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On Finite Wordlength Properties of
Block-Floating-Point Arithmetic

Abhijit Mitra

Abstract— A special case of floating point data representation is block are generally very bit efficient schemes. More recent work of
floating point format where a block of operands are forced to have a joint Mitra [8]- [9] has proved the effectiveness of this representa-
exponent term. This paper deals with the finite wordlength properties of tion in the complicated area of adaptive filtering. However,
this data format. The theoretical errors associated with the error model for to the best of our knowledge, no extensive work on the finite-
block floating point quantization process is investigated with the help of error precision properties of this data format has so far been reported
distribution functions. A fast and easy approximation formula for calculating in the literature.
signal-to-noise ratio in quantization to block floating point format is derived. In this paper, the finite wordlength properties of BFP is stud-
This representation is found to be a useful compromise between fixed point ied from a deterministic viewpoint. In particular, theoreticaland floating point format due to its acceptable numerical error properties over

analysis of a significant quantization error model associateda wide dynamic range.
with the BFP format is carried out by deriving the distribution

Keywords— Block floating point, Roundoff error, Block exponent dis- of block exponents. The signal to quantization noise ratio of
tribution fuction, Signal factor. the BFP format is found to be dependent on this block ex-

ponent distribution, which requires precise information about
I. INTRODUCTION the signal statistics. Thus, an easy-to-use formula is derived

for fast and simple calculations and a signal factor, dependentHE so-called block floating point (BFP) data representa- on the block length, is introduced for this specific purpose. Ation [1]- [2] has come forth recently in several digitalT comparison with the FP and the FxP systems, based on sev-audio signal broadcasting standards as a near instantaneous eral simulations, is also discussed to show the efficiency of thedata companding (compression + expansion) technique to re- BFP representation over the FP and FxP formats. The outlineduce the bitflow of data per sample. The standards using such of this paper is as follows: Section 2 deals with block floatinga companding method include for example NICAM (digital point representation. Section 3 analyses the quantization er-two-channel sound system for PAL and MAC TV standards), rors involved in BFP arithmetic within several subsections byMUSE (Japanese HDTV standard) and DSR (German digital taking help of the scaled additive roundoff error model, deriv-satellite radio) [3]. The BFP format has become the natural ing the block exponent distribution and then introducing a fastchoice in the above standards after exhibiting the overly pre- and easy formula for calculating signal to noise ratio. Conclu-ciseness of the IEEE standard on floating point arithmetic for sions regarding the efficiency of BFP arithmetic, based on thecertain DSP applications and also for achieving a significant above analysis and simulation results, are drawn in Section 4.hardware simplicity compared to its floating point counter- In the sequel, we shall denote R as the set of real numbers,part [4]-[5]. Morever, it has recently been shown [1] that nZ as the set of integers, R as the set of length n real vectorssome properties of BFP format can make it a better alternative n£nand R as the set of (n£ n) real matrices.than fixed point or floating point arithmetic for implementing
recursive linear systems. II. BFP REPRESENTATION

In BFP representation, the incoming data is arranged in non-
In binary FP format, any number x 2 R is written asoverlapping blocks and depending on the relative magnitudes

Ãof the data samples in each block, a common exponent is x = sign(x):m:2 (1)
assigned. This arrangement, in fact, combines two widely

where the exponent Ã 2 Z is chosen so that the mantissa m 2utilized number representation formats, fixed point (FxP) and
1R is within the range [ ; 1), i.e., the mantissas are normal-floating point (FP), to exploit some benefits of FP like the wide 2

ized [10]. The BFP representation can be considered as adynamic range on one hand, with the simplicity of FxP like
special case of FP format, where the incoming data is groupedreduced computational complexity on the other. The effects
into nonoverlapping blocks of N consecutive samples and eachof exploiting BFP arithmetic in recursive and non-recursive
block has a joint scaling factor corresponding to the data sam-digital filters was first investigated by Oppenheim [6]. The
ples with the largest magnitude in the block. In other words,recent work of Kalliojarvi [7] has shown that BFP formats¨

Ngiven a data vector x (2 R ) = [x ; :::; x ], we represent it1 N

as [8]Manuscript received May 11, 2005; accepted July 11, 2005.
° °The author is with the Department of Electronics and Communication En- x = [x ; :::; x ]:2 = x:2 (2)1 N

gineering, Indian Institute of Technology (IIT) Guwahati, North Guwahati - ¡°781039, India. E-mail: a.mitra@iitg.ernet.in. where x (= x :2 ) represent the signed mantissas for i =i i
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TABLE I where Q[:] denotes the respective quantity after quantization
DIFFERENT BFP FORMATS USED IN DIGITAL AUDIO TRANSMISSION and » is the mantissa quantization error. This relative roundoff

STANDARDS. error model, however, can not be used for investigating the
BFP roundoff errors because the relative errors will not beStandards N B + 1 B + 1 Equivalent bits/sample°d

bounded in this case. This is due to the fact that the mantissasNICAM 32 10 3 10.09375
in BFP arithmetic can be arbitrarily close to zero, unlike theMUSE: A-mode 32 8 3 8.09375
normalized FP mantissas which cannot take a value beyondMUSE: B-mode 48 11 3 11.0625

1the lower limit . Therefore, the BFP quantization error isDSR 64 14 3 14.046875 2
modeled with a scaled additive roundoff error model [2] or
mantissa additive roundoff error model, defined as follows

1; 2; :::; N and the block exponent ° 2 Z is defined as ® = Q[x ]¡ xi i

° °= (Q[x ]¡ x ):2 = e :2 (7)i i m° = blog Maxc+ 1 (3)2

where Q[:] 2 R denotes the quantized value of a quantity and
withMax = max(jx j; :::; jx j) and ‘b:c’ being the so-called1 N e is the mantissa quantization error.mfloor function, i.e., bac 2 Z is closest but not exceeding a 2
R. For determining ° in such a way, the mantissas are always B. Error Distribution Functions
block normalized, i.e.,

The quantized mantissas Q[x ] are assumed to be uniformlyi

1 distributed in the interval [0; (1¡4)] and the mantissa error· max(jx j) < 1: (4)i e is bounded by2 m

The above BFP representation can also be extended for the ¡4=2 · e · 4=2 (8)m
N£Ndata matrix X(2 R ) = [x] by assigning the new blockij

for rounding-to-nearest, and byexponent ° 2 Z asc

¡4 · e · 0 (9)m° = blog (maxfjx jg)c+ 1: (5)c 2 ij

¡Bdfor truncation, where 4 = 2 is the quantization step size
It should be noted that if (B + one sign) bits are used tod of the mantissas. The above said quantization error ® and the
represent each mantissa within the block and if (B + one° mantissa quantization error e can be considered as whitemsign) bits are used to account for the block exponent, then noise sequences (with zero mean when rounding-to-nearest
effectively, under BFP system, each sample can be equivalently method is used) as well as uncorrelated with the data sequence
represented with (1 + B ) + (1 + B )=N bits because thed ° x(n). The mantissa roundoff errors are also uncorrelated with
block exponent is taken only once for the whole block. This the block exponents °. These important properties have been
particular strength makes this format more considerable than verified by quantizing data to BFP format and simulating the
FxP or FP systems. Table 1 shows the different BFP formats respective autocorrelation and crosscorrelation functions. As
used in digital audio transmission standards utilizing such an an example, auto- and cross-correlation functions in quantizing
adavantage. 0 dB Gaussian data (2000 samples) to 1+7+(1+3)/8-bit BFP

format are plotted in Figures 1, 2 and 3, which clearly showIII. QUANTIZATION ERROR ANALYSIS
that ® and e can be considered as white noise sequences,m

A. Quantization Error Model and ® is uncorrelated with the data sequence x(n).
From these Figures, it is clear that certain joint distribu-The roundoff error models used with FxP and FP format

tions can be split up due to the statistical independence prop-can not be applied directly for the case of BFP representation.
erty [12], e.g., if p (e ) and p (m) are the probability densi-1 m 2The additive roundoff error model [10] of the fixed point for-
ties of e and Q[x ] respectively, and p (e ;m) is the jointm i 3 mmat, which represents the absolute error in rounding process,
probability density of these variables, then we can writeshould not be used as BFP is a scaled number representation

system with different exponents for different blocks. In FP p (e ;m) = p (e ):p (m) (10)3 m 1 m 2arithmetic on the other hand, relative error is more important
than absolute error as the quantization affects only the man- where, in the case of rounding, due to eq.(8)½tissa, meaning that FP errors are multiplicative rather than

1=4 for je j · 4=2madditive. Thus, a relative roundoff error model is used in the p (e ) = (11)1 m 0 otherwiseFP analysis and the relative error ² is defined as
and, in case of truncation, due to eq.(9)

Q[x] = x(1 + ²) = x+ x² ½
1=4 for ¡4 · e · 0mQ[x]¡ x Q[m]¡m » p (e ) = (12)1 bm) ² = = = (6) 0 otherwise:x m m
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Fig. 1 Autocorrelation function of scaled additive roundoff error ® (R (T )). Fig. 3 Crosscorrelation function of ® and quantized data Q[x] (R (T )).®® ®x

analysis of BFP roundoff errors because p (° ) can not be° k

selected as a uniform distribution for its direct relation with
the input data. However, it can be derived in the following
way: The probability of the largest magnitude block variable
M to be at most t is

©(t) = PfM · tgZ Zt t

= ::: Ã (x ; :::; x ) dx :::dx (13)x ;:::;x 1 N 1 N1 N

¡t ¡t

where Ã (x ; :::; x ) is the joint probability densityx ;:::;x 1 N1 N

function (JPDF) [12] of the block variables. The block expo-
nent is ° if the largest magnitude of block variables M is ink

° ¡1 °k kthe interval 2 ·M < 2 . Then we can write [2]
° ° ¡1k kp (° ) = ©(2 )¡©(2 ): (14)° k

Fig. 2 Autocorrelation function of mantissa quantization error em In general, the derivation of this PMF requires evaluation of N(R (T )).e em m dimensional integrals, which is difficult. Therefore it is often
practical to approximate the JPDF of the block variables with
the corresponding marginal distributions, i.e., assuming the
block variables are uncorrelated and statistically independent.
If the block variables are also identically distributed, then the
probability function becomesZAlso note that, if p (°) denotes the probability mass func-4 t

Ntion of integer valued block exponents, then we can write © (t) = [ Ã (x) dx] : (15)iid x
¡tp (e ; °) = p (e ):p (°). In general, finding out the value5 m 1 m 4

of p (°) is a difficult task. A simplified approach to find out4 When the quantized signal x is white noise, this assumption
the same is given next. is quite reasonable. For example, if the signal is Gaussian

2distributed with variance ¾ , then the distribution of blockxC. Distribution of Block Exponents exponents becomes
1The derivation of the probability mass function (PMF) of ° ° ¡1k k2 2N Nblock exponents p (° ) (k = 1; :::; N , where N is the avail- p pp (° ) = [erf( )] ¡ [erf( )] (16)° k ° ° ° k

2¾ 2¾x xable distinct block exponent levels) is a tedious task in the
where erf(x) is the error function, i.e.,1For any quantized random variable, the probability distribution is defined Zas the sum of different probability mass functions where the dummy variable x

22 ¡tcan assume the values greater than or equal to the random variable. A detailed perf(x) = e dt: (17)
study can be found in Oppenheim and Schafer [14]. ¼ 0
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The theoretical distribution function as defined by eq. (16) and
also the simulated distribution function of the block exponents
by quantizing a 0 dB Gaussian signal to BFP format with 2000
samples and taking the block length equal to 4, are plotted in
Figures 4 and 5. It is seen that the plots exhibit a very good
similarity between them.

D. Roundoff Error Variance Calculation

As mentioned earlier, if rounding-to-nearest is used as the
rounding method, the roundoff error ® in eq. (7) has zero
mean and variance

N°¡2B Xd22 2 2° 2°k¾ = ¾ :E[2 ] = : p (° )2 (18)° k® em 12
k=1

Fig. 5 Block exponent distribution from simulation for quantizing 0 dBwhere p (° ), k = 1; :::;N , is the PMF of the block expo-° k ° Gaussian data in BFP format.
nents and N is the available distinct block exponent levels.°

A quantitative measurement of p (° ) has already been given° k

in the previous subsection. With the help of eq. (18) above, E. Proposed Approximation of SNR Calculation
the signal to noise ratio (SNR) in BFP quantization of a zero

2mean signal with variance ¾ can now be expressed as It should be noted that the theoretical error investigation re-x

quires precise knowledge of the distribution of quantized data
2¾ for calculating block exponent distribution. This information,xSNR = 10log (19)BFP 10 2 however, is not always available, which makes the theoretical¾®

2 error calculations only a little useful. Therefore the deriva-¾xP= 6:02B + 10:79 + 10log ( )d 10 tion of an approximate, easy-to-handle formula for calculating2°kp (° )2° kk SNR in BFP quantization is needed for the analytical purpose.
The approximate analysis comes up from the fundamentalwhich, apart from the number of bits used to represent each

idea of quantization. When the number of bits used in eachmantissa, i.e., B , also depends on the ratio of signal varianced
mantissa with FxP, FP and BFP format are same, the SNR inand the mean-square of the block exponents.
BFP quantization is not as good as that of FP but better than
the FxP case. This follows from the simple fact that the BFP
quantized mantissas have less number of significant bits com-
pared to FP mantissas, which are always normalized. Again,
BFP mantissas are block normalized, i.e., at least the maxi-
mum amplitude mantissa is normalized, which gives them the
provision to have more significant bits than the FxP mantissas
(except the case of 0 dB signal level, which is discussed later
on). Hence, the SNR can be interpolated from the FPBFP

and FxP SNR formulas with the introduction of a signal factor
¿ 2 R, as

SNR = ¿ SNR + (1¡ ¿)SNR (20)BFP FxP FP

where the signal factor ¿ , in our treatment, is distributed within
the range [0; 1] and is a function of the block length N and
signal statistics. To derive the SNR , we now need toBFP

know only about SNR and SNR .FP FxP
Fig. 4 Theoretical block exponent distribution for quantizing 0 dB Gaussian

The relative error ² in FP arithmetic is assumed to be whitedata in BFP format.
noise, uncorrelated with the signal. The total quantization
error e = ²x is then white noise with variance

2 2 2¾ = ¾ ¾ (21)e ² x
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2with ¾ being the variance of the signal andx

242 2¾ = ¼ (:18)4 (22)² 8ln2

¡Bdwhere 4 = 2 . Thus the SNR for a FP quantizer comes
as

2¾xSNR = 10logFP 10 2¾e
= 6:02B + 7:44 dB: (23)d

For FxP format, the variance of additive roundoff error ¯ be-
242comes ¾ = , leading to¯ 12

2¾xSNR = 10logFxP 10 2¾¯
Fig. 6 SNR diagram for quantizing the uncorrelated Gaussian data with 1+72= 6:02B + 10:79 + 10log ¾ dB: (24)d 10 x bit FxP, 1+7+(1+3) bit FP and 1+7+(1+3)/N bit BFP format, with

N=8 and N=16.For a 0 dB Gaussian signal, SNR is even higher than theFxP

SNR as the FxP mantissas cover the entire dynamic rangeFP

to have more number of significant bits. Simulations have also
supported these theoretical results regarding the SNRs, which
have been shown in Fig. 6. Eq. (24) now can be modified
by dividing the input signal by a scaling factor Â to reduce
the input amplitude so that the signal, for any level, does not
exceed the dynamic range of the FxP quantization process.
Thus the modified SNR becomes

SNR = 6:02B + 10:79¡ 20log ¤ dB (25)FxP d 10

Âwhere ¤ = . Substituting eq. (23) and (25) in eq. (20), we¾x
get

SNR = 6:02B +7:44¡¿(20log ¤¡3:35) dB: (26)BFP d 10

Deriving the exact value of signal factor ¿ is rather diffi-
cult for the nonlinear effects of block length N and quantizer

Fig. 7 The signal factor ¿ plotted as a function of block length N for a 0 dBrange limit for different types of signals. Nevertheless, for our
Gaussian signal.purpose, the obtained signal factor with ¤ = 1 was

¡1(1¡N )
¿ = (27)¡1 F. A Note on BFP Format Accuracy(1 +N )

which has shown exact values for the terminal cases but failed The accuracy given by eq. (28) is quite acceptable for small
to interpolate good results on few points in between the entire and moderate block lengths. For larger block lengths, the
range. A better formula for ¿ was obtained through fitting this SNR shows some ripple due to dependence on signal. The
curve to the data accumulated by theoretical calculations as approximate SNR formula in eq. (26) is most reliable within

a certain dynamic range where the quantized signal utilizes¡:72 ¡:72 ¡1¿ = (1¡N )(1 +N ) (28) the whole amplitude range. Beyond this range, the SNRBFP
actually falls off rapidly and can be increased again by addingwith the values ¿ = 0 for N = 1 and ¿ = 1 for N ! 1,
more number of block exponent bits.as expected. The signal factor is plotted as a function of N

In general, the BFP system gives the best performance forin Fig. 7. Note that the above formula can be applied only
small block lengths. Increasing the block lengthN reduces thewhen the quantized signal occupies the whole amplitude range
computational complexity as well as the effective number ofof the quantizer, i.e., for a 0 dB signal.
bits per sample to a little extent on one hand, but also decreases
the SNR on the other. Hence, one must be choosy about
finding out the lowest possible N for fulfilling the operational
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requirements to work with this format properly. For example, [15] B. Liu, “Effect of finite wordlength on the accuracy of digital filters-
A review,” IEEE Trans. Circuit Theory, vol. CT-18, pp. 670-677, Novif the length of a direct-form FIR digital filter is L, then it is
1971.sufficient to choose the block length N ¸ L ¡ 1, in order to [16] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Englewood
Cliffs, NJ: Prentice-Hall, 1963.minimize the inter-block adjustments.

[17] A. B. Sripad and D. L. Snyder, “Quantization Errors in Floating-
Point Arithmetic,” IEEE Trans. Accoust. Speech Signal Processing, vol.IV. CONCLUSIONS ASSP-26,pp. 149-151, Oct 1978.

The finite wordlength properties of BFP representation sys-
tem have been studied in this paper. BFP format is a better
choice as an alternative of FP systems due to its simplicity
of the associated hardware with sufficient SNR over a wide
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