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Abstract— In this paper a comprehensive algorithm is presented 

to alleviate the undesired simultaneous effects of target maneuvering, 
observed glint noise distribution, and colored noise spectrum using 
online colored glint noise parameter estimation. The simulation 
results illustrate a significant reduction in the root mean square error 
(RMSE) produced by the proposed algorithm compared to the 
algorithms that do not compensate all the above effects 
simultaneously. 
 

Keywords—Glint noise, IMM, Kalman Filter, Kinematics, 
Target Tracking.   

I. INTRODUCTION 
N 1995, Daeipour and Bar-Shalom utilized the IMM 
algorithm to implement the glint noise model in 

nonmaneuvering target tracking [1]. They applied two 
extended Kalman filters, one matched to the dynamic system 
with Gaussian measurement noise, and the other matched to 
the same dynamic system but with a high variance Laplacian 
noise. Later in 1998, E. Daeipour, and et al. in [2], and          
K. Heydari and et al. in [3]-[4], almost concurrently, extended 
the algorithm used in [1] to maneuvering targets. They applied 
a layered IMM (LIMM) algorithm to implement the target 
maneuvering model as well as the glint noise model. Although 
they pursued the same goal, they were different in 
methodology. The algorithm in [2] was based upon the 
extension of [1] with the dynamic system state equations in 
Cartesian and observation equations in spherical coordinates. 
But, the one in [3]-[4] was developed with the dynamic 
system state equations and observation equations both in 
spherical coordinates.  In both [2] and [3]-[4] the filters were 
split into two parts, one matched to the Gaussian component 
and the other matched to the Laplacian component of the glint 
noise. However, in the former the extended Kalman filters 
(EKF) were exploited to deal with the Gaussian and Laplacian 
noise components, but in the latter, linear Kalman filter was  
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used for the Gaussian noise and Masrelize filter with efficient 
approximate score function ([5] and [6]) was used for the 
Laplacian noise to filter the components of the glint noise.  

In all the aforementioned methods, the observation noise 
spectrum was assumed to be white. However, in high 
frequency measurement radar systems the successive samples 
of the measurement noise are not uncorrelated, and 
consequently the observed noise spectrum is not white. In 
1996 Wu and Chang presented the subject of maneuvering 
target tracking with observed colored noise and unknown 
parameters [7]. The drawback of this approach was the 
assumption of Gaussian noise distribution rather than glint 
distribution. Earlier, W. R Wu in [8] had reported a maximum 
likelihood approach to identify the glint noise parameters from 
recorded data. However, he assumed the spectrum of the glint 
noise to be white rather than colored, and also ignored 
maneuvering effects of the target in noise parameter 
estimation.   

In this paper a comprehensive algorithm is developed to 
recursively provide an online estimate of the colored glint 
noise parameters and cope with simultaneous effects of the 
following main four factors that may degrade the optimality of 
the Kalman filter in target tracking. The four degrading factors 
are: maneuvering of the target, glint and colored 
characteristics of the observation noise and lack of knowledge 
about the noise parameters.  

II. PROBLEM FORMULATION  
 

A.   Target Model and System Equations 
In radar target tracking the dynamic state equations are 

expressed in rectangular coordinate, while the observation 
equations are measured in spherical coordinate. Converting 
either of them to the other one will result in nonlinear 
equations.  

One approach is to convert the dynamic equations from 
rectangular to spherical coordinate, and use approximate 
linearized spherical model which encounters simultaneous 
solution of three complicated nonlinear differential equations 
[6, 8]. For instance the range channel is used to be represented 
here. Then the corresponding approximate spherical 
representation for the second-order dynamic model in 
nonmaneuvering mode is: 
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where r
kw   is the zero mean white Gaussian noise.                                                                

We get the third-order model as 
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where M
kw  stands for zero mean white Guassian  noise in 

maneuvering case.  
In both cases, the received observation data in the range 

channel is 

kvkr
r
kz +=                                         (3) 

where kv  the observation Glint noise.  
 

B.   IMM Algorithm and the System Model  
In the proposed algorithm, two filter banks are used: one is 

matched to the Gaussian noise and the other matched to the 
Laplacian noise components of the observed data. The 
Kalman filter is used to deal with the Gaussian component, 
and the Masrelize filter with approximate score function is 
used to face the Laplacian component of the glint noise. With 
each of the above filter banks there are two Kalman filters 
with different dynamic systems (see Fig. 1). The Kalman filter 
matched to the constant velocity mode deals with the target 
system in nonmaneuvering conditions and the one which is 
matched to the constant acceleration mode deals with the 
target system in maneuvering case. The same is performed for 
the Masrelize filter. The IMM algorithm will combine the 
outputs of the four filters, and the resultant output is a 
weighted sum of all the subfilter outputs.  

 

 
Fig. 1 Using Kalman filter and IMM algorithm to model the 

maneuver and Glint noise 
 

For the Laplacian mode, the filtering and updating steps are 
performed by the approximate score function which are 
summarized in [[10], (39)-(45)]. These equations are only 
applicable to the glint white observation noise. Further 

modifications has been performed in this paper to the case of 
glint colored noise including decorrelating the data before 
applying to the IMM algorithm.  

 
C.   Colored Noise and Decorrelating Process  
Since the observation noise parameters are unknown, one 

may not be able to use the conventional method of whitening 
process by incorporating the modal matrix corresponding to 
the noise. The other problem with using the conventional 
whitening process even with the case of known noise 
parameters is the ill-conditioned noise covariance matrix that 
one may encounter. Guu and Wei in [11] modeled the colored 
observation noise as an AR model with unknown parameters. 
Eventually Wu in [7] modeled the colored noise with 
Gaussian distribution as the following AR process to prevent 
all the above problems and get the benefit of less intensive 
computational effort:   

kkk ηανν +−= 1                                       (4)                     

kν  represents the colored noise output and kη  the white 

Gaussian noise input of the above AR process. The white 
noise kη  has zero mean and variance 2σ . The AR parameter 
α  is the unknown correlation parameter of the colored noise. 
To decorrelate the colored noise, we generate the following 
artificial measurement kz  as suggested in [7]: 

kkrHkzkzkz ηα +=−−
Δ
= 1                      (5)                   

where                    
 H H I= − −( )α Φ 1                                 (6)                   

 kkwk ηαη +−
−Φ= 1

1                              (7)                  

and I stands for the identity matrix.  Since in practice 

1
1

−
−Φ kwα  in (7) is very small compared to kη , the artificial 

data kz  can be treated as a measurement data for the Kalman 

filter with white noise η ηk k≈ [7].  
 
D.   Noise Parameter Estimation 
As the radar tracking process advances, the parameters  α , 

ε , σ , and μ  are estimated recursively by the online 
observed data received in the radar detection mode. The 
estimation process is based on the method discussed in [8], 
where the parameters ε , σ  and μ  are estimated under the 
assumption of white glint observation noise. Thus, it requires 
using (4) to decorrelate the colored data; however, parameter 
α  in (4) must be first estimated. By receiving a new 
observed glint noise data at kth iteration, we generate the 
signal    212 −− +−= kkkk zzzu and pass it through the filter 

2)11(

1
)( −−
=

z
zF

ρ
 to obtain the new signal ku  [7]. Under 

nonmaneuvering mode if we select 1=ρ , ku  will satisfy the 
following AR process:  
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kkk uu ηα += −1                              (8)                                                                                         
This process is similar to (4) and the parameter α  can 

easily be estimated from                                                              

)0(
)1(ˆ

r
r

=α                                      (9)                                                                                      

where (.)r  is the estimated autocorrelation function of ku  and 
can be evaluated from the following fading memory approach 
[8]: 
 

2
1 )1()0(ˆ)0(ˆ kkk urr ββ −+= −  

1)1()1(1ˆ)1(ˆ −−+−= kukukrkr ββ                   (10) 

 
where 10 << β  is the forgetting factor.     

Choosing the best value of ρ  has been discussed and 
simulated in [7]. Considering the simulation results in 
nonmaneuvering cases, the best estimation is with ρ =1. But 
in maneuvering condition 1=ρ  will breakdown the 
algorithm. The corresponding simulation results show that as 
the value of ρ  decreases the estimation of the glint noise 
parameters would be better, and the convergence would also 
be faster. Based on the discussion in [7] a good choice would 
be ρ = 0.9, where the estimates are almost not affected by 
maneuvering. Therefore, ρ = 0.9 could be an almost optimum 
value for the whole tracking period including maneuvering 
and nonmaneuvering cases.  

However, with 1≠ρ , ku  is no longer similar to kν , and 
(8) fails. Consequently (9) will be biased. After removing the 
bias, α  will be estimated as [7]: 
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Having k samples of the glint white noise at iteration k, the 
iterative algorithm in [8] will yield the estimation of the other 
parameters, such as the glint noise parameters, ),,( μσεθ = . 
However, in the system under study the real noise samples are 
glint but not white. We know that the noise in artificial 
measured data is white with glint distribution and it is the 
same as kη  in the AR process (8). Thus, the samples of 

kη can be used to estimate the parametersε , σ  and μ  of the 

glint noise instead of the samples of the colored glint noise 

kν . To perform the online process of the above parameter 

estimation, we generate k samples of the glint white noise 

kη from (8) as follows:  

1−−= kkk uu αη                                  (12)    

          
In the first iterations of tracking where few observations are 

made, the onlline estimtion process of the glint noise 
parameters is performed with inadequate input information 
which results in large parameter estimtaion error. 
Consequently the corresponding tracking perforamce will be 
poorer than the case with known noise parametr values. This 
has been shown in the simulation resutls. As the process 
proceeds, the number of observations used in the parameter 
estimators increases and the estimates get better. Consequently 
the tracking performance converges to its normal errror 
performance in known noise parameters case.   

III. SUMMARY OF THE PROPOSED ONLINE ALGORITHM  

i) At each iteration, say the kth iteration, generate the 
signal  ku  when the  kth  observed data, kz   is    
received as discussed in section 2.4.  [7] and [11]. 

ii) Estimate the parameter α  using (11).  
iii) Generate the kth sample of the glint white noise,  kη  

from (12) using estimated α  from step (ii).  
iv) Apply the preprocessor introduced in [8] to the 

samples of kη  to estimate the appropriate initial 
values of ),,( μσεθ = . 

v) Estimate  the  parameters  ),,( μσεθ =   using  the 
algorithm discussed in [8]  

vi) Generate the artificial data kz from (5). 
vii) Apply the IMM algorithm in [3]-[4] to the artificial  

data kz  for handling the problem  of  two  
independent  discrete  uncertainties (modes) of the  
tracking   system:  the  target dynamic system, and 
the  glint  noise. The resultant   output yields the 
estimated state variables.    

 
Remark: In the standard IMM algorithm, updating the filter 
weights is set for the Gaussian noise. In the proposed 
algorithm some modifications must be imposed to set it for the 
Laplacian noise. To update the Laplacian filter weights, we 
use the approach presented in [10] with a change in the input 
data by using the artificial data kz  instead of the glint colored 
observed data. Then, we use the general Bayes’ rule with the 
Laplacian observation weights as  
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where kZ  represents the artificial measured data  
{ }kzzz .,..,, 21 , and mi  specifies the ith mode. In the 
proposed algorithm there are four modes where each one 
corresponds to a Kalman filter in the filter bank. In (13) 

)1,|( −kZimkzf  can be obtained from convolution of 

),|)(( 1−ki
k

i ZmrmHf  and the white glint noise density 

function f k( )η . Computing the direct convolution is difficult, 
so we use the approximate method introduced in [10] which 
yields  

 
kk

i
ki

k
pcp

σα
φ )0(ˆ ≈                                     (14)                                                                                                             

where i
kp  represents )|( 1−ki Zmf  and c stands for the inverse 

of )|( 1−k
k Zzf , and kkk zTTK

k e +−= )(α , )](ln[)( TMTK =  

and dxxfeTM Tx )()( ∫
∞

∞−
=  which is the moment generating 

function (MGF) of the probability density function (.)f . The 

variable kT  is the value of T evaluated at the kth iteration, 
which is determined from the following equation [10] 

0)( =−′ kk zTK                                 (15)                                                                                                  

where  kz  is the known artificial measured data in the kth 
iteration. Eventually, the probability density function 

),|( 1−ki
k Zmzf in (13) at kth iteration of the algorithm will be 

evaluated as:  

kk

kZimkzf
σα

φ )0(
)1,|( ≈−                        (16)                                                                                            

For the normal expansion we obtain φ π( )0 1 2=   and 

)()2(
kTKk =σ    [9] and [10]. 

In the IMM algorithm the probability of transition between 
different modes are governed by the Markovian transition 
probability matrix. In the proposed algorithm, we will 
consider four different modes of operations as follows: 
constant velocity matched to Gaussian observation noise, 
constant acceleration matched to Gaussian obseravation noise, 
constant velocity matched to Laplacian observation noise, and 
constant acceleration matched to Laplacian observation noise. 

Thus, the Markovian transition matrix ( IMM transition 
matrix ) 44×ℜ∈A  will be: 
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q shows the probability of using the same dynamic system in 
two consecutive time samples, or the probability of no change 
in the dynamic of the system, and is very close to unity in 
practice. 

IV. SIMULATION RESULTS 
In this section, we have presented some simulation results 

for the proposed algorithm. For simplicity as it was stated 
before we perform the results on one single channel or axis. 
Due to independency of the dimensions, the simulation 
process on the other channels will end up to similar results. 
The target is tracked for 1200 samples, and is assumed to 
move with constant velocity of 40 sm /  between the first and 
the 400th samples. Then the velocity increases by a constant 
acceleration of 4 2/ sm  from the 400th sample up to the 800th 
sample. It continues moving with constant velocity between 
the 800th and 1200th samples. The acceleration used here is  

 
     0=kr                     3990 ≤≤ k    and   1200801 ≤≤ k  

     4=kr                                  800400 ≤≤ k  

 
The sampling time is considered to be sT 05.0= . The 

variance of the process noise for constant velocity is assumed 
to be 0.1 and for the constant acceleration (maneuvering) 
would be 0.01. We assume that the dynamics of the target are 
known and the only unknowns are the parameters of the glint 
noise that would be estimated through the algorithm 
processes. Thus, choosing small process noise variance is 
consistent with having knowledge about the dynamics of the 
system. To analyze the performance of the proposed algorithm 
results an ideal system with following known parameters is 
taken into consideration: The correlation coefficient of the 
glint colored noise is assumed to be 8.0=α , and the 
parameters of the white glint noise η  are considered to be 

1.0=ε , m50=σ , and m400=μ . The online estimation of 
the parameters is iteratively performed as the tracking process 
advances. The constants 9.0=ρ , and 99.0=β  have been 
chosen in the estimation process of the parameterα , and q is 
set to unity in the probability transition matrix. 

100 Monte Carlo runs are carried out and the average is 
represented by the root mean square error (RMSE) criterion as 
a measure of the performance in this simulation: 

 

∑
=

−=
m

i

i
kk rr

m
kRMSE

1

2)ˆ(1)(      1200,...,2,1=k   ,   100=m  

 
where i

kr̂  denotes the state estimate of the ith Monte Carlo run 
for the kth sample.  

We first compare the proposed method error performance 
(RMSE) results with similar results obtained from the ideal 
system where all the parameters ,,, σεα  and μ  are assumed 
to be known. The corresponding RMSE results for position, 
velocity and acceleration are shown in Figs. 2, 3, and 4. It is 
seen that the results of the proposed algorithm with unknown 
parameters are in very good agreement with the results 
obtained from the ideal system with known parameters. 
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Fig. 2 Position estimation RMSE 
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Fig. 3 Velocity estimation RMSE 

 
The slight changes between the two results at the first 20 

iterations, is the effect of the imperfect parameter estimations 
due to insufficient received data samples. As the tracking 
process advances, the estimation results get better and better 
and eventually reach their steady state values, where the 
differences between the two corresponding results, are very 
small. 
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Fig. 4 Acceleration estimation RMSE 

 

To study the effect of different types of observed data 
noises on performance of the proposed algorithm the 
following tests have been carried out:  

 
i) Disabling the decorrelating process. 
ii) Disabling the glint noise process.  
 
In the first test we treat the observed data noise as a white 

noise process, and ignore its colored characteristic. Thus, 
there is no need to decorrelate the noise and consequently, we 
disable the decorrelating process of the algorithm and leave 
the signal undecorrelated. The corresponding results for the 
target position, velocity and acceleration are illustrated in 
Figs. 5, 6, and 7.  
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Fig. 5 Position estimation RMSE without Colored noise 

decorrelator 
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Fig. 6 Velocity estimation RMSE without Colored noise 

decorrelator 
  
It is quite obvious that the error performance has increased 

compared to the proposed algorithm results. Therefore, this 
test represents the capability of the proposed algorithm in 
canceling the effect of the colored noise. 
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Fig. 7 Acceleration estimation without Colored noise decorrelator 
 
In the second test we neglect the glint characteristic of the 

observed data noise.  In other words we treat the noise as 
colored Gaussian noise with uknown parameters. In this case 
there is no need to use the Laplacian filters in place of the 
Gaussian filters to model the glint noise in the IMM 
algorithm. So, we run the algorithm all with Gaussian filters.  
The corresponding results for position, velocity, and 
acceleration are shown in Figs. 8, 9, and 10.  
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Fig. 8 Position estimation RMSE with no Laplacian filter 
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Fig. 9 Velocity estimation RMSE with no Laplacian filter 
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Fig. 10 Acceleration estimation RMSE with no Laplacian filter 
 
Again, the error performance has increased compared to the 

proposed algorithm results.. Therefore, the second test 
represents the capability of the proposed algorithm in 
eliminating the effect of the glint noise data. 

The overall results show that the proposed algorithm is able 
to simultaneously deal with the problem of glint and colored 
noise, and also estimate the unknown glint noise parameters in 
manuevering target tracking.  

 

V. CONCLUSION 
The simulation results show the remarkable strength of the 

proposed algorithm in simultaneous removal of all the 
undesired degrading factors in optimal operation of the 
Kalman filter for target tracking. The tests carried out in this 
paper illustrate that disabling the effect of any of the 
degrading factors in the algorithm will result in a significant 
increase in the corresponding RMSE values.  
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