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Abstract—Classical Bose-Chaudhuri-Hocquenghem (BCH) 

codes C that contain their dual codes can be used to construct 
quantum stabilizer codes this chapter studies the properties of such 
codes. It had been shown that a BCH code of length n which contains 
its dual code satisfies the bound on weight of any non-zero codeword 
in C  and converse is also true. One impressive difficulty in 
quantum communication and computation is to protect information-
carrying quantum states against undesired interactions with the 
environment. To address this difficulty, many good quantum error-
correcting codes have been derived as binary stabilizer codes. We 
were able to shed more light on the structure of dual containing BCH 
codes. These results make it possible to determine the parameters of 
quantum BCH codes in terms of weight of non-zero dual codeword. 
 

Keywords—Quantum Codes, BCH Codes, Dual BCH Codes, 
Designed Distance. 

I. INTRODUCTION 
UANTUM Error Correction is one of the basic 
components of quantum information theory. Quantum 

information processing can be used to solve problems in 
cryptography, secure communication and physics simulation 
exponentially faster than any of its possible classical 
analogues. Quantum computers physical models allow exact 
realizations of quantum information and its manipulation, 
provided the underlying assumptions are satisfied. However, it 
is unrealistic to assume that the practical physical systems will 
behave like the ideal models. Quantum data is very vulnerable 
to decoherance, interaction with the environment which is due 
to incomplete isolation of the system from the rest of the 
world. Also, control errors, which are caused by calibration 
errors and fluctuations in control parameters, have to be taken 
care of. Some kind of error correction is necessary to reduce 
the effects of these errors. Soon after the existence of quantum 
error correction was proved in the pioneering paper by Shor 
[1], the first constructions of good quantum error-correcting 
codes were given by Steane [2] and Calderbank and Shor [3]. 
These codes protect the quantum information using additional 
qubits (A qubit is a unit vector in a two dimensional complex 
vector space for which a particular basis, denoted by |0 , |1 , 
has been fixed.) and make it possible to reverse the effects of 
the most likely errors.  

Encouraged by these positive results, researchers 
investigated and constructed many new quantum error 
correcting codes. The fault-tolerant implementations of several 
 

Jaskarn S. Bhullar is currently the in charge of the Department of Applied 
Sciences at MIMIT, Malout, Punjab, India. (phone: +919356737037; e-mail: 
bhullarjaskarn@rediffmail.com).  

Manish Gupta is Associate Professor at the Baba Farid College of 
Engineering and Technology, Bathinda, Punjab, India. (Phone: 
+919815138274; e-mail: manish_guptabti@yahoo.com). 

quantum operations were also discovered. These 
implementations make the basic assumption that the effects of 
all errors are sufficiently small per quantum bit and step of the 
computation.  

Quantum information theory is rapidly becoming a wall-
established discipline. It shares many of the concepts of 
classical information theory but involves new subtleties 
arising from the nature of quantum mechanics. Among the 
central concepts in common between classical and quantum 
information is that of error correction. Quantum error-
correcting codes have progressed from their initial discovery 
[1] to broader analyses of the physical principles [5]-[8] and 
various code constructions [8], [12], [19]. 

The first quantum error correcting codes were discovered 
independently by Shor [1] and Steane [2]. Shor proved that 9 
qubits could be used to protect a single qubit against general 
errors, while Steane described a general code construction 
whose simplest example does the same job using 7 qubits. A 
general theory of quantum error correction dates from 
subsequent papers of Calderbank and Shor [3] and Steane [4] 
in which general code constructions, existence proofs, and 
correction methods were given. Knill and Laflamme [5] and 
Bennett et al. [6] provided a more general theoretical 
framework, describing requirements for quantum error 
correcting codes, and measures of the fidelity of corrected 
states. The important concept of the stabilizer is due to 
Gottesman [7] and independently Calderbank et al. [8]; this 
found many useful insights into the subject, and permitted 
many new codes to be discovered [7]-[9]. Stabilizer methods 
will probably make a valuable contribution to other areas in 
quantum information physics. The idea of recursively 
encoding and encoding again was explored by several authors 
[10]-[12], using quantum resources in a hierarchical way, to 
permit communication over arbitrarily long times or distances. 
Building upon the ideas of quantum error correction, fault-
tolerant quantum computation was first proposed by Shor [13]. 
These ideas were summarized by Preskill [14]. Gottesman put 
forward a significant number of further ideas on fault-tolerant 
quantum computing [15], which allow fault tolerant methods 
to be found for a wide class of Quantum error correction 
codes, and the methods were further improved in [16], [17].  

II. PRINCIPLES OF ERROR CORRECTION OF QUANTUM CODES 
Although quaternary constructions [18] yield good quantum 

codes, building quantum codes form binary was suggested by 
Calderbank and Shor [3] and Steane [4], [22]. Recently, 
Steane [9] proposed an enlargement of the Calderbank-Shor-
Steane construction, leading to several families of codes with 
fixed minimum distance and growing length. Cohen et al. [23] 
further improved the estimates of code parameters obtained 
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from Steane’s construction, and presented examples of new 
codes, and analyze asymptotic non constructive bounds. 

The minimum distance d of the quantum code C is the 
largest generalized weight of a vector in  C C . This code 
has parameters [[n, k, d  where  is log C n . 

Let C n, k, d  denoted a binary linear code of length n, 
dimension k, and minimum distance d.  

For a more description Quantum theory of codes see [20]. 

III. SOME NEW QUANTUM CODES 
Steane [16] proved that the primitive BCH codes of length 

2 1 contain their duals if and only if their designed 
distance d 2t 1 satisfies  

 
d 2 / 1 

 
It following form [20] that in this case the codes have 

parameter  
 

2 1, 2 1 mt, 2t 1  
 

Moreover, these codes are nested, i.e. form a chain for the 
inclusive relation when t increases. Extending them with a 
parity bit, [23] derived the families of codes. 

Calderbank in [18] shows how to construct an n, k
1, d 1 - code from an [[n, K, d]]-code. Using it [23] 
constructed from F  the following family 

 
F   2  , 2 5l 3 m 1 b, 6l 5  

 
for 6l 6 2 /  

It is tempting to conjecture the existence of families of 
codes with parameters  

 
F 2 , 2 5l a 2 m b, 6l a  

 
where a 0,1,2,3,4,5 and b is a small integer constant. Cohen 
et al [20] also proved the following result: 

Theorem 1 [23]: For 6l 4 2 /  there exist quantum 
codes with parameters 

 
F 2 , 2 5l 2 m 1,6l 4  

 
Theorem 2 [16]: Let C n, k, d ,  C C, be  a classical 

binary linear error-correcting code with generator matrix G. 
Let C be a subcode of a code C′ n, k′ k 1, d′  with 
generator matrix G

G′ , then 
 

G

G 0

o G

G′ PG′

 

 
where P is an invertible fix-point free map generates a 
quantum code  of parameters 

n , k k′ n, min d,
3d′
2  

 
Thangaraj and McLaughlin [28] used the ideas of 

Calderbank  et al. [8] to construct a new class of quantum 
codes from cyclic over GF(4 ). In particular, the following 
theorem from [8] can be used directly to obtain quantum codes 
from the certain codes from certain code over GF(4). 

Theorem 3 [22]: Suppose C is an (n, k) linear code over 
GF(4) self-orthogonal with respect to the Hermitian inner 
product. Suppose also that the minimum weight C \
 C is d. Then an n, n 2k, d  quantum code can be obtained 
from C 

The Hermitian inner product of u. v GF 4  is defined to 
be  

 
u. v u v u v u v  

 
where ω ω  for ω GF 4 .  

Thangaraj and McLaughlin [28] considered self - 
orthogonal codes over GF(4) that are obtained as 4- ary 
images of 4 ary cyclic codes of the length n| 4 1 . 
Binary images of the self – orthogonal codes over GF(2  
have been used to obtain Quantum codes in [27].  

IV. QUANTUM BCH CODES 
Calderbank, Shor, Rains, and Sloane outlined the 

construction of binary quantum BCH codes in [8]. Grassl, 
Beth and Pellizari developed the theory further by formulating 
a nice condition for BCH codes [24], [25]. Steane simplified it 
futher for the special case of binary narrow-sense primitive 
BCH codes [9] and gave a very simple criterion based on the 
design distance along. Very little was done with respect to the 
nonprimitive and nonbinary quantum BCH codes. 

Aly et al [26] gave very simple conditions based on design 
distance alone. Further he gave precisely the dimension and 
tighten ruslts on the purity of the quantum codes from 
classical codes  

Theorem 4 [26] Let m ord q 2,   where q is a power 
of a prime and δ , δ  are integers such that 2 δ δ
δ  where 

 

δ
n

q 1 q 1 q 2 m odd  

 
Then there exist a Quantum code with parameter 
 

n, m δ δ
δ 1

q
δ 1

q , δ    

 
pure to δ . 

When BCH codes contain there duals then following result 
is derived by [21] 

Theorem 5 [26] Let  m ord q  where q is a power of a 
prime and . . δ δ , with 
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δ
n

q 1
q 1 q 2 m odd , 

 
Then there exists a quantum code with parameters 
 
         n, n 2m δ 1 1 1/q , δ         

 
pure to δ 1 

Theorem 6 [26] Let m ord q 2 where q is a power 
of a prime and 2 δ δ n q 1 / q 1 , then 
there exists a quantum code with parameters 

 
n, n 2m δ 1 1 1/q , δ  

 
that is pure up to δ 1 

In the above theorem, quantum codes can also be 
constructed when the design distance exceeds the given value 
of δ . 

These are not the only possible families of quantum codes 
that can derived from BCH codes over F  to get codes makes 
it very easy to specify such codes. Similar results can be 
derived for the Hermitian case. 

Theorem 7 [26] Let m ord q  where q is a power of a 
prime and 2 δ δ , with 

 

δ
n

q 1
q 1 q 2 m odd  

 
Than there exists a quantum code with parameters  
 

ln, ln 2lm δ 1 1 1/q , δ   
 
The Next theorem from [1] used mainly for the construction 

of the quantum BCH codes [24] describes a necessary and 
sufficient conditions for the self – orthogonality of the cyclic 
codes over GF (4). 

Theorem 8 A linear cyclic codes over GF(4) of the 
length n| 4 1 and the generator of the polynomials g(x) is 
self – orthogonal if any only if  

g x g x 0 mod x 1  
where if  

g x g x
  

 
 

g x GCD g g  x , x 1  

 
and   g g .  

Generator polynomials of cyclic codes of the length 
n| 4 1  over GF(4) are usually specified in the terms of 
their zeros in GF(4 .  

Lemma 1 [20] Suppose C is a binary BCH code of length 
n 2 1 with designed distance δ 2t 1, where 
2t 1 2 ⁄ 1, then the weight w of any non-zero 
codeword in C  lies in the range  

2 t 1 2 ⁄ w 2 t 1 2 ⁄  

Theorem 10 Let C be binary BCH code of length n 2
1 with designed distance δ 2t 1, where  
 

2t 1 2 ⁄ 1 
 
and w be the weight of any non-zero codeword in C , then  
C C if and only if weight w lies in the range of  
 

n 3
16

t 1
n 5

2 5
t
2 

 
Proof: 
 

2 t 1 2 ⁄ w 2 t 1 2 ⁄  
t 1 2 ⁄ w 2 t 1 2 ⁄  

     |w 2 | t 1 2 ⁄       
2t 1 2 ⁄ 1 
δ 2 2 ⁄ 1 

δ 2 ⁄ 3 δ  
 
But from [26] 
 

 δ δ
n 1

2  

 
So     2 ⁄ 3  

2. 2 ⁄ ⁄ n 1
2

n 1
2 3

n 1
2 3 

2 ⁄ n 5
2  

 
Again  
 

2. 2 ⁄ ⁄ n 1
2

n 1
2 3

n 1
2 1 3 

2 ⁄ n 3
4  

n 3
16

t 1
n 5

2 2 t 1 2 ⁄ w

2 t 1 2 ⁄

n 5
2 t 1

n 5
2  

n 3
16

t 1
n 5

2 5
t
2 

 

V. CONCLUSION 
A conclusion section is not required. Although a conclusion 

may review the main points of the paper, do not replicate the 
abstract as the conclusion. A conclusion might elaborate on 
the importance of the work or suggest applications and 
extensions.  
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