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Abstract—In this paper, some problem formulations of dynamic 

object parameters recovery described by non-autonomous system of 
ordinary differential equations with multipoint unshared edge 
conditions are investigated. Depending on the number of additional 
conditions the problem is reduced to an algebraic equations system or 
to a problem of quadratic programming. With this purpose the paper 
offers a new scheme of the edge conditions transfer method called by 
conditions shift. The method permits to get rid from differential links 
and multipoint unshared initially-edge conditions. The advantage of 
the proposed approach is concluded by capabilities of reduction of a 
parametric identification problem to essential simple problems of the 
solution of an algebraic system or quadratic programming. 
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I.   PROBLEM FORMULATION 

ET’s consider a problem of parameters identification of a 
linear non-autonomous dynamic system: 

[ ],,),()()()()( 0 kttttCptBtxtAtx ∈++=&   (1) 

where nEtx ∈)( - phase state of system; lEp∈ - required 
parameters; )(),(),( tCtBtA - given matrixes with dimensions 

)1(),(),( ××× nlnnn  respectively, moreover consttA ≡/)( . 
There are  m  initially-edge conditions of a system that can 

also depend on unknown parameters: 
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where ,,...,1,0,ˆ kt =νν -times moments from ],,[ 0 ktt  

kk tttt == ˆ,ˆ
00 , the matrixes βξαν ˆ,ˆ,ˆ  with respective 

dimensions )1(),(),( ××× mlmnm  are given. 
Let's mark a general problem of linear systems of 

differential equations with the multipoint unshared edge 
conditions. The problem (1), (2), generally speaking, concerns 
to this class of problems at fixed values of parameter p . The 
problem is connected to the complexity of obtaining of 
constructive necessary and sufficient conditions of the solution 
existence  of a boundary value problem such as (1), (2), that is 
studied by many scientists, starting from activities of 
Tamarkin, Valle-Poussin and other scientists ([1], [3]). 

Let 
],,[),,max()(,)( 0 ktttlntBrangntArang ∈==  

mrangrang kk == ]ˆ,,ˆ,...,ˆ[],ˆ,...,ˆ[ 00 βξααξαα . 
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Depending on a ratio between values of matrixes ranks, 
participating in (1), (2), the following cases, corresponding to 
the different problem formulations, are possible. 

Case А: lnm += . Then there is a single vector of 
parameters p  and corresponding solution of a boundary 
value problem (1), (2) (problem A). 

Case В: lnm +< . Then the system vector of parameters, 
satisfying (1), (2), is not unique and there are additional 
conditions on system parameters and status in the form of  
equality with the number no more than mln −+  and  
inequality 
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the total number which one let will be equal 1m . In that case 
the choice of optimal parameter values can be performed 
according to any criterion. For example, as criterion of 
parametrs optimization can be used the minimized functional:  
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Here 221 ,...,1,0,, kjj =σσ  - positive weight coefficients; 

matrixes gfkje j ,,,...,0, 1=  with dimention 
)1(),(),( 111 ××× mlmnm  respectively; the time moments 

],[ 0 ki ttt ∈
(

,  ],[ 0 kj ttt ∈  and desired system status jX  on 
moment jt  , 1,...,1,0 ki = , 2,...,1,0 kj =  are given (problem  
B ). 

In case  lnm +> , i.e. the number of linearly - independent 
initially-edge conditions exceeds the number of conditionally 
free parameters of a dynamic system, generally, as is known, 
boundary value problem (1), (2) will not have the solution at 
any value of vector of parameters p . 

 
II.   THE SOLUTION OF PROBLEM A  

For a numerical solution of a problem A  the following 
scheme of the transfer (shift) of multipoint unshared edge 
conditions (2), offered in [1,3], will be used. 

Let's consider an expression at interval ]ˆ,[ 10 tt : 

∑
=
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k

tpttxttxt
1

0 )()()ˆ()()()(
ν

ν
ν βξαα ,  (5) 

where )(tx  is required solution of the boundary problem, the 

matrix functions  )(),(),( ttt βξαν  with dimentions 
)1(),(),( ××× mlmnm  are still arbitrary satisfying only 

conditions:  

      ( ) .ˆ)(,ˆ,,...,0,ˆ)( 000 βαβξξναα νν ==== tkt        (6) 

L 
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The expression (5) at 0tt =  coincides with conditions (2). 

The matrix functions ),(),(,,...,0),( ttkt βξναν =  
satisfying a ratio (5) at ]ˆ,[ 10 ttt∈ , are not unique. Let's speak, 
that they do shift of conditions (2) to the right, since the ratio 
(5) at 1̂tt =  becomes: 

[ ] ∑
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2
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and after redenotation  
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we will get condition: 
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The condition (7) is equivalent (2), but differs from (2) by 
that in (7) values of a required trajectory )(tx  in the most left 
point 00 t̂tt ==  will not be used. 

Having repeated a similar procedure with a condition (7) on 
the following interval ]ˆ,ˆ[ 21 tt  with the help of some matrix 

functions ,,...,1),( kt =ναν )(),( tt βξ  it is possible to 
receive conditions, equivalent to (7), but not keeping values 
required trajectory )(tx  at 1̂tt = . Step-by-step continuing shift 
to the right of edge conditions sequentially on subinterval 

kitt ii ,...,2],,[ 1 =−  at the end we shall receive m  ratio: 

βξα ˆˆ)(ˆ =+ ptx k
k ,     (8) 

where the dimension of vector of unknowns )),(( ptx k  is 
ln + . Considering, that for a problem A  lnm += , it is 

possible, having solved a system (8) to define )( ktx  and the 
parameters vector p , then having solved a Cauchy problem 
(1), (2) from kt  up to 0t  to determine )(tx . By doing this the 
solution of a problem A  is completed. 

It is necessary to solve the problem of selection of matrix 
functions )(),(),( ttt βξαν  executing step-by-step shift of 
edge conditions. As it was already marked, they are not 
unique. In particular as such matrix functions it is possible to 
use that are adduced in the following theorem. 

It is remain to solve the problem of selection of matrix 
functions )(),(),( ttt βξαν , executing step-by-step shift of 
edge conditions. As was noted above, they are not unique. In 
particular, as such matrix functions it is possible to use those 
given in the following theorem. 

Theorem 1.  Let functions 
)(),(,,...,0),( ttkt βξναν =  are determined by solution 

of following non-linear Cauchy problems: 
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,ˆ)(),()()()()( 0
00 ξξαξξ =−= ttBtttSt&   

 (11) 

,ˆ)(),()()()()( 0
00 ββαββ =+= ttCtttSt&   

 (12) 
ktMt ,...,1,ˆ)()( == ναα νν  ,   

 (13) 
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T  is the sign of matrix transposition, I  is −m dimentional 
unit matrix. Then these matrix functions execute shift of 
conditions (2) to the right on an interval ]ˆ,ˆ[ 10 tt , i.e. for them 
the (15), (7) is executed. Moreover, it takes place: 

],ˆ,ˆ[,)()()( 10
2220 tttconstttt ∈=++ βξα  (14) 

whence follows the stability of a Cauchy problem (9) - (12) . 
Proof. Let for )(tx , being solution of a problem (1), (2), the 

ratio takes place: 

[ ],ˆ,,)()()(ˆ)()( 10
1

0 ttttpttxtxt
k
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ν
ν βξαα           (15) 

where )(),(),(0 ttt βξα  while arbitrary differentiable 
functions. Let’s differentiate (15) and take into account (1) 
(for short, argument t  on functions is omitted):  

,00 βξαα &&&& =++ pxx  

.0000 βξαααα &&& =++++ pCBpAxx  
Let's conduct a grouping: 

.0)()()( 0000 =+−++++ CpBxA αβαξαα &&&
 

Using apparently checked by direct permutation in a 
problem conditions: 

0,],[,0)( 10 ≠∈≡/ pttttx  

and arbitrary of functions ),(),(),(0 ttt βξα  we shall demand 
fulfilment of equalling to zero the expressions in brackets: 

,,, 0000 CBA αβαξαα =−=−= &&&   (16) 
provided that 

.ˆ)(,ˆ)(,ˆ)( 00
0

0
0 ββξξαα === ttt    

Let's multiply (15) by an arbitrary matrix function )(tM  of 
dimension )( mm×  such, that  

,)( 0 ItM =            (17) 
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Let )(tM  satisfy the equality: 

consttGtGtG =++
2

3
2

2
2

1 )()()( .    
Then 

0333322221111 =+++++ TTTTTT GGGGGGGGGGGG &&&&&& . 
 (21) 

Differentiating equation (19) and considering (16), we will 
receive: 

,11
10

1
100

1 AGGMMAMGMMMMG −=−=+= −− &&&&& ααα    (22) 

,12
10

2
1

2 BGGMMBMGMMMMG −=−=+= −− &&&&& αξξ       (23) 

CGGMMCMGMMMMG 13
10

3
1

3 +=+=+= −− &&&&& αββ .     (24) 
Transposing (22) - (24), we’ll receive: 

,)( 1
1

11
TTTTTT GAMMGG −= − &&    (25) 

,)( 1
1

22
TTTTTT GBMMGG −= − &&    (26) 

.)( 1
1

33
TTTTTT GCMMGG += − &&    (27) 

Allowing expressions (22) - (27) in (21), after simple 
transformations we'll receive: 
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    From independence and arbitrary of matrixes 321 ,, GGG  for 
fulfilment of this equation it is enough to demand from )(tM , 
that the expressions in square brackets equals zero. Then 
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Here the notation of a right part of differential equation by 
0S  is introduced. Then 

MSM 0=
⋅

.     (28) 
Differentiating equation (19) and considering (28), (16), 

we’ll receive: 
,11

000000
1 AGGSAMMSMMG −=−=+= αααα &&&  (29) 

,12
000

2 BGGSBMMSMMG −=−=+= αξξξ &&&  (30) 

.13
000

3 CGGSCMMSMMG +=+=+= αβββ &&&  (31) 
Adding the condition (20), we’ll receive 

001 ˆ)( α=tG , ξ̂)( 02 =tG ,   β̂)( 03 =tG .  (32) 

Again having renamed matrix functions )(1 tG  through )(0 tα , 

)(1 tGν  through )(tνα , k,...,1=ν ,    )(2 tG  through )(tξ , and 
)(3 tG  through )(tβ , we shall receive functions, executing 

shift of conditions (2) to the right, about which one there is a 
speech in the theorem. 

Remark. It is important to note following. As it was 
indicated above, matrix functions executing shift of conditions 
(2), are not determined uniquely. For example, the functions 
defined by linear Cauchy problems (16), formally meet 

definition (15) of shifting to the right of initially-edge 
conditions (2), but as is known [1] one of linear problems  

)(tfAxx +=&  ,   00 )( xtx = , 
00 αα A−=& ,      0

0
0 ˆ)( αα =t , 

or both simultaneously depending on eigenvalues of a matrix 
A are unstable. The fulfillment of a condition (14) provides 
that the auxiliary Cauchy problems (9) - (12) will have stable 
solution and it is very important at realization of practical 
calculations. 

The proof method of the theorem can easily be applied to 
particular cases of condition (14): 

constt =≡
2020 ˆ)( αα , 

consttt =+≡+
220220 ˆˆ)()( βαβα , 

consttt =+≡+ ξαξα ˆˆ)()(
20220 , 

under which the condition of the theorem will differ only by 
kind of a function )(0 tS . 

At definite specificity of conditions (2), for example, when 
a part 0m  from conditions (2) )( 0 mm <  have local nature and 
are determined on the left-hand end of an interval at 0tt = : 

     γξη =+ ptx )( 0 ,                     (33) 
 where γξη ,,  are given matrixes of dimension 

)1(),(),( 000 ××× mlmnm  respectively, more effective is the 
implementation of a left-shift of conditions (2), beginning 
from an interval ]ˆ,ˆ[ 1 kk tt − , the number which one is in this case 
equal lmnm +−= 0 . In this case instead of (5) we’ll consider 
a ratio on a section ]ˆ,ˆ[ 1 kk tt − : 
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where )(tx  is the solution of a boundary value problem; 

)(),(),( ttt βξαν  are arbitrary matrixes of dimension 
,...0),1(),(),( kmlmnm =××× ν  obeying: 

kttt kkk ...0,ˆ)ˆ(,ˆ)ˆ(,ˆ)ˆ( ==== νββξξαα νν               (35) 
Let's speak, that the matrix functions execute shift of 

conditions (2) to the left, since from (34) at 1
ˆ
−= ktt  we’ll 

receive: 
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here following redesignations are used: 
)ˆ()ˆ(ˆ 1

1
1

1
−

−
−

− += k
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k
kk tt ααα ,

2,...,0),ˆ(ˆ 1 −== − ktk ναα νν , 

)ˆ(ˆ
1−= ktξξ . 

The conditions (36) and (2) are equivalent, but in (36) the 
value of a required function in the most right point )ˆ( ktx  does 
not participate:. Further, repeating a left-shift of conditions on 
series time frames 1,...,2,1],ˆ,ˆ[ 1 −−=− kkstt ss , in the end 
we shall receive locally given condition on the left-hand end: 
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βξα ˆˆ)(ˆ 0

0 =+ ptx                                                   (37) 
From )( ln +  conditions (33), (37) it is possible to define 

)( ln +  of unknowns lEtxx ∈= )( 00  and nEp∈ , then to 
solve a Cauchy problem concerning (1) with the obtained 
initial conditions )( 0tx  and already known values of 
parameters vector p  in a right part of (1). 

The template functions )(),(,,...,0),( ttkt βξναν =  
executing shift of conditions (2) to the left are not unique, the 
following theorem takes place. 

Theorem 2. Functions )(),(,,...,0),( ttkt βξναν =  
defined by the solution of following non-linear Cauchy 
problems: 

,ˆ)(),()()()()( 0
kkkkkk ttAtttSt ααααα =−=&  

  
,)ˆ(),()()( ItMtMtStM k

k ==&    
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−+=
TT
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execute shift of conditions (2) to the left on a section ]ˆ,ˆ[ 1 kk tt − , 
and takes place 

],ˆ,ˆ[,)()()( 1
222

kk
k tttconstttt −∈=++ βξα  

 
III.  THE SOLUTION OF PROBLEM B  

For the solution of problem B  it is basically used the 
procedure of conditions shift (2), described above, permitting 
to get rid from differential links (1) and to reduce a problem of 
parameters optimization to a problem of quadratic 
programming. 

Let's introduce new variables: 
)ˆ(1

νν txz = ,   ,,...,0 k=ν  )(2
jj txz
(

= , ,,...,0 1kj =   

)(3
ii txz = , ,,...,0 2ki =   

.)3(,),,( 21
321 nkkkNEzzzZ N +++=∈=       (38) 

It is clear that executing series shift to the right of 
conditions (2) at intervals kjtt jj ,...,1),ˆˆ[ 1 =− , i.e. solving 
Cauchy problems (9) - (12) and determining values of matrix 
functions in time moments ,,...,0,, 1kjtt ij =

(
2,..,0 ki =   in 

addition to mk )1( +  relations of a kind (7): 

,,...,0),ˆ()ˆ()ˆ( 1 kjtptzt j

k

j
j ==+∑

=

βξα
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we receive the mk )1( 1 + and  mk )1( 2 +  relations:  

,,...,0),()()()( 1
1

12 kjtptztzt j

k

jjjj
j

j ==++ ∑
+=

((((
βξαα

µν
ν

νµ (40) 

,,...,0),()()( 2
1

13 kitptzzt ii

k

ii
i

i ==++ ∑
+=

βξαα
χν

ν
νχ  (41) 

where ij χµ ,  are the numbers of subintervals, keeping 

instants accordingly jt
(

and it , i.e.   

21 ,...,0,,...,0),ˆ,ˆ[),ˆ,ˆ[
11

kikjtttttt
iijj ij ==∈∈
++ χχµµ
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It is clear, that the number of restrictions as equalities in (34) - 
(36) equals .)3( 21 mkkkM +++=  

Using notations (38), limitations (3) and target functionals 
(4) we’ll write as: 

( ) ,
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0

2 gfpze
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j
j

j
=
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+∑     (42) 
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23
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2
1 ∑
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E

j
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The problem (39) - (43) is a problem of quadratic 
programming with optimized vector ( )pZ ,  of dimension 

lN +  and the number of limitations as equalities (39) - (41) is 
M  and mixed type (37) is  1m , that generally can be 
presented as: 

( ) ,TFpRZ =
≤+  

,),( 2
2

2
Nl EE

QZppZJ −+= σσ  
where the matrixes FR,  and vectors QT ,  are formed by 
limitations (39) - (42) with considering notation (38). 

Thus, for a numerical solution of a problem B  it is 
necessary to execute following. Using the numerical methods 
to solve Cauchy problems (9) - (12), to store values of matrix 
functions in all instants, participating in a formulation of 
problem B , namely: 

.,...,0,,...,0,,...,0,,,ˆ
21 kkikjttt ij === νν

(
 

Then it's necessary to form matrixes FR, , vector T  for the 
reference to the standard programs of the solution of a 
quadratic programming problem. Having received values of 
vector p  and )ˆ()( 0

1
0 tztx = , it is possible numerically to 

decide a Cauchy problem concerning a system (1) and to 
receive values )(tx  on all interval ],[ 0 kttt∈  and to complete 
the solution of a problem B . 

As example, we shall consider outcomes of parameters 
recovery in a following problem: 

[ ],2;0,433 21
2

21 ∈+++= tttppttxx&  

,1222 2
2

12
2

12 −−−−−= tpttpxttxx&  
with multipoint boundary conditions 

,62)2()0()0(2 1221 =−+− pxxx  
,12)2()0( 2112 =+−+ ppxx  

with minimized criteria of quality: 
).1()1)1(()()( 2

2
2

1
2
2

2
1 xxpppJ +−++= σσ  

In the table 1 the problem solution results at different values 
of parameter σ  are adduced. Let's mark, that the precise 
solution of a problem at 0=σ , as is simply to verify, is 
reached at value of parameters ),1;3(* −=p  at which 

1)(,12)( 2
2

1 −=−= ttxttx . The numerical solution of Cauchy 
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problems was conducted singleprecise by the fourth order 
Runge-Kutta method at number of splittings equal 100. 

 
TABLE I  

THE RESULTS OF THE PROBLEM SOLUTION AT DIFFERENT 
VALUES OF PARAMETERS σ  

 
In a problem of quadratic programming obtained after series 

two shifts in edge conditions to the right, the vector 
6)),2(),1(( EpxxZ ∈=  is unknown  and there are four 

limitations as equalling: two of them are obtained after the 
first shift: 

 ,ˆˆ)2(ˆ)1(ˆ 21 βξαα =++ pxx  
and two after the second shift: 

 .ˆ̂ˆ̂)2(ˆ̂ 1 βξα =+ px  
Four problems of quadratic programming with the same 

limitations, but different target functions at the expense of 
values of σ  were decided. As a whole on all variants of 
calculation on IBM the Pentium-I was required 7 seconds. 

 
IV.  CONCLUSION 

With the application of the approach, offered in paper, the 
plenty of numerical experiments concerning solving the 
problem A , B  is conducted.  

With usage of a method of a linearization offered by 
Pshenichniy B.N. [4], the stated technique utilised also for a 
numerical solution of a non-linear problem of a dynamic 
system parameters recovery: 

],,[),),(()( 0 ktttptxftx ∈=&  
.,...,1,0)),ˆ(),...,ˆ(),ˆ(( 10 lnjptxtxtxg kj +==  

It is necessary to mark convenience of application of the 
offered approach. Its programmatic implementation does not 
produce problems, as basically the standard procedures, 
solving of Cauchy problem, system of algebraic equations and 
problems of quadratic programming, available, in particular, 
in software package Matlab, will be used. 
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NN σ  *
1p  *

2p  *)( pJσ  

1 1 -1.49770 0.50174 4.98484 
2 0.1 -2.72551 0.89845 0.91156 
3 0.01 -2.97014 0.98872 0.11097 
4 0 -3.00240 1.00057 0.0001042 


