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Abstract—Checkpointing is one of the commonly used 

techniques to provide fault-tolerance in distributed systems so that 
the system can operate even if one or more components have failed. 
However, mobile computing systems are constrained by low 
bandwidth, mobility, lack of stable storage, frequent disconnections 
and limited battery life. Hence, checkpointing protocols having lesser 
number of synchronization messages and fewer checkpoints are 
preferred in mobile environment. There are two different approaches, 
although not orthogonal, to checkpoint mobile computing systems 
namely, time-based and index-based. Our protocol is a fusion of 
these two approaches, though not first of its kind. In the present 
exposition, an index-based checkpointing protocol has been 
developed, which uses time to indirectly coordinate the creation of 
consistent global checkpoints for mobile computing systems. The 
proposed algorithm is non-blocking, adaptive, and does not use any 
control message. Compared to other contemporary checkpointing 
algorithms, it is computationally more efficient because it takes 
lesser number of checkpoints and does not need to compute 
dependency relationships. A brief account of important and relevant 
works in both the fields, time-based and index-based, has also been 
included in the presentation. 
 

Keywords—Checkpointing, forced checkpoint, mobile 
computing, recovery, time-coordinated.  

I. INTRODUCTION 
OLLBACK recovery is essential in fault-tolerant 
distributed computing. Checkpointing is used as a 

popular technique for rollback recovery since Chandi-Lamport 
introduced distributed snapshots [1]. A checkpoint is a 
snapshot of the local state of a process, saved on local non-
volatile storage to survive process failures [2]. The purpose of 
checkpointing is to reduce recovery time by providing an 
earlier database state. The mobile hosts, roaming between 
places, make mobile computing systems more prone to 
frequent process failures due to physical damage, like lost and 
stolen, and transient failures like power and connectivity 
problems [3]. A local checkpoint includes the local state of 
one process, whereas, a global checkpoint includes the local 
states of all the processes in the system, provided one from 
each process. A message exchanged between a pair of 
processes is called orphan if its receive event has already been 
recorded in the local checkpoint of receiver process while its 
send event is yet to be recorded in the local checkpoint of 
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sender process. The existence of orphan messages pose 
consistency problem in the system. A global checkpoint is 
consistent if and only if no pair of its constituent checkpoints 
has any orphan message. The well-known problem of 
unbounded domino effect [4] arises if processes take their 
local checkpints independently. Hence, the checkpointing 
protocols using some coordination mechanism are more 
popular. 

Two methods of coordination have been proposed in the 
literature [5] (a) Coordinated checkpointing, where protocols 
have to exchange explicit control messages during checkpoint 
creation to save consistent global states. Although, this should 
be avoided because of frequent disconnections in the mobile 
computing environment. (b) Communication-induced 
checkpointing (CIC), where protocols piggyback control 
information on application messages, thereby, avoids addition 
of explicit control messages, to the computation, during 
checkpoint creation [6]. In addition to basic checkpoints, that 
is, local checkpoints taken by each process independently at 
its own pace, the protocol-specific information piggybacked 
on application messages may “induce” each process to take 
some extra checkpoints, termed forced checkpoints, before it 
can process the messages. Basically, forced checkpoint is 
“induced” by a condition, which is tested after receiving every 
communication (message). The class of protocols derives its 
name “communication-induced” from this fact only. 

CIC protocols allow processes to enjoy greater autonomy, 
compared to their other checkpointing counterparts, in 
deciding when to take local checkpoints. However, the 
increased number of forced checkpoints negates the 
“autonomy” advantage substantially. Therefore, the research 
efforts are mostly directed towards limiting the number of 
forced checkpoints to the fullest possible extent. 

There are two different types of Communication-induced 
protocols. (a) model-based, where checkpointing protocol tries 
to avoid the domino effect and mimic a piece-wise 
deterministic behavior for each process [7]. (b) index-based, 
where a sequence number is assigned to each local 
checkpoint. Associating every local checkpoint with a 
sequence number is, basically, timestamping every local 
checkpoint with Lamport’s logical clock [8]. Any global 
checkpoint, consisting of local checkpoints with the same 
sequence number, is guaranteed to be consistent. Index-based 
protocols are preferred over their model-based counterparts 
because they piggyback smaller control information on 
application messages and force lesser checkpoints [9], [6]. 
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The present work is also about the design and analysis of an 
index-based checkpointing protocol, which uses time 
coordination in order to reduce the number of total 
checkpoints. The paper is organized as follows: Section 2 
describes system model, section 3 gives algorithm concept, 
and section 4 presents the algorithm. Section 5 contains a brief 
account of important related work. Finally, section 6 
concludes the work.  

II. SYSTEM MODEL 
A mobile computing application is executed by a set of n 

processes, denoted by P1, P2,…Pn, running on several mobile 
hosts (MHs). Processes communicate with each other by 
sending messages. Each process progresses at its own speed 
and messages are exchanged through an asynchronous and 
reliable channel with unpredictable but finite transmission 
delays, that is, no message will be lost in the channel. The 
messages, originated from a source MH, are received by the 
local mobile support station (MSS) and then forwarded to the 
destination MH. All MSSs are interconnected by a fixed 
network. The MSSs may belong to different organizations. A 
typical wireless cell is shown in following Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The wireless cell 
 
All processes in the system take their checkpoints 

periodically. Before a mobile computing application starts, a 
predefined checkpoint period T is set on the timers. When the 
local timer expires, the process saves its system state as a 
checkpoint and assigns it a checkpoint sequence number. Any 
subsequent checkpoint is assigned higher checkpoint sequence 
number, which increases monotonically. The time interval 
between the kth checkpoint and k+1th checkpoint is called the 
kth checkpoint interval. 

Every MH and MSS contains a system clock, with typical 
clock drift rate ρ in the order of 10-5 or 10-6. The system clocks 
of MSSs can be synchronized using internet synchronization 
services such as network time protocol (NTP), which makes 
the maximum deviation of all the clocks within tens of 
milliseconds. Timers in MSSs are used as reference because 
MSSs, being fixed hosts, have more reliable timers than those 
in MHs. Every application message mj is piggybacked with 
two values viz. checkpoint sequence number Nj of the sender 
Pj and local timer of the MSS TimerM, that is, time to next 

checkpoint. The MSS, closest to the receiver, is responsible 
for piggybacking its local timer TimerM, time to next 
checkpoint, in every application message mj destined to the 
receiver. 

III. ALGORITHM CONCEPT 
We assume that each process takes an initial basic 

checkpoint and that, for the sake of simplicity, basic 
checkpoint is taken by a periodic algorithm [7]. Every process 
sends the snapshot of its initial state (termed as 0th checkpoint) 
to its local MSS when the application starts. A checkpoint 
period T, predefined by local MSS, is set on the timers of all 
the mobile hosts before starting the mobile computing 
application. For any process, whenever its local timer expires, 
it takes a checkpoint if it has sent any message in the current 
checkpoint interval. If no message has been sent in the current 
checkpoint interval then it will not take the checkpoint for the 
current checkpoint interval. 

However, due to varying drift rates of local clocks, the 
timers at different sites are not perfectly synchronized. Hence, 
the checkpoints may not be consistent because of orphan 
message. In order to avoid this situation, every message sent 
between processes is piggybacked with the sender’s 
information which tells how many checkpoint intervals have 
passed at the sender process. Using this information, creation 
of orphan messages is avoided. 

Every message, originated from a process, reaches its 
destination through the MSS, where it is piggybacked ‘time to 
next checkpoint’ by the local MSS. When the message is 
received by the receiver, it sets its local timer equal to the 
timer of local MSS. In this way, the timer synchronization is 
implemented. 

After taking checkpoint, processes send their checkpoint 
information to its local MSS, where it is stored in a stable 
storage. A global checkpoint consists of all the Nth 
checkpoints of every process, where N≥0. If any process has 
not taken its Nth checkpoint (as it did not send any message in 
the Nth checkpoint interval), its previous checkpoint would be 
included in the Nth global checkpoint. The Nth global 
checkpoint is not complete unless every process sends either 
Nth checkpoint or the information that N checkpoint intervals 
have passed.  

A. Choosing Checkpoint Period  
In time-based checkpointing protocols, the length of 

recovery is directly proportional to the checkpoint period T. 
Larger checkpoint periods result, on average, in larger 
rollbacks, and consequently in longer recovery times [10]. 
Hence, shorter checkpoint periods are preferable. However, 
the checkpointing protocol can only begin to create a new 
checkpoint when the previous checkpoint has been completely 
stored on the stable storage. Thus, the checkpoint period 
should be greater than the time taken to save the checkpoint 
completely on the stable storage. Therefore, the checkpoint 
period is lower bounded by the checkpoint latency. The 
checkpoint latency can be defined as the time a protocol takes 
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to save a new checkpoint [11], [12]. 

B. Working of the Algorithm 
The algorithm uses the following local variables:  
ci : a boolean variable that is initialized as 0. If a message is 

sent by a process Pi in the current checkpoint interval, ci is set 
to 1. 

Ni : number of checkpoint intervals passed. 
Timeri : timer of process Pi. 
TimerM : timer of the MSS. 
flag: if it is set to 0 process takes a checkpoint after expiry 

of its local timer. No, otherwise. 
Process Pi takes a checkpoint when either it’s local timer 

Timeri, has expired or when it receives a piggybacked 
message mj from some other process Pj. If Timeri has expired 
then it checks whether ci =1. If it is true then the process takes 
a checkpoint otherwise continues its normal operation. If a 
process Pi receives a piggybacked message mj but its local 
timer Timeri has yet not expired then it checks whether Nj of 
the sender Pj is greater than Ni of the receiver Pi. There are 
two possible cases: (1) If it is true Pi sets the flag variable 
(flag =1) and takes a checkpoint if ci =1, without recording the 
current reception event. Afterwards, Pi processes the received 
message mj. As flag is set to 1, Pi doesn’t take checkpoint 
further, in the current checkpoint interval, after expiry of its 
local timer Timeri. The following Fig. 2 illustrates this 
scenario. (Cx

y: yth checkpoint of process Px) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Case 1 (Nj > Ni) 
 
(2) If it is false then process Pi directly processes the 

received message mj without taking any checkpoint. However, 
process Pi takes a checkpoint, in the current checkpoint 
interval, after expiry of its local timer if ci =1. The following 
Fig. 3 illustrates this case. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Case 2 (Nj <= Ni) 
 
In order to synchronize the local timers of processes, 

whenever the MSS forwards an application message mj to 
some process Pi in its local cell, MSS piggybacks its own 
‘time to next checkpoint’ TimerM in application message mj 
and receiving process Pi synchronizes its timer accordingly.  

IV. THE ALGORITHM 
Following is the pseudo code of the algorithm: 
A. Pseudo Code 
At each process Pi (1≤i≤n) 
 if (Timeri expires) 
  if (flag=1) then 
   flag=0 
   do not take checkpoint and resume  

normal computation 
  else 
   Ni=Ni+1 
   if (ci=1) 
    take checkpoint 
    ci=0 
    resume normal computation 
   else 
    do not take checkpoint and 

resume normal computation 
   endif 
  endif 
 else  

if (Pi receives message <mj, Nj, TimerM>) 
   Timeri=TimerM 
   if (Nj>Ni) 
    flag=1 
    Ni=Ni+1 
    if (ci=1) 
     take checkpoint 
     ci=0 
    endif 
   endif    

process message mj 

   resume normal computation   
else 

   resume normal computation 
  endif 
 endif  
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B. Proof of Correctness 
Theorem 1. Let Pj be any process whose cj = 1 and latest 

checkpoint is Cj
k then none of the messages sent by Pj in the 

kth checkpoint interval can become orphan. 
Proof. The variable cj is set to 1 if and only if process Pj has 

sent at least one message (say mj) in the current checkpoint 
interval and it has not taken the checkpoint for this interval 
yet. This implies that Pj has not recorded this event of sending 
message mj. 

If any receiving process Pi first processes messages mj and 
then takes its kth checkpoint then message mj may become 
orphan since the event of receiving message mj is recorded in 
the kth checkpoint of process Pi but event of the sending of 
message mj has not been recorded in kth checkpoint interval of 
process Pj. This would make the kth global checkpoint 
inconsistent. However, this never happens as process Pi, on 
receiving message mj, would take its kth checkpoint first and 
then process the message mj. This is implemented by 
piggybacking every message mj with variable Nj of the sender 
Pj (Nj denotes the checkpoint intervals passed at process Pj). 
On the basis of value Nj, receiver Pi decides whether to 
process the received message mj directly, or to take checkpoint 
first and subsequently process the message mj. When process 
Pi receives message mj it compares the piggybacked variable 
Nj with its own variable Ni. If Nj <= Ni, then it implies that 
process Pi has already taken its kth checkpoint. So, it 
processes the received message mj directly. If Nj > Ni, then it 
implies that Pi has yet not taken its kth checkpoint. So, it first 
takes the checkpoint Ci

k (say at time ti) and then process 
message mj. Thus, the kth checkpoints, of both processes 
sender Pj and receiver Pi, do not record anything regarding 
message mj, so kth checkpoint is consistent and message mj 
cannot become orphan in the kth global checkpoint. 

Process Pj will definitely take its (k+1)th checkpoint (since 
it has sent message mj in the kth interval) and hence (k+1)th 
global checkpoint is consistent. 

Theorem 2. If at any given time t, ci = 0 for process Pi and 
Ci

k is its latest checkpoint, then none of the messages sent by 
Pi remains orphan at time t. 

Proof. There can be two cases for process Pi under the 
given conditions: 

Process Pi took checkpoint Ci
k exactly at time t and has 

reset ci = 0. This implies any message sent by process Pi 
before time t must have been recorded up to checkpoint Ci

k. 
As send event of the message(s) has been recorded, none of 
the message(s) sent by Pi would be orphan at time t. 

Process Pi took its latest checkpoint Ci
k at some instant tj 

where tj<t. Now, ci = 0 implies that it has not sent any 
message since its last checkpoint at time tj and all messages 
sent before tj have already been recorded by the previous 
checkpoints. Hence, none of the messages sent by process Pi 
would be orphan at time t. 

From theorem 1 and 2, we conclude that at any given time t, 
none of the messages sent by any process Pi would be orphan. 
Therefore, at any given time t, the proposed algorithm ensures 
the existence of globally consistent checkpoint. 

Theorem 3. The algorithm terminates within a finite time. 
Proof. The proof is trivial, as the algorithm does not use 

any shared variable and does not contain any looping 
structure.  

C. Adaptivity 
An algorithm is called adaptive when it adjusts and 

functions well within a changing environment. In our 
protocol, a process does not take a local checkpoint, scheduled 
shortly after a forced checkpoint, because such local 
checkpoint advances the recovery point of the process by a 
very short amount compared to the forced checkpoint just 
taken, however, it may generate a flurry of forced checkpoints 
throughout the system [9]. In order to address this problem, 
we increment the checkpoint sequence number on taking the 
forced checkpoint and do not take the local checkpoint 
scheduled shortly after it. In this way, by taking the forced 
checkpoint into account, we make our local checkpointing 
policy adaptive. This approach reduces the number of local 
checkpoints that, in turn, reduce the number of forced 
checkpoints.  

D. Problem Associated with Time-based Approach 
In [13], authors pointed out that the time-based 

checkpointing schemes may be inconsistent when failure 
occurs in the situation explained below in Fig.4. Pi and Pj are 
two processes executing simultaneously in a mobile 
computing system. Due to clock drift, process Pi takes its Ci

k 
checkpoint before process Pj takes its Cj

k checkpoint. Now, 
after these checkpoints have been taken, Pj sends a message mj 
to Pi. Since Ni=Nj, Pi directly processes message mj without 
taking any checkpoint. Now, suppose Pi takes checkpoint Ci

k+1 
at time t1 and Pj takes checkpoint Cj

k+1 at time t2 where t1<t2. If 
the system crashes between time t1 and t2, then Pi restarts from 
Ci

k+1 and Pj from Cj
k (as checkpoint Cj

k+1 has not been taken 
yet). This results in inconsistency as mj becomes orphan in 
this case because its send event was not recorded by Pj but the 
receive event has been recorded by Pi.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 A possible inconsistency 
 
Our algorithm is also time-based; however, this 

inconsistency situation never arises there. A global checkpoint 
consists of all the Nth checkpoints of every process, where 
N≥0. If any process has not taken its Nth checkpoint (as it did 
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not send any message in the Nth checkpoint interval), its 
previous checkpoint would be included in the Nth global 
checkpoint. The Nth global checkpoint is not complete unless 
each process has either sent its Nth checkpoint or the 
information that N checkpoint intervals have passed (in this 
case its previous checkpoint would be included in the Nth 
global checkpoint). When system crashes between time t1 and 
t2, the (k+1)th global checkpoint is not complete yet as Pj has 
not taken its (k+1)th checkpoint. So, Pi does not restart from 
Ci

k+1 but from Ci
k as kth global checkpoint is complete. In kth 

global checkpoint, neither the event of sending message mj 
nor the event of receiving message mj was recorded, so 
message mj does not become orphan and kth global checkpoint 
is consistent. Hence, the common inconsistency problem for 
time-based checkpoint scheme, pointed out in [13], does not 
arise in our algorithm. 

V. RELATED WORKS 
We have used the concept of time-coordination in order to 

design an index-based checkpointing protocol. Thus, we 
review, one by one, both time-coordinated and index-based 
checkpointing protocol and compare our work with them. 

A. Time-based Checkpointing Protocols 
Time-based protocols do not need to exchange extra 

coordination messages, because they assume synchronized 
clocks and bounded message deliveries. Each process has to 
take a local checkpoint after expiry of its local timer [14], 
[15], [16]. However, in our algorithm, a process takes a 
checkpoint after expiry of its local timer if and only if it has 
sent at least one message in the current checkpoint interval. 
Therefore, the total number of checkpoints is very less 
compared to above mentioned algorithms. 

Neves and Fuchs [3] proposed a checkpointing scheme that 
achieves global consistent checkpoint without additional 
messaging. The unique feature of the scheme is use of time to 
synchronize checkpoint creation [17]. They used time to 
indirectly coordinate the creation of recoverable consistent 
checkpoints. It requires that checkpoints be sent back only to 
home agents, which results in high failure-free overhead 
during checkpointing [18], [19]. However, our protocol does 
not have this limitation because each process takes its local 
checkpoint on the stable storage of its current local MSS in 
the protocol. 

Neogy et al. [20], [21] proposed a synchronous 
checkpointing algorithm for distributed systems. Each process 
takes its checkpoint at predetermined time instants according 
to its own local clock. There must be some synchronization 
among various local clocks to make the checkpoints 
consistent.  This problem is addressed by using extra 
messages for clock synchronization. The clock 
synchronization messages are used for synchronizing local 
clocks as well as checkpointing action. The authors made 
following assumptions in the system model: 
• Logical clocks of the processes are at most Dmax apart from 

each other. There exist a constant Dmax such that at the kth 

resynchronization interval (k>=0) for all correct clocks i and 
j, if the logical clocks of the processes Pi and Pj be denoted 
by Ck

i, and Ck
j, then  |Ck

i(t)- Ck
j(t)|< = Dmax 

• Each process maintains a message log in the form: (message 
id, sender/receiver id) 

• Since communication is synchronous, processes may be 
blocked for send/receive. Checkpointing instant may occur 
during the blocked period. Blocked processes take 
checkpoints after they unblock and hence, obviously record 
the event for which it was being blocked. 

• An unblocked process takes its checkpoint when the 
checkpointing instant occurs. After taking the checkpoint it 
“freezes” itself (i.e. stops execution temporarily) and waits 
for the next clock resynchronization message. It appends its 
message log with the clock synchronization message so that 
processes slower than it can synchronize themselves. 
This protocol has several advantages like there is no central 

checkpoint coordinator that poses a single point failure threat 
to the system. The overhead of coordinating messages is also 
absent. Synchronization among the local checkpoints has been 
brought about by the clock synchronization messages that 
have been utilized for this purpose. The method of 
checkpointing in blocked processes is not wastage of time 
because communication delay is finite. Since clock 
synchronization is an integral part of the above distributed 
system, “waiting” of a process, for the next clock 
synchronization message, does not also entail much time. As 
any global checkpoint is consistent, only one checkpoint 
needs to be stored in the stable storage. So, the system does 
not have to roll back more than once to restart from a previous 
consistent state in case recovery is required. 

Limitations are that the system is synchronous hence the 
processes may be blocked at checkpointing instants. The 
sender process is blocked until acknowledgement is received 
or corresponding receive event is executed at the receiver 
process. Similarly, the receiver process is also blocked while 
waiting for the corresponding action at the sender’s end. The 
blocked process takes checkpoint only after being unblocked. 
Our algorithm is nonblocking and uses timer to coordinate the 
process of checkpointing. 

In [22], [23], each process takes checkpoint whenever its 
local timer expires. If a checkpoint initiator does not 
transitively depend on a process, the process does not have to 
take a checkpoint associated with the initiator. The result is 
that the number of checkpoints is minimized. The protocol is 
also nonblocking because the inconsistency between processes 
is avoided by piggybacking necessary information in each 
message. A timer has to be synchronized to avoid 
inconsistencies. This can be done using the piggybacked 
information. This protocol reduces the number of checkpoints 
compared to [14], [24], [3], [25], the traditional time-based 
protocols. It also makes use of the accurate timers in the MSS 
to adjust the timers in the MH, so that this protocol is well 
suited to mobile computing systems with MHs spread across a 
wide area network. The algorithm takes a number of soft 
checkpoints and computes dependency relationship using 
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extra control messages. Subsequently, on the basis of 
dependency relationship unnecessary soft checkpoints are 
discarded. However, in our algorithm a process takes 
checkpoints only if other processes are dependent on it, that is, 
it has sent at least one message to them in the current 
checkpoint interval. As the proposed algorithm takes only 
minimal checkpoints, there is no need to compute the 
dependency relation. Hence, our algorithm has less 
checkpointing overhead. 

In [13], a two phase technology is used to handle potential 
inconsistency. Assume that maximum deviation that separates 
two timers, initiated in different nodes, is D and the 
checkpoint period is T. After n checkpoints have been created 
since the last timer re-synchronization, the maximum 
deviation of two processes is MD, where MD=D+2ρnT. The 
inconsistency issues, that may arise, are messages sent before 
or after taking checkpoint MD time units. These messages can 
be in-transit or orphan messages. Assume, the maximum and 
minimum message propagation delays are tmax and tmin. The 
messages sent, MD+tmax time units before taking checkpoint, 
may become in-transit messages and the messages sent, MD-
tmin (denoted  as ED) time units after taking checkpoint, may 
become orphan messages. 

In two phase technology two timers, Timer_ckp and 
Timer_pmt, are used to solve potential inconsistent issues. 
Whenever Timer_ckp expires, tentative checkpoint is taken 
and when Timer_pmt expires it converts tentative checkpoint 
into permanent checkpoint. Timer_ckp is set to T and 
Timer_pmt is set to T+D+2nρT, where n is checkpoint 
sequence number. The messages sent, in MD+tmax time units 
before Timer_ckp expires, are logged by saving in 
queue_in_transit to avoid inconsistencies and the messages 
sent, in ED time after Timer_ckp expires, are sent with 
checkpoint sequence number (CSN), so that receiver 
compares and takes forced checkpoint decision depending on 
its CSN to avoid inconsistencies. 

The protocol avoids all potential inconsistent issues that 
may arise in time-based algorithms [16], [3], [25]. The 
algorithm is also non-blocking. First tentative checkpoints are 
taken and these tentative checkpoints are later converted into 
permanent checkpoints. Hence, for each kth checkpoint 
interval two checkpoint computations are required. However, 
our algorithm takes permanent checkpoints only, therefore, it 
is computationally more efficient.  

B. Index-based Checkpointing Protocols 
In index-based checkpointing protocols, each process takes 

checkpoints either at its own pace (basic checkpoints) or 
induced by some communication pattern (forced checkpoints) 
[7]. In Briatico et al. algorithm [26], the number of forced 
checkpoint induced by a basic one, in the worst case, is n-1, 
where n is the number of processes. Manivannan and Singhal 
[27] suggested an improvement over it. There is no reason to 
take a basic checkpoint if at least one forced checkpoint has 
been taken during the current checkpoint interval. However, 
the number of forced checkpoints remains at n-1, in the worst 

case. Baldoni et al. [7] presented a further improved index-
based checkpointing algorithm for distributed systems that 
reduces the total number of worst case checkpoints while 
ensuring that each checkpoint belongs to at least one 
consistent global checkpoint. He argued that, due to different 
rate of basic checkpoint for different processes, the faster 
process forces the slower one to take more checkpoints. 
Hence, the number of forced checkpoint can be very high, 
resulting in large number of total checkpoints. Therefore, 
Baldoni’s protocol does not increase the checkpoint sequence 
number, after taking basic checkpoints, unless the occurrence 
of a particular checkpoint and a communication pattern. The 
rationale behind his solution is that each time a basic 
checkpoint is taken without increasing the sequence number, 
it does not force checkpoints and this reduces the total number 
of checkpoints. In order to reduce the total number of 
checkpoints each application message is piggybacked with 
n+1 integers as control information, where n is the total 
number of processes. However, in our algorithm due to same 
checkpoint period for every process, the above mentioned 
problem does not arise. Therefore, not only the number of 
forced checkpoints is less, also, the size of control information 
is independent of the number of processes. The smaller 
control information results in lower message propagation 
delay. 

In [5], the authors have defined and studied a family of 
communication-induced checkpointing protocols, where no 
local checkpoint is useless. A useless checkpoint is a local 
checkpoint that cannot be part of a consistent global 
checkpoint. However, in their protocols, the size of control 
messages is dependent on the number of processes. This 
problem has been addressed in [6]. Helary et al. [5] increased 
the number of forced checkpoints that are taken in order to 
eliminate the generation of useless local checkpoints. Tsai [6] 
further increased the number of forced checkpoints so that the 
size of control information piggybacked with each message 
becomes constant. In our algorithm, the size of control 
information is constant and the number of forced checkpoint 
taken is also less as every process takes checkpoint at a 
predefined rate which does not vary from process to process. 

In distributed computation, processes take basic 
checkpoints in a different rate, some is faster, and some is 
slower. The result is two fold disadvantages. The slower 
processes, receiving large number of messages from the faster 
ones, have to take large number of forced checkpoints. Also, 
the recovery of slower processes, having too lower local 
checkpointing rate, results in the huge loss of computation. In 
order to avoid such situations, Luo et al. [28] presented an 
active approach by sending an extra message to the slower 
process to let it catch up. An extra synchronous message is 
sent from the faster process to the slower one, to let the slower 
process take a forced checkpoint with the large index. The 
message contains nothing but checkpoint index of the faster 
process. However, this problem does not arise in our 
algorithm because the algorithm is time-based and the 
checkpoint frequency for all processes is same. 
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The work closest to ours is Gupta et al.’s protocol [2]. His 
work is an improvement over mutable checkpoints [29]. It has 
reduced the number of checkpoints as compared to mutable 
checkpoints. It has the following good features: 
1. Only those processes that have sent some message(s) after 

their last checkpoints, take checkpoints during 
checkpointing thereby reducing the number of checkpoints 
to be taken.  

2. Reductions in the number of checkpoints help in the 
efficient use of the limited resources of mobile computing 
environment.  

3. Uses minimum interaction (only once) between the initiator 
process and the system of n processes and there is no 
synchronization delay.  

4. Uses very simple data structures, viz., three integer 
variables and one boolean variable per process. 

5. Each process takes its checkpointing decision 
independently. 
However, the algorithm has a limitation too. Consider a 

system of n process distributed system. Let, Ccr be the cost of 
sending a checkpoint request message from initiator to a 
single process. Hence, the checkpoint request cost, incurred 
by a single execution of the checkpointing algorithm, would 
be (n-1)Ccr. Thus, the checkpoint request cost, incurred by k 
executions of the checkpointing algorithm, would amount to 
k(n-1)Ccr. Therefore, the checkpoint request overhead, for 
applications involving large number of processes and running 
for longer durations, increases exponentially. 

In the present work, we have attempted to eliminate above 
problem by using timer. It is a well-known fact that the use of 
timer eliminates extra coordination messages [10]. A process 
takes checkpoint whenever its local timer expires. Moreover, 
only those processes take checkpoint, after expiry of their 
local timer, who have sent at least one message in the current 
checkpoint interval. Therefore, the number of processes taking 
checkpoint and, subsequently, the total number of checkpoints 
is significantly reduced. In addition, the use of timer removes 
need of the initiator process for sending the checkpointing 
request messages. 

VI. CONCLUSION 
In this work we have developed an index-based algorithm 

which uses time-coordination for consistently checkpointing 
in mobile computing environments. The main features of our 
algorithm are: (1) it is non-blocking; (2) it is adaptive because 
it takes checkpointing decision on the basis of checkpoint 
sequence number; (3) it takes reduced number of checkpoints 
because a process does not take any temporary checkpoint and  
the process takes checkpoint if and only if some other process 
is dependent on it; (4) it doesn’t require tracking and 
computation of dependency information; (5) it doesn’t require 
any control message because it uses timer to indirectly 
coordinate the creation of consistent global checkpoints and 
the local timers are not synchronized through control 
messages but by piggybacking control information on 

application messages. 
In time-based checkpointing protocols, there is no need to 

send extra coordination messages. However, they have to deal 
with the synchronization of timers. This class of protocols 
suits to the applications where processes have high message 
sending rate [13]. However, for the applications, where 
processes have low message sending rate, time-coordinated 
protocols may perform poorly. In our approach, timer 
synchronization is done through the control information, 
which is piggybacked on application messages. Hence, in 
case, the application has low message sending rate, timers 
would not be synchronized frequently. Therefore, in case of a 
process failure, the system has to rollback, to a comparatively 
older state, loosing a significant amount of computation. The 
problem is being postponed for a future research work. 
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