalization and variability in a
domain.

While the advantages of meta-design are not obvious at the
analytical or modeling levels, it is most obvious then meta-
models and meta-programs are used to specify and generate
domain code. The results of our experiments show that we can
generate protocol wrappers for any given soft IP (described in
VHDL) automatically. Thus, the main objective of meta-
design, i.e. the increase in design productivity, is achieved.
Furthermore, wrappers can also be used for wrapping soft IPs
that were not know beforehand at design time. Thus, the
second aim of meta-design – adaptability for unanticipated
requirement and design context changes is achieved. Meta-
programming is implemented using Java as a meta-language.
The developed meta-programs (program instance generators)
are open code, thus allow for evolutionary and collaboration-
based design, which is the third aim of meta-design. All used
third-party and newly developed tools were integrated into a
unified application-oriented design flow.

We summarize meta-design by presenting its main
principles:

(1) Meta-design is design for reuse and design for change
technology oriented at SW evolution and adaptation to
changing requirements and usage context rather than design
from scratch.

(2) Meta-design aims at integrating the existing design
tools at a higher level into a unified meta-environment and
design flow.

(3) Meta-design is based on the usage of the higher-level
abstractions in modeling as well as in programming stages of
design.

(4) Meta-modeling aims at capturing commonalities and
patterns of structure of SW models in a domain.

(5) Meta-programming aims at expressing generalization
and capturing variability in domain component space.

(6) The main techniques of meta-design are separation of
concerns, generalization and generation. Separation of
concerns focuses on identifying, separating and extracting
domain commonalities and variabilities. Generalization allows
grouping domain commonalities, and parameterizing domain
variabilities. Generation allows to automatically instantiate

customized source code implementations of a design problem
from a higher-level specification.

To implement the principles of meta-design, the traditional
system development environments and frameworks are not
enough. The latter ones are usually closed and focus on the
development of the final product. Meta-design should offer
(1) domain-specific languages that exploit the existing user
knowledge about the domain and product requirements, (2)
provide meta-programming environments that seamlessly
integrate the existing programming environments into a
unified meta-design flow, (3) exploit the power of sharing and
collaboration-based design; and (4) provide support for IP
customization, transformation and reuse.

The most important role in meta-design should be played by
meta-designers, who set the conditions and provide
mechanisms that allow the users to become designers by
anticipating both their needs and the potential changes that
could occur at use time. Meta-designers should provide the
possibility of modifying the system during use time, in order
to allow the users to apply the system in the context of usage
that was not foreseen at design time.

Finally, meta-design should address the numerous
constraints in HW design domain such as timing, power
consumption and heat dissipation. The systems must be
modeling taking many different, often contradictory, system
design aims in account, which requires the adequate support at
the modeling and meta-modeling levels. Currently, UML is
being adapted for modeling real-time systems by extending it
with the timing concept [43]. Power also should be modeled at
a higher level [80], which may allow for early estimation and
analysis of design characteristics. Such an analysis already at
the early stage of design can provide an answer whether the
designed system would match the imposed design constraints.
Based on the results of the analysis the designer can select the
system architecture that can lead to a more efficient
implementation.

V. CONCLUSIONS
In this paper, we have analyzed the capabilities and

application scope of the meta-design techniques.
Generalization is perhaps the most important meta-design
technique. It deals with the development of generic
components (meta-programs) that encapsulate related domain
functionality, as well as higher-level domain models and
meta-models that allow expressing domain content in an
abstract and more general fashion.

Especially, meta-design is important in HW and embedded
system design domains, where design complexity continues to
grow exponentially. Current trends to applying meta-design in
system design focus on meta-programming and meta-
modeling. When systematically applied, meta-design provides
means for achieving higher reuse (through generalization),
increase design quality and productivity (through generation),
and allow integration with other design methodologies such as
object-oriented design (through the usage of UML).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

185

REFERENCES
[1] J.F. Agaësse and B. Laurent, “Virtual components application and

customization”, in: Proc. of Design, Automation and Test in Europe
(DATE 99), Munich, Germany, March 9-12, 1999, 726-727.

[2] C. Alexander, The Timeless Way of Building. Oxford University Press,
New York, 1979.

[3] S.W. Ambler, Technique Patterns: Building Large-Scale Systems Using
Object Technology. Cambridge University Press, 1998.

[4] C. Atkinson and T. Kühne, “The Role of Metamodeling in MDA”,
International Workshop in Software Model Engineering (in conjunction
with UML ’02), Dresden, Germany, October 2002.

[5] L. Baker, P. Clemente, B. Cohen, L. Permenter, B. Purves, and P.
Salmon, “Foundational concepts for model driven system design”,
Technical paper, Vitech Corporation, 1997.

[6] R.R. Barton, “Metamodeling: a state of the art review”, in: Proc. of the
1994 Winter Simulation Conference, Lake Buena Vista, FL, USA, 1994,
237-244.

[7] D. Batory, “Product-line architectures”, Smalltalk and Java in Industry
and Practical Training, Erfurt, Germany, 1998, 1-12.

[8] D. Batory, R.E. Lopez-Herrejon, J.-P. Martin, “Generating product-lines
of product families”, in: 17th IEEE Conference on Automated Software
Engineering (ASE 2002), 23-27 September, 2002, Edinburgh, Scotland,
UK, 81-92.

[9] D. Batory, S. Dasari, B., Geraci, V. Singhal, M. Sirkin, and J. Thomas,
“Achieving reuse with software system generators”, IEEE Software,
September 1995, 89-94.

[10] M. Becker, “Generic components: a symbiosis of paradigms”, in: G.
Butler and S. Jarzabek (Eds.), Generative and Component-Based
Software Engineering, 2nd Int. Symposium, GCSE 2000, Erfurt,
Germany, October 9-12, 2000, LNCS 2177, Springer, 100-113.

[11] J. Bezivin, N. Farcet, J.-M. Jezequel, B. Langlois, and D. Pollet,
“Reflective model driven engineering”, in: P. Stevens, J. Whittle, and G.
Booch (eds.), Proc. of the 6th Int Conference on The Unified Modeling
Language – Modeling Languages and Applications (UML 2003),
October 20-22, 2003, San Francisco, CA, USA, Lecture Notes in
Computer Science, 2863, Springer, 175-189.

[12] G. Booch, I. Jacobson, J. Rumbaugh, and J. Rumbaugh, The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[13] L.P. Carloni, F. De Bernardinis, A. Sangiovanni-Vincentelli, and M.
Sgroi, “The art and science of integrated systems design”, in: Proc. of
28th European Solid-State Circuits Conference (ESSCIRC 2002), 2002,
Florence, Italy, 25-36.

[14] J.K. Cross and D.C. Schmidt, “Meta-programming techniques for
distributed real-time and embedded systems”, in: Proc. of 7th IEEE Int.
Workshop on Object-Oriented Real-Time Dependable Systems, January
7-9, 2002, San Diego, CA, USA, 3-10.

[15] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools and Applications, Addison-Wesley, 2001.

[16] K. Czarnecki and U.W. Eisenecker, “Separating the configuration aspect
to support architecture evolution”, in: Proc. of 14th European
Conference on Object-Oriented Programming (ECOOP’2000), Int.
Workshop on Aspects and Dimensions of Concerns, Cannes, France,
June 11-12, 2000.

[17] R. Damaševičius and V. Štuikys, “Wrapping of soft IPs for interface-
based design using heterogeneous metaprogramming”. INFORMATICA,
14 (1), 3-18, Lithuanian Academy of Sciences, Vilnius, 2003.

[18] R. Damaševičius, G. Majauskas, and V. Štuikys, “Application of design
patterns for hardware design”, in: Proc. of 40th Design Automation
Conference (DAC 2003), 2-6 June, 2003, Anaheim, CA, USA, 48-53.

[19] R. Damaševičius and V. Štuikys. “Application of UML for Hardware
Design Based on Design Process Model”, in: Proc. of Asia South Pacific
Design Automation Conference (ASP-DAC 2004), January 27-30, 2004,
Yokohama, Japan, pp. 244-249. IEEE.

[20] S. Djokic, G. Succi, W. Pedrycz, and M. Mintchev, “Meta Analysis – a
Method of Combining Empirical Results and its Application in Object-
Oriented Software Systems”, Proc. of the 7th Int. Conference on Object-
Oriented Information Systems, Calgary, Alberta, August 2001.

[21] P. Donohoe (Ed.), Software Product Lines: Experience and Research
Directions, Kluwer Academic Publisher, Boston, 2000.

[22] F. Doucet and R.K. Gupta, “Microelectronic System-on-Chip modeling
using objects and their relationships”, in: Online Symposium for
Electrical Engineers (OSEE 2000).

[23] B.P. Douglass, “Fine grained patterns for real-time systems”, in: L.
Lavagno, G. Martin, and B. Selic (eds.), UML for Real, 149-170.
Kluwer Academic Publishers, Boston, 2003.

[24] C. Dumoulin, P. Boulet, J. Dekeyser, and P. Marquet, “MDA for SoC
Design, intensive signal processing experiment”, in: Forum on Design
Languages (FDL'03), Frankfurt am Main, Germany, 2003.

[25] L. Entrena, C. Lopez, and E. Olias, “Automatic generation of fault
tolerant VHDL designs in RTL”, in: Forum on Design Languages
(FDL’2001), Lyon, France, 2001.

[26] A. Evans, R. France, K. Lano, and B. Rumpe, “Meta-modeling
Semantics of UML”, in: H. Kilov (ed.), Behavioural Specifications for
Businesses and Systems. Kluwer Academic Publishers, 1999.

[27] U. Fayyad, G.G. Grinstein, and A. Wierse (eds.), “Information
Visualization in Data Mining and Knowledge Discovery”, in: U. Fayyad,
G.G. Grinstein, and A. Wierse (eds.). Information Visualization in Data
Mining and Knowledge Discovery. Morgan Kaufman, London/San
Francisco, 2002.

[28] J.M. Fernandes, R.J. Machado, and H.D. Santos, “Modeling industrial
embedded systems with UML”, in: Proc. of 8th IEEE/IFIP/ACM Int.
Workshop on Hardware/Software Co-Design (CODES'2000), 2000, San
Diego, CA, USA, 18-23.

[29] G. Fischer and E. Giaccardi, “Meta-Design: A Framework for the Future
of End-User Development”, in Lieberman, H., Paternò, F., and Wulf, V.
(Eds), End User Development - Empowering People to Flexibly Employ
Advanced Information and Communication Technology, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2004.

[30] G. Fischer and E. Scharff, “Meta-Design—Design for Designers”, Proc.
of 3rd Int. Conference on Designing Interactive Systems (DIS 2000),
New York, pp. 396-405.

[31] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[32] J.P. van Gigch, System Design Modeling and Metamodeling, Plenum
Press, New York, 1991.

[33] T. Givargis, 2000. Intel 8051 micro-controller,
http://www.cs.ucr.edu/~dalton/i8051/i8051syn/

[34] G. de Jong, “A UML-based design methodology for real-time and
embedded systems”, in: Proc. of Design Automation and Test in Europe
(DATE 2002), 4-8 March, 2002, Paris, France, 776-778.

[35] D. Kafura, Object-Oriented Software Design and Construction with
C++, Prentice Hall, 1997.

[36] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A
feature-oriented reuse method with domain-specific architectures”.
Annals of Software Engineering, 5, 1998, 143-168.

[37] A.S. Karrer and W. Scacchi, “Meta-Environments For Software
Production”, International Journal of Software Engineering and
Knowledge Engineering, Vol. 3(1), 1993, pp. 139-162.

[38] D. Kessner, 1999. Free-6502 core, http://www.free-ip.com/6502/
[39] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-

Vincentelli, “System level de-sign: orthogonalization of concerns and
platform-based design”, IEEE Trans. on CAD of ICs and Systems, 19
(12), 2000, 1523-1543.

[40] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-
M. Loingtier, and J. Irwin, “Aspect-oriented programming”, Proc. of the
European Conference on Object-Oriented Programming
(ECOOP’1997). Lecture Notes in Computer Science, 1241, Springer-
Verlag, 220-242.

[41] H. Kühn, and M. Murzek, “Interoperability Issues in Metamodelling
Platforms”, in: Proc. of the 1st Int. Conf. on Interoperability of
Enterprise Software and Applications (INTEROP-ESA'05), Geneva,
Switzerland, February 2005, Springer Verlag.

[42] J. de Lara, H. Vangheluwe, and M. Alfonseca, “Meta-modelling and
graph grammars for multi-paradigm modelling in AtoM”, Software and
Systems Modeling 3(3), Aug 2004, pp. 194–209.

[43] L. Lavagno, G. Martin, and B. Selic, UML for Real. Kluwer Academic
Publishers, Boston, 2003.

[44] E.A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation”, IEEE Transactions on CAD, 17 (12), 1998,
1217-1229.

[45] LEOX Team, 2001. DRAGONFLY micro-core, http://www.leox.org
[46] B. Liccardi, T. Maier-Komor, J.A. Oswald, M. Elkotob, and G. Färber,

“A meta-modeling concept for embedded RT-systems design”, in: 14th
Euromicro Conference on Real-Time Systems, 19-21 June, 2002,
Vienna, Austria.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

186

[47] W. Löwe and M. Noga, “Metaprogramming applied to web component
deployment”, Electronic Notes in Theoretical Computer Science, 65(4),
2002.

[48] A. Ludwig and D. Heuzerouth, “Metaprogramming in the large”, in: G.
Butler and S. Jarzabek (Eds.), Generative and Component-Based
Software Engineering. Lecture Notes in Computer Science, 2177, 178-
187. Springer, 2001.

[49] G. Martin, “UML for embedded systems specification and design:
motivation and overview”, in: Proc. of Design, Automation and Test in
Europe (DATE’2002), March 4-8, 2002, Paris, France, 773-775.

[50] S. Meguerdichian, F. Koushanfar, A. Mogre, D. Petranovic, and M.
Potkonjak, “MetaCores: design and optimization techniques”, in: Proc.
of Design Automation Conference (DAC’2001), June 18-22, 2001, Las
Vegas, Nevada, USA, 585-590.

[51] A. Mihal, C. Kulkarni, C. Sauer, K. Vissers, M. Moskewicz, M. Tsai, N.
Shah, S. Weber, Y. Jin, K. Keutzer, S. Malik, “A Disciplined Approach
to the Development of Architectural Platforms”. IEEE Design and Test
of Computers, 19, 2-12, 2002.

[52] D. de Niz and R. Rajkumar, “Model-based embedded real-time software
development”, in: 10th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2003), Workshop on Model-Driven
Embedded Systems (MDES 2003), May 27-30, 2003, Washington DC,
USA.

[53] Object Management Group (OMG), 2001. Model-Driven Architecture: A
Technical Perspective. Technical Document.

[54] H. Ossher and P. Tarr, “Multi-Dimentional Separation of Concerns and
the Hyperspace Approach”, in: Software Architectures and Component
Technology: The State of the Art in Software Development, M. Aksit,
Ed., Kluwer Academic Publishers, Boston, 2001.

[55] M.J. Pont and M.P. Banner, “Designing embedded systems using
patterns: a case study”, Journal of Systems and Software, 71(3), 201-
213, 2004.

[56] A. Rajawat, M. Balakrishnan, and A. Kumar, “Interface synthesis: issues
and approaches”, in: Proc. of the 13th Int. Conference on VLSI Design,
January 3-7, 2000, Calcutta, India, 92-97.

[57] D. Riehle and H. Zellighoven, “Understanding and using patterns in
software development”, Theory and Practice of Object Systems, 2 (1), 3-
13, 1996.

[58] J. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design”, in:
Proc. of the 34th Design Automation Conference (DAC 97), June 9-13,
1997, Anaheim, CA, USA, 178-183.

[59] A. Ryman, “Requirements for a metaprogramming language”,
Presentation at the 24th meeting of IFIP Working Group 2.4, Kingston,
Canada, 1990.

[60] A. Sangiovanni-Vincentelli and G. Martin, “A vision for embedded
systems: platform-based design and software methodology”, IEEE
Design and Test of Computers, 18 (6), 23-33, 2001.

[61] B. Selic, “Architectural patterns for real-time systems”, in: L. Lavagno,
G. Martin, and B. Selic (eds.), UML for Real, 171-188. Kluwer
Academic Publishers, Boston, 2003.

[62] Semiconductor Industry Association, The International Technology
Roadmap for Semiconductors, 2001.

[63] T. Sheard, “Accomplishments and research challenges in meta-
programming”, in: 2nd Int. Workshop on Semantics, Application, and

Implementation of Program Generation (SAIG’2001), Florence, Italy.
Lecture Notes in Computer Science, 2196, 2-44, 2001.

[64] V. Štuikys and R. Damaševičius, “Metaprogramming techniques for
designing embedded components for ambient intelligence”, in T. Basten,
M. Geilen, and H. de Groot (eds.), Ambient Intelligence: Impact on
Embedded System Design. Kluwer Academic Publishers, Boston, 2003,
pp. 229-250.

[65] V. Štuikys, R. Damaševičius, and G. Ziberkas, “Open PROMOL: An
Experimental Language for Target Program Modification”, in: A.
Mignotte, E. Villar, and L. Horobin (eds.), System on Chip Design
Languages. Kluwer Academic Publishers, 2002.

[66] P.D. Terry, Compilers and Compiler Generators: An Introduction with
C++. International Thomson Computer Press, 1997.

[67] F. Vahid and T. Givargis, Embedded System Design: A Unified
Hardware/Software Introduction. John Wiley & Sons, 2002.

[68] T.L. Veldhuizen, “Using C++ template metaprograms”. C++ Report
7(4), 36-43, 1995.

[69] D. Wallner, AX8 core, 2001, http://hem.passagen.se/dwallner/vhdl.html
[70] D.M. Weiss and C.T.R. Lai. Software Product-Line Engineering: A

Family-Based Software Development Approach. Reading: Addison-
Wesley, 1999.

[71] N. Yoshida, “Design patterns applied to object-oriented SoC design”,
Workshop on Synthesis and System Integration of Mixed Technologies
(SASIMI 2001), 18-19 October, 2001, Nara, Japan.

[72] J. Zhu, “MetaRTL: raising the abstraction level of RTL design”, in:
Proc. Design Automation and Test in Europe (DATE 2001), March 13-
16, 2001, Munich, Germany, 71-76.

[73] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M. Shoji, “An object-
oriented design technique for System-on-Chip using UML”, in: Proc. of
the 15th Int. Symposium on System Synthesis (ISSS 2002), 1-4 October,
2002, Kyoto, Japan, 249-254.

[74] J.W. Janneck and R. Esser, “Higher-order modeling and automated
design-space exploration”, in: Proceedings High-Performance
Computing (HPC) 2002.

[75] M. Gries, “Methods for Evaluating and Covering the Design Space
during Early Design Development”. Integration, the VLSI Journal,
Elsevier, 38(2):131-183, December 2004.

[76] R. Damaševičius and V. Štuikys, “Application of the Object-Oriented
Principles for Hardware and Embedded System Design”. Integration, the
VLSI Journal, 2004, 38(2), pp. 309-339. Elsevier.

[77] M. Palesi and T. Givargis, “Multi-Objective Design Space Exploration
Using Genetic Algorithms”, in: International Workshop on
Hardware/Software Codesign (CODES), Estes Park, May 2002.

[78] G. Palermo, C. Silvano and V. Zaccari, “Multi-Objective Design Space
Exploration of Embedded Systems”. Journal Of Embedded Computing,
Vol. 1, No. 11, November 2002.

[79] D. Ikeda, S. Hirokawa and Y. Yamada, “Pattern Discovery of Genome
Sequences by Substring Amplification”, in: Proc. of Int. Symposium on
Information Science and Electrical Engineering, pp. 637-640,
November, 2003.

[80] R. Damaševičius and V. Štuikys, “Estimation of Power Consumption at
Register-Transfer and Behavioral Modeling Levels Using SystemC”.
Submitted to Journal on Low Power Electronics (JOLPE).

