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On Algebraic Structure of Improved Gauss-Seidel
Iteration

O. M. Bamigbola, A. A. Ibrahim

Abstract—Analysis of real life problems often results in linear
systems of equations for which solutions are sought. The method to
employ depends, to some extent, on the properties of the coefficient
matrix. It is not always feasible to solve linear systems of equations
by direct methods, as such the need to use an iterative method
becomes imperative. Before an iterative method can be employed
to solve a linear system of equations there must be a guaranty that
the process of solution will converge. This guaranty, which must
be determined apriori, involve the use of some criterion expressible
in terms of the entries of the coefficient matrix. It is, therefore,
logical that the convergence criterion should depend implicitly on the
algebraic structure of such a method. However, in deference to this
view is the practice of conducting convergence analysis for Gauss-
Seidel iteration on a criterion formulated based on the algebraic
structure of Jacobi iteration. To remedy this anomaly, the Gauss-
Seidel iteration was studied for its algebraic structure and contrary
to the usual assumption, it was discovered that some property of the
iteration matrix of Gauss-Seidel method is only diagonally dominant
in its first row while the other rows do not satisfy diagonal dominance.
With the aid of this structure we herein fashion out an improved
version of Gauss-Seidel iteration with the prospect of enhancing
convergence and robustness of the method. A numerical section is
included to demonstrate the validity of the theoretical results obtained
for the improved Gauss-Seidel method.

Keywords—Linear system of equations, Gauss-Seidel iteration,
algebraic structure, convergence.

I. INTRODUCTION

L INEAR systems of equations can be expressed in matrix
form as

Ax = b (1)

where A = (aij), i, j = 1, 2, . . . , n is a square matrix while
b = (bj), j = 1, 2, . . . , n, and x = (xj), j = 1, 2, . . . , n
are vectors. Such equations arise in electrical networks,
economic modelling, optimization and approximation of
ordinary differential equations, see [18]. Similarly, the
solution of partial differential equations by finite difference
discretisation often result in a set of linear equations [1].
Thus the solution of linear systems of equations is of great
importance in mathematics.

The method employed in solving (1) depends, to some
extent, on the properties of the coefficient matrix A. Linear
systems of equations are generally solved by such direct
methods as LU factorisation, Gaussian elimination, matrix
inversion and Cramer’s methods. For a number of reasons,
it is not always feasible to solve (1) by any of the direct
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methods of solution. One major reason is the case where A
is a singular matrix, [3]. Again, if the number of equations
is large or the coefficient matrix A is a band matrix, the use
of direct methods becomes inefficient, see Saad and van der
Vorst [16]. Under these situations, recourse is made to iterative
methods as solution techniques.

There are two classes of iterative methods: stationary and
nonstationary iterative methods. Stationary iterative methods
are older and simpler to implement in that the iteration matix
remains unchanged in the course of implementation [13].
There are essentially two basic stationary iterative methods
for the solution of linear systems of equations, namely, the
Jacobi and the Gauss-Seidel. The other method, Successive
Over Relaxation (SOR) method, is simply a modification of
the latter [6].

Before an iterative method is used to solve a linear system of
equations there must be a guaranty that the process of solution
will converge. This guaranty, which must be determined
apriori, involve the use of some criterion expressible in
terms of the entries of the coefficient matrix A [13]. It is
therefore logical that the convergence criterion should depend
solely on the algebraic structure of such a method. However,
in deference to this view is the practice of conducting
convergence analysis for Gauss-Seidel iteration on a criterion
formulated based on the algebraic structure of Jacobi iteration,
see Demidovich [5]. To redress this misapplication, the Gauss-
Seidel iteration has been studied for its algebraic structure [10]
and contrary to the usual assumption, it was discovered that
the algebraic structure of the iteration matrix of Gauss-Seidel
method is only diagonally dominant in its first row while the
other rows do not satisfy diagonal dominance. With the aid of
this structure we fashion out an improved version of Gauss-
Seidel iteration with the prospect of enhancing convergence
and robustness of the method.

Iterative methods for solving linear systems of the form (1)
usually involve splitting the coefficient matrix A into matrices
P and Q such that A = P − Q where P is nonsingular [4].
Thus, the linear system is transformed into the form

x = P−1Qx+ b. (2)

P−1Q is referred to as the iteration matrix, see [17] and P−1b,
we call the iteration vector.

The stationary iterative methods for solving (1) is obtained
by the splitting method [20] to give the coefficient matrix A
as A = L+D+U , where L, D and U are the strictly lower
triangular, diagonal and strictly upper triangular matrices.

There are only three feasible splittings, each of which must
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include the diagonal matrix D. Arising from these splittings,
we have the Jacobi method as

x(k+1) = −D−1(L+ U)x(k) +D−1b, (3)

the forward Gauss-Seidel method as

x(k+1) = −(L+D)−1Ux(k) + (L+D)−1b (4)

and the backward Gauss-Seidel method [6], is given by

x(k+1) = −(D + U)Lx(k) + (D + U)−1b (5)

Since D, (L+D) and (D + U) are triangular matrices, then
their inverses exist, even for singular linear systems, provided
aii �= 0 for all i, see [21].

The structure and properties of the Jacobi method are well
known and are even commonly utilized in the convergence
analysis of the Gauss-Seidel method, see Bagnara [2],
Householder [9] and Richard [14]. As a result, there is a need
to study the structure and properties of the iteration matrices
of both the forward and backward Gauss-Seidel methods.

In the next section we characterise the algebraic structures
of Gauss-Seidel iterations followed by the analysis of the
improved Gauss-Seidel method. The section on numerical
consideration precedes the discussion on results and the
conclusion.

II. CHARACTERISATION OF GAUSS-SEIDEL ITERATIONS

For the forward Gauss-Seidel method, let
(L+D)−1 = (pij), i, j = 1, 2, . . . , n
and
(L+D)−1U = (mij), i, j = 1, 2, . . . , n.
Then, its iteration matrix, MF , and iteration vector, cF , can
be written respectively as

MF = −(L+D)−1U = −

⎛
⎜⎜⎜⎝

0 m12 · · · m1n

0 m22 · · · m2n

...
...

...
...

0 mn2 · · · mnn

⎞
⎟⎟⎟⎠ (6)

and

cF = (L+D)−1b =

⎛
⎜⎜⎜⎜⎝

b1
a11

+
∑n

j=2 q1jbj
p21b1 +

b2
a22

...∑n−1
j=1 pnjbj +

bn
ann

⎞
⎟⎟⎟⎟⎠ (7)

where

mij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 j = 1,

∑j−1
k=1 pikakj 1 < j ≤ i,

∑i
k=1 pikakj j > i ≥ 1.

(8)

and

pij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 j > i,

1
aii

j = i,

− 1
aii

∑i−1
k=j aikpkj j < i.

(9)

For the backward Gauss-Seidel method, let
(D + U)−1 = (qij), i, j = n, n− 1, . . . , 1
and
(D + U)−1L = (rij), i, j = n, n− 1, . . . , 1.
Then its iteration matrix, MB , can be put in the form

MB = −(D + U)−1L = −

⎛
⎜⎜⎜⎝

r11 r12 · · · r1(n−1) 0
r21 r22 · · · r2(n−1) 0

...
...

...
...

...
rn1 rn2 · · · rn(n−1) 0

⎞
⎟⎟⎟⎠

(10)
and the iteration vector, cB , as

cB = (D + U)−1b =

⎛
⎜⎜⎜⎝

b1
a11

+
∑n

j=2 q1jbj
b2
a22

+
∑n

j=3 q2jbj
...
bn
ann

⎞
⎟⎟⎟⎠

(11)
where the relationship between rij and mij as well as between
qij and pij , based on the structural patterns of (L + D)−1,
(L+D)−1U , (D + U)−1 and (D + U)−1L are given by

rij = m(n−i+1)(n−j+1), i, j = n, n− 1, . . . , 1 (12)

and

qij = p(n−i+1)(n−j+1), i, j = n, n− 1, . . . , 1. (13)

We begin the analysis of Gauss-Seidel iterations by stating
a result that specify some relationship between forward Gauss-
Seidel method and its backward variant.
Theorem 1
For the linear system (2), both the backward Gauss-Seidel and
forward Gauss-Seidel generate the same iterates, starting at the
same initial vector.
Proof: The backward Gauss-Seidel iteration for the linear
system (2) is

x(k+1) = MBx
(k) + CB .

In line with Saad ([15], pg. 97), the above can be written in
expanded form as

⎛
⎜⎜⎜⎜⎜⎝

xn

xn−1

...
x2

x1

⎞
⎟⎟⎟⎟⎟⎠

(k+1)

= −

⎛
⎜⎜⎜⎜⎜⎝

r11 · · · 0
r21 · · · 0

...
...

...
r(n−1)1 · · · 0

rn1 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎝

xn

xn−1

...
x2

x1

⎞
⎟⎟⎟⎟⎟⎠

(k)

(14)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

b1
a11

+
∑n

j=2 q1jbj
b2
a22

+
∑n

j=3 q2jbj
...

bn−1

a(n−1)(n−1)
+
∑n

j=n q(n−1)jbj
bn
ann

⎞
⎟⎟⎟⎟⎟⎟⎠

A. Analysis of Algebraic Structures of Gauss-Seidel Iterations
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Using (12) and (13) in (14) results in⎛
⎜⎜⎜⎜⎜⎝

xn

xn−1

...
x2

x1

⎞
⎟⎟⎟⎟⎟⎠

(k+1)

= −

⎛
⎜⎜⎜⎜⎜⎝

mnn · · · 0
m(n−1)n · · · 0

...
...

...
m2n · · · 0
m1n · · · 0

⎞
⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎝

xn

xn−1

...
x2

x1

⎞
⎟⎟⎟⎟⎟⎠

(k)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

bn
ann

+
∑1

n−j+1=n−1 pn(n−j+1)b(n−j+1)
b(n−1)

a(n−1)(n−1)
+
∑1

n−j+1=n−2 p(n−1)(n−j+1)b(n−j+1)

...
b2
a22

+
∑1

n−j+1=1 p2(n−j+1)bn−j+1
b1
a11

⎞
⎟⎟⎟⎟⎟⎟⎠

which on rearranging yields⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...
xn−1

xn

⎞
⎟⎟⎟⎟⎟⎠

(k+1)

= −

⎛
⎜⎜⎜⎜⎜⎝

0 m12 · · · m1n

0 m22 · · · m2n

...
...

...
...

0 m(n−1)2 · · · m(n−1)n

0 mn2 · · · mnn

⎞
⎟⎟⎟⎟⎟⎠

.

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...
xn−1

xn

⎞
⎟⎟⎟⎟⎟⎠

(k)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

b1
a11

b2
a22

+ p(n−1)nbn
...

b(n−1)

a(n−1)(n−1)
+

∑n−2
k=1 p(n−1)kbk

bn
ann

+
∑n−1

k=1 pnkbk

⎞
⎟⎟⎟⎟⎟⎟⎠

i.e.,
x(k+1) = MFx

(k) + cF .

This is the forward Gauss-Seidel iteration for the same linear
system (2). Hence, the result is established.

Based on Theorem 1, we shall henceforth restrict our
discussion to the forward Gauss-Seidel method.
Lemma 1
The Gauss-Seidel method converges if its iteration matrix
satisfies

‖MF ‖ < 1. (15)

Proof: We shall prove this result for the general iterative
method. Now, (2) can be re-written as

x = Tx+ c (16)

where T = P−1Q, c = P−1b.
Employing iteration in (16) yields
x(k+1) = Tx(k) + c. Let e(k) = x(k) − x be the error of the
kth iteration. Then e(k+1) = Tx(k) − Tx = T (x(k) − x)
i.e.,
e(k+1) = Te(k) k = 0, 1 · · ·
and thus,
‖e(k+1)‖ = ‖Te(k)‖ ≤ ‖T‖‖e(k)‖.
If the iterative method converges, then
‖e(k+1)‖ < ‖e(k)‖. Thus,
‖e(k+1)‖ ≤ ‖T‖.‖e(k)‖ < ‖e(k)‖,
which implies that

‖T‖ < 1, (17)

and this is the required convergence criterion for any
stationary iterative method [11].

As a prelude to the next result, we give the following
definition:
Definition 1: A square matrix A = (aij), i, j = 1, 2 · · · , n
is said to be strictly (or strongly) diagonally dominant if the
sum of the moduli of the off-diagonal elements is less than
the modulus of the diagonal element for every row or column
[7] i.e,

∑n
j=1,j �=i |aij | < |aii| ∀i = 1, 2, · · · , n

We now seek to determine the convergence criterion
specifically for Gauss-Seidel iteration.

Applying the row-sum criterion [12] to MF , we have the
following computations
Row 1:
|a12

a11
|+ |a13

a11
|+ |a14

a14
|+ · · ·+ |a1n

a11
| < 1

i.e.,
| 1
a11

|{|a12|+ |a13|+ |a14|+ · · ·+ |a1n|} < 1
implying that
| 1
a11

|∑n
k=2 |aik| < 1

i.e.,

n∑
2

|aik| < |a11|. (18)

Hence, the first row is diagonally dominant.
Row 2:

1∑
k=1

|a2k|
|akk| . |ak2|+

n∑
k=3

|a2k| < |a22| (19)

If Row 1 is substituted in Row 2, it indicates that Row 2 is
also diagonally dominant.
Row 3:

2∑
k=1

|a3k|
|akk| . |ak3|+

n∑
k=4

|a3k| < |a33| (20)

If Rows 1 and 2 are put in Row 3, we have that Row 3 also
satisfy diagonal dominance.
Row 4:

3∑
k=1

|a4k|
|akk| . |ak4|+

n∑
k=5

|a4k| < |a44| (21)

Substituting Rows 1, 2 and 3 in Row 4, diagonal dominance
is attained.
Row 5:

4∑
k=1

|a5k|
|akk| . |ak5|+

n∑
k=6

|a5k| < |a55| (22)

Again, substituting Rows 1, 2, 3 and 4 into Row 5, diagonal
dominance is attained.
Thus from (18)-(22), we generalize for the ith row to obtain

i−1∑
k=1

|aik|
|akk| . |aki|+

n∑
k=i+1

|aik| < |aii| (23)

From the above we deduce as follows:
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Theorem 2 [10]:
A necessary condition for the convergence of Gauss-Seidel
iteration for (1) is strict diagonal dominance of the coefficient
matrix A while a sufficient condition for its convergence is
that∑i−1

k=1
|aik|
|akk| . |aki|+

∑n
k=i+1 |aik| < |aii| ∀i = 1, 2, . . . , n.

III. IMPROVED GAUSS-SEIDEL ITERATION

We note that a square matrix A satisfying (23) has only
its first-row in the form of (6) while the other rows are
not. The new convergence criterion, i.e., (23) is stronger than
the condition for weak diagonal dominance, see Varga [19].
Indeed, it is closer to non-diagonal dominance, and so we refer
to it as the condition for weak non-diagonal dominance which
is defined as follows:
Definition 2
The square matrix A is said to be weakly non-diagonally
dominant if only one of its rows, the rth row in this case,
satisfies

n∑
j=1
j �=r

|arj | < |arr|, 1 ≤ r ≤ n. (24)

Based on the above observation, we can align every linear
system of equations satisfying Lemma 1 to a form that is
weakly non-diagonally dominant with respect to its first row.
The following result provides the theoretical justification for
this assertion.
Theorem 3
The linear system (2) satisfying Lemma 1 is transformable to
a form

By = f, (25)

where B is weakly non-diagonally dominant with respect to
its first row.
Proof:

With A = (aij); i, j = 1, 2, 3, ..., n, we wish to express the

first row in the form

n∑
j=2

|b1j | < |b11|, (26)

using the (row) transformation B1 = A1+
∑n

j=2 αjAj , where
Aj denotes the jth row of A. One way to achieve this is to
set b1j = 0 for j = 2, . . . , n to have

a1k +
∑n

j=2 αjajk = 0, k = 2, · · · , n. This subsequently
results in the nonhomogenous system
⎛
⎜⎜⎜⎜⎜⎝

a22 a32 a42 · · · an2
a23 a33 a43 · · · an3
a24 a34 a44 · · · an4

...
...

...
...

...
a2n a3n a4n · · · ann

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α2

α3

α4

...
αn

⎞
⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎝

12

a13
a14

...
a1n

⎞
⎟⎟⎟⎟⎟⎠

.

(27)
The solution to (27) can be obtained analytically if A is

positive definite; otherwise, it can be solved iteratively using

(4). Hence, the system (2) is transformed into⎛
⎜⎜⎜⎜⎜⎝

b11 0 0 · · · 0
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
...

...
...

...
an1 an2 an3 · · · ann

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

y1
x2

x3

...
xn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

f1
b2
b3
...
bn

⎞
⎟⎟⎟⎟⎟⎠
(28)

where

b11 = a11 +
∑n

j=2 αjaj1 ,

y1 =
∑n

j=2 αjxj

and

f1 =
∑n

j=2 αjbj .

The conventional Gauss-Seidel iteration endowed with the
above (row) transformation is herein called the improved
Gauss-Seidel.
Theorem 4

The improved Gauss-Seidel iteration unconditionally
converges for the class of linear algebraic systems satisfying
the condition of Lemma 1.
Proof:
The proof follows from Theorem 2 and 3.

The motivation for this section is to illustrate and validate
the theoretical results reported in Sections II and III as well
as to assess, comparatively, the performance of the improved
Gauss-Seidel method. The numerical examples considered,
as tabulated in Table I, are non-diagonally dominant linear
systems whose iteration matrices satisfy the condition of
Lemma 1 and in particular of different dimensions including
large-scale linear systems of equations.

The following prescibes the algorithm implemented for the
improved Gauss-Seidel method:
Computational algorithm for improved Gauss-Seidel
method
Step 1: Supply A, b, x(0), ε > 0 (a small number).
Step 2: Transform Ax = b using (28) if coefficient matrix A
satisfies Lemma 1 , else stop.
Step 3: Compute the iterates x(k), k = 1, 2, · · ·.
Step 3: Terminate when convergence is achieved.

The performance of the improved Gauss-Seidel method was
compared with six other iterative methods, namely, the forward
Gauss-Seidel, its backward variant, Jacobi, SOR, conjugate
gradient (CG) and generalised minimal residual (GMRE)
methods.

The following program files: seidel.m, jacobi.m, sor.m
and gmre.m of MATLAB 7.10 package were used for

IV. NUMERICAL CONSIDERATION

A. Computational Details
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TABLE I
LIST OF TEST PROBLEMS WITH FEATURES OF THE COEFFICIENT MATRIX A

b A Order⎛
⎜⎜⎜⎜⎝

56
374
550
372
569
271
291
411
437
268

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 1 −1 · · · 4 −1 2
21 14 1 · · · 1 2 1
7 30 22 · · · 3 1 10
11 3 10 · · · −1 1 1
8 30 1 · · · −1 1 5
2 17 2 · · · −1 2 2
14 −1 −1 · · · 1 4 1
19 3 2 · · · 18 7 1
6 −2 35 · · · 4 28 8
7 5 10 · · · 11 2 9

⎞
⎟⎟⎟⎟⎠ 10x10

⎛
⎜⎜⎝

−3
−1
−1
−1

.

.

.
−1
−4

⎞
⎟⎟⎠

⎛
⎜⎝

−1 4 0 · · · 0 0 0
4 −8 3 · · · 0 0 0
0 4 −8 · · · 0 0 0
0 0 4 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 · · · 0 4 −8

⎞
⎟⎠ 500x500

(
263
486
−97
303

) (
4 −3 5 1
13 8 −1 3
10 6 9 2
8 7 1 5

)
4x4

⎛
⎜⎜⎝

14
7
7
7

.

.

.
7
5

⎞
⎟⎟⎠

⎛
⎜⎜⎝

2 8 4 · · · 0 0 0
1 4 2 · · · 0 0 0
0 1 4 · · · 0 0 0
0 0 1 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0 · · ·
0 1 4

⎞
⎟⎟⎠ 600x600

implementing five of the methods to solve the numerical
examples. A MATLAB version of CGM codes was used. It
is to be noted that the optimum relaxation parameter [8],
ωopt =

2

1+
√

1−ρ2(MJ )

was used for the SOR method.

The computer programs were run on a HP laptop with
configurations 3 G RAM, 2.3 GHz processor and 300 GB
hard disk setting the tolerance ε at 10−6. The results obtained
are tabulated in Tables II-V using the following notations:
FGS - Forward Gauss-Seidel; BGS - Backward Gauss-
Seidel; IGS - Improved Gauss-Seidel; SOR - Successive Over
Relaxation; CG - Conjugate Gradient; GMRE - Generalised
Minimal Residual; Iter - Iteration; CPUT - CPU Time (in
seconds); NC - No Convergence; NA - Not Available; NS
- Norm of Solution.

TABLE II
NUMERICAL SOLUTIONS TO SOME LINEAR SYSTEMS USING FORWARD

AND BACKWARD GAUSS-SEIDEL METHODS

FGS BGS
solution Iter CPUT NS solution Iter CPUT NS

NC NA NA NA NC NA NA NA
NC NA NA NA NC NA NA NA
NC NA NA NA NC NA NA NA⎛

⎜⎝
1.000
1.000

.

.

.
1.000
1.000

⎞
⎟⎠ 20 0.297 24.691

⎛
⎜⎝

1.000
1.000

.

.

.
1.000
1.000

⎞
⎟⎠ 20 0.297 24.691

V. DISCUSSION ON RESULTS AND CONCLUSION

It can be observed from Tables II-V that only the improved
Gauss-Seidel and GMRE methods solve all the numerical
examples. Both the forward and backward Gauss-Seidel
methods solve two of the numerical examples, the SOR
method solves only one while the Jacobi and CG methods did
not solve any. Comparing the average number of iterations and
average time it took each of improved Gauss-Seidel (26.75
and 0.188 s) and GMRE (15.5 and 10.654 s) to solve each

TABLE III
NUMERICAL SOLUTIONS TO SOME LINEAR SYSTEMS USING IMPROVED

GAUSS-SEIDEL METHOD

solution Iter CPUT NS⎛
⎜⎝

10.000
9.000

.

.

.
2.000
1.000

⎞
⎟⎠ 36 0.009 19.621

⎛
⎜⎝

1.000
1.000

.

.

.
1.000
1.000

⎞
⎟⎠ 45 0.444 22.384

(
65.000

−79.918
−47.005
77.886

)
10 0.003 137.433⎛

⎜⎝
1.000
1.000

.

.

.
1.000
1.000

⎞
⎟⎠ 20 0.297 24.691

TABLE IV
NUMERICAL SOLUTIONS TO SOME LINEAR SYSTEMS USING JACOBI AND

SOR METHODS

Jacobi SOR
solution Iter CPUT NS solution Iter CPUT NS

NC NA NA NA NC NA NA NA
NC NA NA NA NC NA NA NA
NC NA NA NA NC NA NA NA

NC NA NA NA

⎛
⎜⎝

1.000
1.000

.

.

.
1.000
1.000

⎞
⎟⎠ 18 0.364 24.690

numerical example, the improved Gauss-Seidel iteration is
adjudged to be more efficient than the GMRE since CPU time
is a more valued computational measure. In guarantying the
convergence of an iterative method for solving a linear system
of equations, the convergence criterion must be an explicit
expression of the algebraic structure of the method. With the
use of its inherent structure, Gauss-Seidel is herein shown to
be more robust than it was previously known to be. A new
version of the method is obtained by exploiting the newly
discovered algebraic structure.
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TABLE V
NUMERICAL SOLUTIONS TO SOME LINEAR SYSTEMS USING CG AND

GMRE METHODS

CG GMRE
solution Iter CPUT NS solution Iter CPUT NS

NC NA NA NA

⎛
⎜⎝

10.000
9.000

.

.

.
2.000
1.000

⎞
⎟⎠ 10 0.223 19.621

NC NA NA NA

⎛
⎜⎝

1.000
1.000

.

.

.
1.000
1.000

⎞
⎟⎠ 31 2.001 22.361

NC NA NA NA

(
65.000

−80.000
−47.000
78.000

)
50 0.0003 137.543

NC NA NA NA

⎛
⎜⎝

1.631
0.815

.

.

.
1.000
1.000

⎞
⎟⎠ 18 1.907 24.691
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