On Suborbital Graphs of the Congruence Subgroup $\Gamma_{0}(N)$

Bahadir O. Guler, Serkan Kader and Murat Besenk

Abstract

In this paper we examine some properties of suborbital graphs for the congruence subgroup $\Gamma_{0}(N)$. Then we give necessary and sufficient conditions for graphs to have triangels.

Keywords-Congruence subgroup, Imprimitive action, Modular group, Suborbital graphs.

I. INTRODUCTION

LET Γ denote the inhomogeneous group $\operatorname{PSL}(2, \mathbb{Z})$ acting on the upper half plane $H:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ via:

$$
A(z)=\frac{a z+b}{c z+d}, A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma .
$$

Among the subgroups of Γ the congruence subgroups such as

$$
\begin{aligned}
& \Gamma(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \right\rvert\, a \equiv d \equiv 1 \bmod N, b \equiv c \equiv 0(\bmod N)\right\} \\
& \Gamma_{0}(N):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \right\rvert\, c \equiv 0(\bmod N)\right\}
\end{aligned}
$$

have been the objects of detailed studies due to their signifiance in the arithmetic of elliptic curves, integral quadratic forms, elliptic modular forms in [5], [6]. In this paper, we define $\Gamma^{*}(N)$ as the group obtained by adding the stabilizer of ∞ to the congruence subroup $\Gamma(N)$, that is,

$$
\Gamma^{*}(N):=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \Gamma(N)\right\rangle
$$

which is easily seen that

$$
\Gamma^{*}(N)=\left\{\left(\begin{array}{cc}
1+a N & b \\
c N & 1+d N
\end{array}\right): a, b, c, d \in \mathbb{Z}, \operatorname{det}=1\right\} .
$$

Bahadir O. Guler, is with the Rize University, Department of Mathematics, Faculty of Arts and Science, Rize-Turkey. email: bahadir@ktu.edu.tr.

Serkan Kader and Murat Besenk are with Karadeniz Technical University, Department of Mathematics, Faculty of Arts and Science, Trabzon-Turkey emails: serkankader@mynet.com, besenk@ktu.edu.tr.

II. THE ACTION OF $\Gamma_{0}(N)$ ON $\widehat{\mathbb{Q}}$

Every element of $\widehat{\mathbb{Q}}:=\mathbb{Q} \cup\{\infty\}$ can be represented as a reduced fraction $\frac{x}{y}$, with $x, y \in \mathbb{Z}$ and $(x, y)=1$. Since $\frac{x}{y}=\frac{-x}{-y}$, this representation is not unique. We represent ∞ as $\frac{1}{0}=\frac{-1}{0}$. The action of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ on $\frac{x}{y}$ is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y} .
$$

It is easily seen that if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and $\frac{x}{y} \in \hat{\mathbb{Q}}$ is a reduced fraction then, since $c(a x+b y)-a(c x+d y)=-y$ and $d(a x+b y)-b(c x+d y)=x$,

$$
(a x+b y, c x+d y)=1
$$

The action of a matrix on $\frac{x}{y}$ and on $\frac{-x}{-y}$ is identical.
Theorem 2.1. The action of $\Gamma_{0}(N)$ on $\hat{\mathbb{Q}}$ is not transitive.
Proof. From (1), for $\left(\begin{array}{cc}a & b \\ c N & d\end{array}\right) \in \Gamma_{0}(N)$

$$
\left(\begin{array}{cc}
a & b \\
c N & d
\end{array}\right)\binom{1}{N}=\frac{a+b N}{c N+d N}
$$

is a reduced fraction, so $\frac{1}{N}$ is not sent to $\frac{1}{N+1}$ under the action of $\Gamma_{0}(N)$.

Without loss of generality, for making calculations easier, N will be a prime p throughout the paper.

Theorem 2.2. The orbits of $\Gamma_{0}(p)$ are $\binom{1}{1}$ and $\binom{1}{p}$.
Proof. Using the corallaries from [2] we can write down the sets of orbits of $\Gamma_{0}(N)$ in general

$$
\binom{a}{b}=\left\{\frac{x}{y} \in \hat{\mathbb{Q}}:(p, y)=b, x \equiv a \bmod \left(b, \frac{N}{b}\right)\right\} .
$$

Then we have

$$
\binom{1}{p}=\left\{\frac{k}{y p}: k \in \mathbb{Z},(k, y p)=1\right\}
$$

and

$$
\binom{1}{1}=\left\{\frac{k}{\ell}: k, \ell \in \mathbb{Z},(k, \ell)=1\right\} .
$$

We now consider the imprimitivity of the action of $\Gamma_{0}(p)$ on $\widehat{\mathbb{Q}}$.

Let (G, Ω) be transitive permutation group, consisting of a group G acting on a set Ω transitively. An equivalence relation \approx on Ω is called G-invariant if whenever $\alpha, \beta \in \Omega$ satisfy $\alpha \approx \beta$ then $g(\alpha) \approx g(\beta)$ for all g in G. The equivalence classes are called blocks.

We call (G, Ω) imprimitive if Ω admits some G - invariant equivalence relation different from
(i) the identity relation, $\alpha \approx \beta$ if and only if $\alpha=\beta$
(ii) the universal relation, $\alpha \approx \beta$ for all $\alpha, \beta \in \Omega$.

Otherwise (G, Ω) is called primitive. We now give a lemma from [3].

Lemma 2.3. Let (G, Ω) be transitive. (G, Ω) imprimitive if and only if G_{α}, the stabilizer of a point $\alpha \in \Omega$, is a maximal subgroup of G for each $\alpha \in \Omega$.

What the lemma is saying is whenever $G_{\alpha} \lesseqgtr H \lesseqgtr G$, then Ω admits some G - invariant equivalence relation other than trivial cases. In fact, since G acts transitively, every element of Ω has the form $g(\alpha)$ for some $g \in G$. If we define the relation \approx on Ω as

$$
g(\alpha) \approx g^{\prime}(\alpha) \text { if and only if } g^{\prime} \in g H
$$

then it is easily seen that it is non-trivial G-invariant equivalence relation. That is (G, Ω) imprimitive.

From the above we see that the number of blocks is equal to the index $|G: H|$.

We now apply these ideas to the case where G is the $\Gamma_{0}(p)$ and Ω is $\hat{\mathbb{Q}}$. An obvious choice for H is $\Gamma^{*}(p)$. Clearly $\Gamma_{\infty} \lesseqgtr \Gamma^{*}(p) \lesseqgtr \Gamma_{0}(p)$.Then we have

Corollary 2.4. $\left(\Gamma_{0}(p), \widehat{\mathbb{Q}}\right)$ is imprimitive permutation group.
$\Gamma_{0}(p)$ acts transitively and imprimitively on the set $\binom{1}{p}$. Let \approx denote the $\Gamma_{0}(p)$ - invariant equivalence relation induced on $\binom{1}{p}$ by $\Gamma_{0}(p)$ as:
If $v=\frac{a_{1}}{p c_{1}}$ and $w=\frac{a_{2}}{p c_{2}}$ are elements of $\binom{1}{p}$, then $v=g(\infty)$ and $\quad w=g^{\prime}(\infty)$ for elements $g, g^{\prime} \in \Gamma_{0}(p)$ of the form

$$
g=\left(\begin{array}{ll}
a_{1} & b_{1} \\
p c_{1} & d_{1}
\end{array}\right) \quad, \quad g^{\prime}=\left(\begin{array}{cc}
a_{2} & b_{2} \\
p c_{2} & d_{2}
\end{array}\right) .
$$

Now $v \approx w$ if and only if $g^{-1} g^{\prime} \in \Gamma^{*}(p)$, that is,

$$
g^{-1} g^{\prime}=\left(\begin{array}{cc}
d_{1} a_{2}-p\left(c_{2} b_{1}\right) & d_{1} b_{2}-b_{1} d_{2} \\
p\left(a_{1} c_{2}-c_{1} a_{2}\right) & a_{1} d_{2}-p\left(c_{1} b_{2}\right)
\end{array}\right) \in \Gamma^{*}(p)
$$

if and only if $d_{1} a_{2} \equiv 1(\bmod p)$ and $d_{2} a_{1} \equiv 1(\bmod p)$. Then

$$
a_{1} d_{1} a_{2} \equiv a_{1}(\bmod p) \text { and so } a_{1} \equiv a_{2}(\bmod p) .
$$

Hence we see that

$$
\begin{equation*}
v \approx w \text { if and only if } a_{1} \equiv a_{2}(\bmod p) \tag{1}
\end{equation*}
$$

By our general discussion of imprimitivity, the number $\psi(p)$ of equivalence class under \approx is given by

$$
\psi(p)=\left|\Gamma_{0}(p): \Gamma^{*}(p)\right| .
$$

Since $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)^{p} \in \Gamma(p)$, then $\left|\Gamma^{*}(p): \Gamma(p)\right|=p$. From [6], we know that

$$
|\Gamma: \Gamma(N)|=N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) \text { and }\left|\Gamma: \Gamma_{0}(N)\right|=N \prod_{p \mid N}\left(1+\frac{1}{p}\right) \text {. }
$$

Calculating for $N=p$ and using the following equation

$$
\underbrace{\mid \Gamma: \Gamma(p)}_{p\left(p^{2}-1\right)} \mid=\underbrace{\left|\Gamma: \Gamma_{0}(p)\right|}_{p+1} \cdot \underbrace{\left|\Gamma_{0}(p): \Gamma^{*}(p)\right|}_{p-1} \cdot \underbrace{\left|\Gamma^{*}(p): \Gamma(p)\right|}_{p},
$$

we have that

$$
\binom{1}{p}=\left[\begin{array}{l}
1 \\
p
\end{array}\right] \cup\left[\begin{array}{l}
2 \\
p
\end{array}\right] \cup \ldots \cup\left[\begin{array}{c}
p-1 \\
p
\end{array}\right] .
$$

From (1), it is clear that

$$
\left[\begin{array}{l}
1 \\
p
\end{array}\right]=\left\{\frac{1+x p}{y p}: x, y \in \mathbb{Z}\right\} \cong[\infty]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

III. SUBORBITAL GRAPHS

In 1967 Sims introduced the idea of suborbital graphs of a permutation group G acting on a set Ω : these are graphs with vertex set Ω, on which G induces automorphism in [7]. Also in [8] the applications are used in finite groups.

Let (G, Ω) be transitive permutation group. Then G acts on $\Omega \times \Omega$ by

$$
g:(\alpha, \beta) \rightarrow(g(\alpha), g(\beta)), g \in G \text { and } \alpha, \beta \in \Omega .
$$

The orbits of this action are called suborbitals of G, that containing (α, β) being denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of Ω, and there is a directed edge from γ to δ, denoted by $\gamma \rightarrow \delta$, if $(\gamma, \delta) \in O(\alpha, \beta)$. We can draw this edge as a hyperbolic geodesic in the upper half-plane H.

In this final section, we determine the suborbital graphs for $\Gamma_{0}(p)$ on $\binom{1}{p}$. Since $\Gamma_{0}(p)$ acts transitively on $\binom{1}{p}$, each suborbital contains a pair (∞, v) for some $v \in\binom{1}{p} ; v=\frac{u}{p}$, we denote this suborbital by $O_{u, p}$ and corresponding suborbital graph by $G_{u, p}$.
$G_{u, p}$ is a disjoint union of $\psi(p)$ subgraphs forming blocks with respect to " $\approx " \Gamma_{0}(p)$-invariant equivalence relation. $\Gamma_{0}(p)$ permutes these blocks transitively and these subgraphs are all isomorphic [4].

Therefore, it is sufficient to do the calculations only for the block [∞]. Let $F_{u, p}$ denote the subgraph of $G_{u, p}$ whose vertices form the block $[\infty]$.

Theorem 3.1. Let $\frac{r}{s}$ and $\frac{x}{y}$ be in the block [∞]. Then there is an edge $\frac{r}{s} \rightarrow \frac{x}{y}$ in $F_{u, p}$ if and only if

$$
x \equiv \pm u r(\bmod p) \text { and } r \equiv 1(\bmod p), r y-s x= \pm p
$$

$$
y \equiv \pm s u(\bmod p) \text { and } s \equiv 0(\bmod p), r y-s x= \pm p
$$

Proof. Since $\frac{r}{s} \rightarrow \frac{x}{y} \in F_{u, p}$, then there exists some $T \in \Gamma^{*}(p)$ such that T sends the pair $\left(\frac{1}{0}, \frac{u}{p}\right)$ to the pair $\left(\frac{r}{s}, \frac{x}{y}\right)$, that is, for $T=\left(\begin{array}{cc}1+a p & b \\ p c & 1+d p\end{array}\right) \in \Gamma^{*}(p), \operatorname{det} T=1$,
$T\left(\frac{1}{0}\right)=\frac{r}{s} \quad$ and $\quad T\left(\frac{u}{p}\right)=\frac{x}{y}$. From these equations , it is clear that $x \equiv u r(\bmod p)$ and $y \equiv s u(\bmod p)$.

Furthermore

$$
\left(\begin{array}{cc}
1+a p & b \\
p c & 1+d p
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & p
\end{array}\right)=\left(\begin{array}{ll}
r & x \\
s & y
\end{array}\right),
$$

so that $r y-s x=p$.
Conversely, let be $x \equiv u r(\bmod p)$ and $y \equiv s u(\bmod p)$ and also $r \equiv 1(\bmod p)$ and $s \equiv 0(\bmod p)$.Then there are $b, d \in \mathbb{Z}$ such that $x=u r+b p$ and $y=s u+d p$. If we put these equivalences in $r y-s x=p$, we obtain

$$
r(u s+d p)-s(u r+b p)=p .
$$

Since

$$
\left(\begin{array}{ll}
r & b \\
s & d
\end{array}\right)\left(\begin{array}{ll}
1 & u \\
0 & p
\end{array}\right)=\left(\begin{array}{ll}
r & u r+b p \\
s & u s+d p
\end{array}\right),
$$

then $r d-b s=1$. As $r d-b s \equiv 1(\bmod p)$ and $s \equiv 0(\bmod p)$, then $\quad r d \equiv 1(\bmod p)$. Since $r \equiv 1(\bmod p)$, we obtain $d \equiv 1(\bmod p)$.

Consequently,

$$
A=\left(\begin{array}{ll}
r & b \\
s & d
\end{array}\right), ~ \operatorname{det} A=1 \text { and } \begin{aligned}
& r \equiv d \equiv 1(\bmod p) \\
& s \equiv 0(\bmod p)
\end{aligned},
$$

so $A \in \Gamma^{*}(p)$.
The proof for (-) is similiar.
Theorem 3.2. $\Gamma^{*}(p)$ permutes the vertices and the edges of $F_{u, p}$ transitively.
Proof. Suppose that $u, v \in[\infty]$. As $\Gamma_{0}(p)$ acts on $\binom{1}{p}$ transitively, $g(u)=v$ for some $g \in \Gamma_{0}(p)$. Since $u \approx \infty$ and $" \approx "$ is $\Gamma_{0}(p)$ - invariant equivalence relation, then $g(u) \approx g(\infty)$, that is, $v \approx g(\infty)$. Thus, as $g(\infty) \in[\infty]$, $g \in \Gamma^{*}(p)$.
Assume that $v, w \in[\infty] ; x, y \in[\infty]$ and $v \rightarrow w, x \rightarrow y \in F_{u, p}$. Then $(v, w) \in O_{u, p}$ and $(x, y) \in O_{u, p}$. Therefore, for some $S, T \in \Gamma_{0}(p)$

$$
S(\infty)=v, S\left(\frac{u}{p}\right)=w ; T(\infty)=x, T(\infty)=y .
$$

As $S(\infty), T(\infty) \in[\infty]$, then $S, T \in \Gamma^{*}(p)$. So this proof is completed.

Fig. $1 F_{u, p}-$ Suborbital Graph
[3] N.L. Bigg and A.T. White, Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series 33, Cambridge Universty Press, Cambridge, 1979
[4] G.A. Jones, D. Singerman, K. Wicks, The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Note Series, Vol. 160, Cambridge Universty Press, 1991, pp 316-338.
[5] R. S. Kulkarni, An Arithmetic-Geometric Method in The Study of The Subgroups of The Modular Group, American Journal of Mathematics, 113 ,1991, pp 1053-1133.
[6] B. Schoeneberg, Elliptic Modular Functions, Springer Verlag, Berlin, 1974.
[7] C. C. Sims, Graphs and Finite Permutation Groups, Math. Z., 95, 1967, pp 76-86.
[8] T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Pres, Cambridge, 1982.

Theorem 3.3. $F_{u, p}$ contains a triangle if and only if $u^{2} \pm u+1 \equiv 0(\bmod p)$.

Proof. Since $\Gamma^{*}(p)$ permutes the vertices transitively $F_{u, p}$ and $\infty \rightarrow \frac{u}{p}$, then we may suppose that triangle has the form

$$
\infty \rightarrow \frac{u}{p} \rightarrow v \rightarrow \infty
$$

Assume that $v=\frac{x}{y p}, y>0$. Since $\frac{x}{y p} \rightarrow \frac{1}{0}$, then

$$
0 \cdot x-y p= \pm p
$$

As $y>0$, then $y=1$. Therefore $v=\frac{x}{y}$. Since $\frac{u}{p} \rightarrow \frac{x}{y}$, then from Theorem 3.1 we obtain

$$
\begin{align*}
& u-x=1 \quad \text { and } \quad x \equiv u^{2}(\bmod p) \tag{2}\\
& u-x=-1 \quad \text { and } \quad x \equiv-u^{2}(\bmod p) \tag{3}
\end{align*}
$$

From (2) and (3), we have that

$$
u^{2}-u+1 \equiv 0(\bmod p) \text { and } u^{2}+u+1 \equiv 0(\bmod p)
$$

respectively.
Conversely, suppose that $u^{2} \pm u+1 \equiv 0(\bmod p)$. Clearly, we have the triangle

$$
\infty \rightarrow \frac{u}{p} \rightarrow \frac{u \pm 1}{p} \rightarrow \infty
$$

from Theorem 3.1.

Acknowledgment

We would like to express our sincere thanks to Professor Mehmet Akbas for his immense help during the preparation of this paper.

REFERENCES

[1] M. Akbas, On suborbital graphs for the modular group, Bull. London Math. Soc. 33, no. 6, 2001, pp 647-652.
[2] M. Akbas and T. Başkan, Suborbital graphs for the normalizer of $\Gamma_{0}(N)$, Tr. J. of Mathematics 20, 1996, pp 379-387.

