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Abstract—Jayanti’s algorithm is one of the best known abortable 

mutual exclusion algorithms. This work is an attempt to overcome an 
already known limitation of the algorithm while preserving its all 
important properties and elegance. The limitation is that the token 
number used to assign process identification number to new 
incoming processes is unbounded. We have used a suitably adapted 
alternative data structure, in order to completely eliminate the use of 
token number, in the algorithm. 
 

Keywords—Abortable, deterministic, local spin, mutual 
exclusion.  

I. INTRODUCTION 
HE mutual exclusion is a classic problem. However, 
distributed mutual exclusion problem, being insidious in 

nature, has been a favorite area of research since many 
decades. In a distributed mutual exclusion algorithm, the code 
of each process p is divided into four sections: Entry Section, 
Critical Section (CS), Exit Section, and Remainder Section. In 
order to make it abortable, we introduce an Abort Section, 
which makes it possible for a process that waits “too long” to 
abort its attempt to acquire the resource. A process p may 
initiate a new attempt while in the Remainder Section. A 
successful attempt consists of executing the Entry Section, 
then the CS and finally the Exit Section. After completing the 
Exit Section, p goes back to the Remainder Section. When p 
busywaits in the Entry Section, it can (nondeterministically) 
choose to abort its attempt, in which case it executes the Abort 
Section and then goes back to the Remainder Section. The 
problem is to design an algorithm for Entry, Exit and Abort 
Sections so that the following properties hold:  
1. Safety: mutual exclusion and deadlock freedom 
2. Liveness: lockout freedom, bounded abort, and bounded 
exit 
3. Fairness: first-come-first-served (FCFS)  
In order to have better performance, preferably, the algorithm 
should be local-spin as well as adaptive.  

We have considered Jayanti’s algorithm [1] because it 
handles distributed mutual exclusion problem succinctly and 
satisfies all the properties stated in the previous section. 
Moreover, the algorithm has O(n) space complexity and 
O(min(k, log n)) remote reference complexity, where n is the 
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total number of processes in the system and k is the 
contention. The performance of algorithm is good, in both 
cases, when the level of contention is low or high. At low 
levels of contention (k << n), the number of remote references 
made by the algorithm is proportional to k; and at high levels 
of contention ( k n≈ ), the number of remote references is 
bounded by log n. Thus, the algorithm performs well at all 
levels of contention. 

The algorithm uses 64-bit objects supporting the LL, SC, 
read and write operations, which are described in Fig. 1.  
 
The operation LL(O) returns O's value. 
The operation SC(O, v) by a process p "succeeds" if  and only if no process  
performed a successful SC on O since p's latest LL. If SC succeeds, it changes 
O's value to v and returns true. Otherwise, O's value remains unchanged and 
SC returns false. 
 

Fig. 1 The Behavior of LL and SC Operations 
 
Although, real machines do not support LL and SC 

operations, however, there are constant time implementations 
of 64-bit LL/SC objects from 64-bit compare&swap objects 
and from 64-bit "realistic" LL/SC objects [2]. As a result, the 
algorithm can run on almost all modern machines, as they 
support either compare&swap (e.g., UltraSPARC [3] and 
Itanium [4]) or realistic LL/SC (e.g., POWER4 [5], MIPS [6] 
and Alpha [7]).  

Jayanti’s algorithm [1] has a limitation that the token 
numbers, assigned to new incoming processes, grow 
unbounded, that is, its value increases indefinitely. Our 
algorithm is a modified form of Jayanti’s algorithm, without 
sacrificing any of its salient properties. We have attempted to 
modify it in a deterministic way. The approach is based on 
replacing the data structure used in Jayanti’s algorithm, 
namely f-array [8], with a suitably adapted alternative data 
structure, in order to completely eliminate the use of token 
numbers. Accordingly, the code of Jayanti’s algorithm has 
also been modified, a little bit. The proofs of various 
properties have been included in the analysis of the modified 
algorithm. 

II. JAYANTI’S ALGORITHM 
The readers may refer [1] to see Jayanti’s complete 

algorithm, its working, complexity analysis, and detailed 
formal proof. However, in order to have a quick look over 
various pieces of the algorithm that work together to prevent 
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undesirable race conditions, the pseudo code is presented in 
the following Fig. 2.  

A. The Shared Variables 
The algorithm is based entirely on LL/SC variables. 

Although, some variables (specifically, C and Q) are not 
LL/SC variables, however, they can be efficiently 
implemented from LL/SC variables. Now, we describe below 
the use of shared variables of the algorithm. 

Wait[p] 
Before entering the CS, any process p busywaits on this 

boolean flag. At the start of its Entry Section, p sets it to true. 
When it is assigned false, by some other process q, p is 
released from its busywait loop and p becomes the owner of 
CS. Wait[p] is allocated to p's memory module, in order to 
make the algorithm local-spin. 

CSowner 
It holds the name of process, which is current owner of the 

CS. CSowner is assigned ⊥, if no process currently owns the 
CS. 

Counter C 
It is used to assign token numbers to processes requesting 

the CS. Any process p, incrementing C by executing inc(C, 1), 
gets the new value of C as its token number. Any other 
process q, incrementing C after p, would get a higher token 
number than that of p. As a result, the algorithm maintains 
FCFS and lockout-freedom properties.  

Priority process-queue Q 
It is a priority process-queue to hold the names and token 

numbers of processes waiting to enter CS. In the Entry 
Section, a process p inserts in Q an element [p, t], where t is 
p's token number. Process p deletes this element when exiting 
or aborting. An element can be deleted only by the process 
that inserted it; and a process can not insert a new element 
before deleting the older element inserted by it. As the priority 
ordering of elements in Q is similar to Lamport’s clock system 
[9], opearation findmin returns the name of longest waiting 
process, that is, the element with smallest token number from 
Q. If Q is empty, findmin returns the special value [⊥, ⊥].  

B. The Pseudo Code 
 
Shared variables 
C is a counter, initially 0; supports inc and read operations. 
Q is a priority process-queue, initially empty; supports insert, findmin and 
delete operations. 
CSowner takes on a value from, { } {0,1,..., 1}n⊥ ∪ − , initially ⊥; supports LL, 
SC, read and write operations. 

{0,1,..., 1},p n∀ ∈ − Wait[p] is a boolean, arbitrarily initialized; supports LL, 
SC, read and write operations. 
procedure Entry(p) 

1. Wait[p] = true  
2. inc(C, 1)  
3. t = read(C)  
4. insert(Q, [p, t])  
5. promote() 
6. promote() 
7. wait till Wait[p] = false 

procedure Exit(p)  

8. delete(Q, [p, t])  
9. CSowner = ⊥ 
10. promote() 

procedure Abort(p) 
11. delete(Q, [p, t]) 
12. promote() 
13. if CSowner = p then 
14.  CSowner = ⊥ 
15.  promote() 

procedure promote() 
16. if LL(CSowner) ≠ ⊥ then return 
17. [q, t′ ] = findmin(Q) 
18. if q ≠ ⊥ then LL(Wait[q]) 
19. if SC(CSowner, q) then 
20.  if q ≠ ⊥ then SC(Wait[q], false) 
 

Fig. 2 Abortable mutual exclusion algorithm for n processes. Code 
shown here is for process p 

III. THE DOUBLY LINKED CONCURRENT LIST 
The tokens are required to maintain first-come-first-serve 

(FCFS) property of the algorithm. In place of f-array, another 
data structure, namely doubly linked concurrent list, has been 
used for maintaining the list of processes. Each new incoming 
process is added to tail of the list, so that the order of 
incoming processes, i.e. FCFS property, is already managed 
by the structure of the linked list. 

A queue can be implemented by a singly linked list, 
however, we have used doubly linked list, as it supports the 
traversal from both ends. The detailed discussion on parallel 
linked list data structure is available in the paper by Tang et. 
al. [10]. The algorithms for various operations over a parallel 
linked list were originally designed for processor self-
scheduling on parallel computers. However, we have modified 
them to accommodate our requirement. Before we present the 
algorithms for append, delete, and search operations, we 
describe the structure of a node for the doubly linked 
concurrent list. We consider that our list goes from left to 
right. In addition to the data field that depends on the 
application of the linked list each node (representing a 
process), as shown in Fig. 3, has four fields. Originally, a 
node in Tang et. al.’s list [10] had only three fields; however, 
we have added one more field, namely flag, in order to make 
it suitable for error-free operation of the linked list in our 
algorithm. The fields are described below: 
1. left : It is a pointer that contains the address of the left node 

in the list. 
2. right: It is a pointer that contains the address of the right 

node in the list. 
3. lock: This field can assume any value from the set {0, 1, 2}. 

Value 0 indicates that the node is being deleted; value 2 
indicates that the node is presently locked by another 
process, and value 1 represents the unlocked state of the 
node. 

4. flag: A node can set its flag when the node has to be deleted 
by the process either exiting from CS or aborting. When a 
node’s flag is set the node cannot be locked by any other 
process. Also, if a node is already locked by some other 
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process and subsequently the node sets its flag, then no 
process can lock it further. 
 

 

Fig. 3 Structure of the node 

 
 

Fig. 4 The Doubly Linked Concurrent List 

Fig. 4 shows a doubly linked concurrent list. Head is the 
pointer to first node of the list and tail is the pointer to last 
node of the list. 

The lock is a synchronization variable used for coordinating 
the deletion of adjacent nodes. Each lock has three states: 
unlocked (lock = l), locked (lock = 2), and closed (lock = 0). 
The initial state is unlock (lock = l). The flag represents the 
state of the node whether it is being deleted by the process. It 
can be set only by the process that owns the node and when 
set, it cannot be locked by any other node. The operations that 
are supported by the list (append, delete, search, and check) 
are explained below. 

A. The Append Procedure 
The Append procedure appends a new node after the last 

node of the linked list and splices the pointers accordingly. 
Multiple processors can append their new nodes concurrently. 
The procedure ensures that these concurrent operations always 
yield a well connected linked list. Also, append can execute in 
parallel with delete operation. However, deletion of the last 
node and appending of a new node are mutually exclusive 
operations. Each new node is initialized (right = null, lock = 1 
(unlocked), and flag = 0) before it is appended to the list. 
When a processor appends a new node to the list, it needs the 
following steps: 

Lock the last node of the linked list by changing its lock 
from 1 to 2. If its lock is not 1, repeat this step again. 

Set the left of the new node. Accordingly, change the right 
of the last node. Also, change the tail pointer of the linked list. 

Unlock the last node (original) by changing its lock from 2 
to 1. 

 
procedure append(p) 

begin 
do 
x = tail;          //fetch address of last node 
if (x ≠ null) then       //check if there is any node in the list 
if(x = tail & x → flag = 0)    //if the tail has not changed since 

fetching its address 
{x → lock = l; increment};    //lock the last node 
  endif 
 else          //if no node is present in the list 
if (x = tail) then        //if the tail has not changed since 

fetching its add. 
   {HL = l; increment};   //lock the head node 
  endif 
 endif 

while (failure);    //repeat until the last node or head node is locked 
tail = p;      //tail pointer now points to the new appending 

node 
p → left = x;    //left pointer of new node points to original last 

node 
if (x ≠ null) then   //if the original last node is present and not null 
x → right = p;    //right pointer of original last node points to the 

new node 
else       //if no node is there in the list 
head = p;      //the head points to the new appending node 
endif 
if (x ≠ null) then   //if the original last node is present and not null 
{x → lock ; decrement}; //unlock the original last node 
else       //if no node is there in the list 
 {HL; decrement};  //unlock the head node 
endif 
end 
 
In this paper, we use the syntax p → lock, similar to the 

language C, to denote the lock field of the node pointed by p. 
Other fields of the node are denoted similarly. 

B. The Delete Procedure   
The delete procedure allows multiple processors to delete 

different, non-adjacent, nodes simultaneously. In order to 
have proper splicing of pointers, the deletions of adjacent 
nodes should be mutually exclusive. When a processor deletes 
a node, it executes the following steps: 

Set the flag and close the node to be deleted (i.e. the node 
pointed by p) by changing its lock from 1 to 0. If the lock is 
not 1, busy wait at this step until it becomes 1. 

Lock the left node by changing its lock from 1 to 2. If its 
lock is not 1 or its flag is set, re-fetch the address of the left 
node and repeat this step. 

Proceed to delete the node by changing the right of the left 
node and the left of the right node. 

Unlock the left node by changing its lock from 2 to 1. 
 

procedure delete(p) 
begin 
p → flag = 1;      //set the flag to indicate that the node is 

going to be deleted 
do 
{p → lock = 1; decrement};  //change the lock of the node to zero 
while (failure);      //repeat until the lock is set to 0 
y = p → right;      //y points to the right node 
do 
 x = p → left;     //x points to the left node 
if (x ≠ null) then     //if the current node is not the first node in 

the list 
  if (x → flag = 0 & x = p → right) then //if left node is not going to 

delete and left node has not changed yet 
{x → lock = 1; increment};       //lock the left node 
  endif 
  if (!failure) then  //if left node has been locked 
x → right = y;     //right pointer of left node points to the right 

node 
  endif 
 else       //if the current node is the first node in the list 
  head = y;     //head node points to the right node 
 endif 
while (failure);     //repeat until right node’s right pointer or head 

points to right node 
if (y ≠ null) then    //if current node is not the last node in the list 
y → left = x;      /right node’s left pointer points to the left node 

left lock flag right 

head tail
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else        //if current node is the last node in the list 
 tail = x;         //tail node points to the left node 
endif 
if (x ≠ null) then       //if left node is present and deleting 

node is not the first node 
 {x → lock; decrement};    //unlock the left node 
endif 
end 
 
First of all, the flag of the currently deleting node is set 

such that no other node can lock it later. Then the process tries 
to lock its own node. Some other node might have already 
locked it, so it loops until it succeeds in locking its node. After 
this, it fetches the address of its left node and tries to lock it. If 
the deleting node is not the first node in the list then the left 
node belongs to some other process. Before locking the left 
node its flag is checked, if it is unset then only proceed to lock 
it. The address of the left node is again checked to verify if it 
has not changed in the meantime. After locking the left node 
change its right to point to the right node of the currently 
deleting node. However, if the currently deleting node is the 
first node in the list, then change only the head pointer to 
point to the right node of the currently deleting node. The 
process loops until it succeeds in changing the right of the left 
node or the head pointer. 

Now, the left of the right node is changed to point to the left 
node if the right node is not null, i.e., currently deleting node 
is not the last node in the list. If it is the last node in the list, 
then change the tail pointer to point to the left node of 
currently deleting node. In the end, release the lock of the left 
node that was locked earlier by the currently deleting node. 

If the left node’s flag is set or it is locked then the deleting 
node has to wait until the left node is deleted. If all the left 
nodes are willing to delete them, i.e., their flags are all set, 
then deletion starts from the left most node and continues 
towards right until it reaches the currently deleting node.  

C. The Search Procedure 
The job of search procedure is as follows: 

1. Starting from the first node, traverse the linked list; search 
for the first node that is eligible to enter the critical section, 
i.e., the first node which is not closed and whose flag is 
unset. 

2. If no such node is found return null. 
procedure search()  

beign 
q = head;      //q points to the first node of the list 
while (!check(q))   //if check procedure returns false 
 q = q → right;   //q points to right node 
endwhile      //repeat until check returns true 
return q;       //return value of q 
end 
Initially, a temporary variable q is pointed to the head node 

of the list. This pointer is used to traverse through the list. 
Until the check procedure returns true, q moves rightwards. 
The check procedure is explained below. 

D. The Check Procedure 
The job of check procedure is to return true if the node p is 

not null and its flag is unset, i.e., node p is eligible to enter the 

critical section, else false is returned. 
procedure check(p) 

begin 
if (p ≠ null || p → flag = 0) then  //if node p is not null and its flag is unset 
 return true;       //return true to the calling procedure 
else           //if node p is null or flag is set or both 
 return false;       //return false to the calling procedure 
endif 
end 

IV. THE MODIFIED ALGORITHM 
Now, we present the modified mutual exclusion algorithm. 

Out of four shared variables, used by Jayanti, counter C and 
priority process-queue Q have been taken off, as they are no 
more required. However, Wait[p] and CSowner have been 
used for the same purpose as they were used, originally, in 
Jayanti’s algorithm. The modified mutual exclusion algorithm, 
using doubly linked concurrent list, is as follows: 
 
Shared variables 
CSowner takes on a value from, { } {0,1,..., 1}n⊥ ∪ − , initially ⊥; supports LL, 
SC, read and write operations. 

{0,1,..., 1},p n∀ ∈ − Wait[p] is a boolean, arbitrarily initialized; supports LL, 
SC, read and write operations. 
procedure Entry(p) 

1. Wait[p] = true //Wait[p] is set true so that p busywaits on it 
2. Append(p) //append the node of the process to the doubly linked 

concurrent list 
3. promote()  //call promote() to put the next process in CS 
4. promote()  //again promote() to prevent livelock 
5. wait till Wait[p] = false //busywait on Wait[p] until it gets into CS or 

aborts 
procedure Exit(p) 

6. delete(p)   //remove node from the linked list 
7. CSowner = ⊥ //set CSowner to null indicating no process in CS now 
8. promote()   //call promote() to put the next process in CS 

procedure Abort(p) 
9. delete(p)   //remove node from the linked list 
10. promote()   //call promote() to put the next process in CS 
11. if CSowner = p then //if CSowner is set to p by some other process 
12. CSowner = ⊥  //set CSowner to null 
13. promote() //again call promote() to put next process in CS 

procedure promote() 
14. if LL(CSowner) ≠ ⊥  then return //if some process is in CS then return 
15. q = Search() //Search() returns the first node in list eligible for CS 
16. if check(q) then LL(Wait[q]) //perform LL on Wait[q] if q is still 

eligible for CS 
17. if SC(CSowner, q) then //if SC operation on CSowner is successful 
18. if check(q) then SC(Wait[q],false) //if q is still eligible for CS set 

Wait[q] to false 
 

V. THE PROOF OF CORRECTNESS 
We also need some definitions, similar as used by Jayanti 

[1], to carry out the description of various proofs. The system 
state (or configuration), is determined by the values of the 
shared variables, local variables, and program counters of all n 
processes. The configuration C changes when a process 
executes some step s. In the initial configuration, we assume 
that all n processes are in the Remainder Section and the 
shared variables are initialized. A run R is a (finite or infinite) 
sequence C0, s1, C1, s2, C2, ... of alternating configurations and 
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steps such that C0 is the initial configuration and, for all i > 0, 
the step si is enabled in Ci-1 and causes the configuration to 
change from Ci-1 to Ci. In addition, we also follow the 
following notations used in Jayanti’s paper [1]: 
• An attempt by process p refers to each execution by p of the 

Entry Section followed by either the Exit or the Abort 
Section. 

• Line(p, k, m) denotes the step in which process p executes 
Line m of the algorithm in its kth attempt.  

• Line(p, k, 5[last]) is the step corresponding to the final 
iteration of process p’s busywait loop on Line 5, during the 
kth attempt by p, in which p reads false in Wait[p] and 
moves into the Critical Section. 

• If π is an execution of promote() by some process, π(m) 
denotes the step of π corresponding to the execution of Line 
m. (For example, π(14) is the execution of Line 14 by π.)  

• We call an execution of promote() successful if it executes 
Line 17 and its SC operation on Line 17 succeeds. 
In the algorithm, a step is a call to promote, that is, the 

execution of Lines 3, 4, 8 and 10 by a process. The execution 
of iteration, of Line 5 that consists of reading Wait[p] and 
comparing it with false, is also a step. A process p, while 
busywaiting at Line 5, nondeterministically, chooses either to 
execute an iteration of Line 5 or to jump at Line 9 in order to 
execute the Abort Section. 

The critical section (CS) has been modeled as Line 
5′ (although it is not shown in the pseudo code of the 
algorithm). When p executes an iteration of Line 5, if p reads 
false in Wait[p], then p enters the CS, i.e., p’s program counter 
becomes 5′ . If p takes a step from CS, its program counter 
changes from 5′ to 6. 

The Remainder Section has been modeled as Line 0 (this is 
also not shown in the pseudo code of the algorithm). If p takes 
a step from the Remainder Section, its program counter 
becomes 1. When p completes the Exit Section or the Abort 
Section, it enters the Remainder Section. 

A. Mutual Exclusion 
Lemma 1 is that successful executions of promote() do not 

overlap, an observation that follows immediately from the 
semantics of LL and SC operations.  

Lemma 1. If π and π' are distinct successful executions of 
promote(), then either π (17) < π'(14) or π'(17) < π(14). 

Lemma 2. If process p enters the CS during its kth attempt, 
then there is an execution π of promote() such that π(17) 
writes p into CSowner, and Line(p, k, 1) < π(17) < Line(p, k, 
5[last]). 

Lemma 3. We state this lemma in two parts: 
1. Consider any step s in which some process executes a 

successful SC operation on Line 17. CSowner has the value ⊥ 
in the configuration immediately preceding step s. 

2. Consider any step s in which a process p executes either 
Line 7 or Line 12. CSowner has the value p in the 
configuration immediately preceding step s. 

Lemma 4. If a process p is in the CS in a configuration C, 
then the value of CSowner in C is p. 

Lemma 5. (Mutual Exclusion): At most one process is in the 
CS in any configuration. 

Jayanti has verified the mutual exclusion property by 
proving above five lemmas. However, the proof of mutual 
exclusion, in our case, is simple and given as follows: 

Proof. For any process p to be in CS, there must be some 
execution of π(15), where search() returns p and some 
execution of π(17), that successfully writes p in CSowner. The 
search() procedure returns the first node, eligible for CS, in 
the linked list. For two or more processes to be in CS at the 
same time, search() must return more than one different 
processes which is not possible. Hence, there can be only one 
process in CS at a time. 

B. Deadlock Freedom 
Following four conditions [11, 12] are necessary for a 

deadlock to occur: 
1. Mutual Exclusion: each process has exclusive use of its 

resources. 
2. Nonpreemption: a process never releases the resources it 

holds, until it is through using them. 
3. Resource waiting: each process holds resources while 

waiting for other processes to release theirs. 
4. Cycle of waiting processes: each process in the cycle waits 

for resources that the next process owns and will not 
relinquish. 
If any of the above mentioned four conditions does not hold 

then deadlock cannot occur. Consider the fourth condition. In 
our algorithm, a resource refers to the lock of a node. 
Consider a situation where all the nodes have acquired their 
own lock and are waiting to lock their respective left nodes. 
Thus, each process is waiting for the resource that is locked by 
its left node. However, deadlock will not occur because this is 
not the case for the first node in the linked list. As, the first 
node has to acquire the head lock and the head cannot be 
locked by any node other than the first node in the list; hence, 
there is no cycle of waiting processes. Therefore, the fourth 
condition does not hold and deadlock cannot occur. 

C. Lockout Freedom 
Lockout freedom property states that if a process initiates 

an attempt and does not abort that attempt, then it eventually 
enters the CS in that attempt. Let p be a process, which 
initiated an attempt and would not abort that attempt. There 
are two ways in which p can be deleted from the list: either by 
aborting or by exiting. As it is interested in CS, abort cannot 
take place; hence the only way for a node to delete itself is 
through exit. Since deadlock is not possible, therefore, a 
process cannot be in the list forever. Now, for p to delete itself 
through the exit section, it has to enter the CS first. Hence, p 
eventually enters the CS. 

D. Local Spin 
Line 5 of our algorithm corresponds to busy-wait of each 

process p on a Boolean variable Wait[p] in order to get into 
the critical section. As, Wait[p] is mapped into the processor’s 
local memory module or cache, while waiting, the process 
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accesses only its local variable. Thus, the algorithm is local 
spin. 

E. FCFS 
Lemma 6. Let R be any finite run such that in the 

configuration C at the end of R, CSowner has a non-⊥ value p. 
Then, there exists 1k ≥  such that the following statement is 
true: Let π be the latest execution of promote() such that π(17) 
is in R and π(17) writes p into CSowner (by a successful SC 
operation). Such a π exists and satisfies Line(p, k, 2) < π(15). 
(Note that this implies that R includes the step Line(p, k, 2).) 

Proof. Let π be the latest execution of promote() such that 
π(17) is in R and π(17) writes p into CSowner by a successful 
SC operation (such a π exists because CSowner has the value 
p ≠⊥  in C). This implies that search() of  π(15) returns p. It is 

possible only if p is already present in the list, i.e., p inserts its 
node into the list on Line 2 (in some attempt) and does not 
remove its node from the list in that attempt (by Line 6 or 9), 
before execution of π(15). Thus, there exists an attempt 1k ≥  
(of p) such that the following statement is true: Line(p, k, 2) < 
π(15). This fact establishes the lemma. 

Lemma 7. In any run R, if Line(p, k, 2) < Line(q, m, 1) and 
p does not abort its kth attempt, then q does not enter the CS 
in its mth attempt before p enters the CS in its kth attempt. 

Proof. If Line(p, k, 2) and Line(q, m, 2) append p and q, 
respectively, in the list, then p’s node is ahead of q’s node in 
the linked list. Let us assume that the Lemma is false and 
consider that q gets into CS in its mth attempt before p. Thus, 
by Lemma 4, CSowner has value q in configuration C. Lemma 
6 implies that there exists an execution π of promote() such 
that π(15) executes search() after Line(q, m, 2), and π(17) 
writes q in CSowner. This is possible if π(15) receives q from 
search(). But search() returns the first, eligible for CS, process 
in the linked list. As, p is ahead of q in the linked list and also 
eligible for CS (since its not going to abort in the kth attempt), 
hence, search() would return q if and only if p is trying to 
abort or is in the process of deletion, which is not the case. 
Therefore, our assumption is false and the Lemma holds. 

F. Bounded Exit 
Lemma 8. If a process wants to acquire its own node’s lock 

and some process has locked its node, then it would take a 
constant amount of time to acquire the lock. 

Proof. Let p be the process that wants to acquire its own 
node’s lock and some other process q has locked it. There are 
two possibilities to consider: (i) q is deleting its node from the 
linked list or (ii) q is appending its node to the linked list. If q 
is deleting its node then q must be the right node of p. In the 
delete operation, the only step that takes O(k) time (where k is 
the number of contending processes in the linked list) is the 
locking of the left node and remaining steps require constant 
amount of time. As, q has already locked its left node, i.e., p’s 
node; hence, q would release the lock of p’s node after 
constant amount of time. Also, p has already set its flag to 1 
before trying to acquire its node’s lock, thus, no other process 
can further lock p’s node. Consequently, p would acquire its 

node’s lock next, after q releases it. Hence the lemma holds. 
Lemma 9. If two adjacent nodes are attempting to delete 

simultaneously, then the node, which is ahead in the list, is 
deleted first. 

Proof. Let two neighboring nodes p and q, where p is ahead 
of q in the linked list, try to delete simultaneously. While 
attempting to delete simultaneously, say, both nodes have set 
their respective flag 1, simultaneously. Assume that the 
Lemma is false and q is deleted before p. In order to delete 
itself, a node has to lock its left node. This implies that q had 
been able to lock node p even after p’s flag was set to 1. This 
results in a contradiction as a node cannot be locked while its 
flag is set to 1. Hence, our assumption is false and the lemma 
is true. 

Lemma 10. The delete(p) operation takes at most O(k) 
remote steps. 

Proof. Let, the node performing the delete operation be p 
and its left node be q. There are three possibilities: 

(i) Best Case: Node q’s flag is not set to 1 and node p is 
also not locked. In this case, p takes total O(1) time to set its 
own lock to 0 and q’s lock to 2. So, the time complexity of 
delete(p) operation would be O(1). 

(ii) Average Case: Node q’s flag is not set to 1 and node p 
is locked. From Lemma 8, we observe that acquiring the lock 
of node p would take constant amount of time. Furhtermore, 
locking node q and remaining operations also take constant 
time. Therefore, in this case also, the time complexity of 
delete(p) operation would be O(1). 

(iii) Worst Case: Node q’s flag is set to 1 and node p is also 
not locked. Now, node p can set its lock to 0 in constant time. 
However, node p cannot lock node q as its flag is set to 1. In 
the worst case, all nodes, ahead of node p in the linked list, 
may be attempting to delete themselves, simultaneously. We 
conclude, from Lemma 9, if two adjacent nodes are trying to 
delete themselves simultaneously, then deletion starts from the 
node ahead in the linked list. Thus, only the head node can be 
locked. Consequently, the first node in the linked list would be 
deleted earliest, afterwards, the second node and so on. If k be 
the number of contending processes in the list, there would be 
(k-1) nodes ahead of p. Hence, in order to delete itself, p 
would take O(k) time before it can lock the node ahead of it. 
Therefore, in the worst case, the time complexity of operation 
delete(p) would be O(k). 

Jointly, from lemma 8, 9, and 10, we conclude that the Exit 
section completes in at most O(k) steps. As, k is some 
bounded integer, the algorithm ensures bounded exit property. 

G. Bounded Abort 
The time complexity of abort action would be O(k), as all 

steps of abort section of the algorithm take O(k) time. The 
complete proof follows directly from the proof of bounded 
exit. 

H. Adaptivity 
Lemma 11. The search() operation takes at most O(k) 

remote steps. 
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Proof. The search() operation returns the address of some 
node p that is the first node, eligible for CS, in the linked list. 
The criterion for eligibility is that the node should not be in 
the process of deletion, that is, its flag must be set to 0. The 
search() starts traversing the linked list from the first node and 
then moves rightward. In the worst case, out of k nodes ahead 
of p in the linked list none is eligible for CS. The search() 
would have to traverse k nodes in order to return address of  p. 
Therefore, O(k) remote accesses are required for completion 
of search() procedure. 

After entering in the linked list at Line 2 of the algorithm, 
each process makes at most O(k) remote memory accesses 
(both delete(p) and search() operations take O(k) time 
according to Lemma 10 and Lemma 11). Thus, the time 
complexity of our algorithm is a function of k, where k is the 
number of contending processes, i.e., the number of nodes in 
the linked list. Hence, the algorithm is adaptive. 

I.  Time Complexity Analysis 
In worst case, the number of remote memory accesses 

required for a process to enter the critical section is O(k), 
where k is the number of contending process. Thus, the time 
complexity of our algorithm is O(k). The algorithm has O(n) 
space complexity, where n is the total number of processes in 
the system.  

VI. CONCLUSION 
The tree data structure (or its any variant) works well when 

the nodes are inserted in a random order. It performs poorly 
on the sequences of operations, such as inserting the nodes in 
order. Hence, mostly for such applications, implementers 
generally agree that linked data structures are better options. 
Moreover, they are significantly easier to implement than any 
other data structure including tree and its variants. Therefore, 
we have used a suitable variant of linked data structure, 
namely doubly linked concurrent list, as underlying data 
structure. In our approach, by making small change in the 
pseudo code of Jayanti’s algorithm, the use of token number 
has been completely eliminated. Although, we had to 
compromise in worst case time complexity, nevertheless, no 
important property has been sacrificed. Moreover, the proofs 
of various properties are straightforward and less complex 
than their counterparts in Jayanti’s paper. The space 
complexity is same; nonetheless, the data structure used in 
Jayanti’s algorithm, namely f-array, needs more complicated 
memory management mechanism than the linked data 
structures [13], which have been used by us. An inherent 
characteristic of linked data structures is the structural 
flexibility possible by manipulating pointers. Methods using 
arrays in programs may improve the execution efficiency but 
lack the structural flexibility [14]. On the basis of complexity 
analysis, we conclude that our algorithm under perform only 
when the rate of abortion is very high. However, the abortion 
rate is often quite low in most practical scenarios. 
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