On 6-Figures in Finite Klingenberg Planes of parameters (p^{2k-1}, p)

Atilla Akpinar, Basri Celik, Suleyman Ciftci

Abstract—In this paper, we deal with finite projective Klingenberg plane $\mathbf{M}(\mathcal{A})$ coordinatized by local ring $\mathcal{A} := \mathbf{Z}_q + \mathbf{Z}_q \varepsilon$ (where prime power $q = p^k$, $\varepsilon \notin \mathbf{Z}_q$ and $\varepsilon^2 = 0$). So, we get some combinatorical results on 6-figures. For example, we show that there exist p-1 6-figure classes in $\mathbf{M}(\mathcal{A})$.

Keywords—finite Klingenberg plane, 6-figure, ratio of 6-figure, cross-ratio.

I. Introduction

Projective Klingenberg and Hjelmslev planes (more briefly: PK-planes and PH-planes, resp.) are generalizations of ordinary projective planes. These structures were introduced by Klingenberg in [15], [16]. As for finite PK-planes, these structures introduced by Drake and Lenz in [12] have been investigated in detail by Bacon in [4].

In our previous papers [1], [9], [10] we have studied a certain class (which we will denote by $\mathbf{M}(\mathcal{A})$) of Moufang-Klingenberg (briefly, MK) planes coordinatized by an local alternative ring $\mathbf{A} := \mathbf{A}(\) = \mathbf{A} + \mathbf{A}$ of dual numbers (an alternative ring $\mathbf{A}, \ \not\in \mathbf{A}$ and $^2 = 0$) introduced by Blunck in [7]. So, we have obtained many results related to 6-figures. For more detailed information about 6-figures and their properties, the reader is referred to the papers of [8] in the case of Desarguesian planes and [11] in the case of Moufang planes.

In the present paper we are interested in finite PK-plane $\mathbf{M}(\mathcal{A})$ obtained by taking local ring \mathbf{Z}_q (where q is a prime power) instead of \mathbf{A} . So, we will get some combinatorical result related to 6-figures.

II. PRELIMINARIES

Let $\mathbf{M} = (\mathbf{P}, \mathbf{L}, \in, \sim)$ consist of an incidence structure $(\mathbf{P}, \mathbf{L}, \in)$ (points, lines, incidence) and an equivalence relation ' \sim ' (neighbour relation) on \mathbf{P} and on \mathbf{L} . Then \mathbf{M} is called a *projective Klingenberg plane* (PK-plane), if it satisfies the following axioms:

(PK1) If P, Q are two non-neighbour points, then there is a unique line PQ through P and Q.

(PK2) If g, h are two non-neighbour lines, then there is a unique point $g \cap h$ on both g and h.

(PK3) There is a projective plane $\mathbf{M}^*=(\mathbf{P}^*,\mathbf{L}^*,\in)$ and incidence structure epimorphism $\Psi:\mathbf{M}\to\mathbf{M}^*$, such that the conditions

$$\Psi(P) = \Psi(Q) \Leftrightarrow P \sim Q, \ \Psi(g) = \Psi(h) \Leftrightarrow g \sim h$$

Atilla Akpinar, Basri Celik, Suleyman Ciftci are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: aakpinar@uludag.edu.tr, basri@uludag.edu.tr, sciftci@uludag.edu.tr.

hold for all $P, Q \in \mathbf{P}, g, h \in \mathbf{L}$.

PK-plane M is called a *projective Hjelmslev plane* (PH-plane) If M furthermore provides the following axioms:

(PH1) If P, Q are two neighbour points, then there are at least two lines through P and Q.

(PH2) If g, h are two neighbour lines, then there are at least two points on both g and h.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane M that generalizes a Moufang plane, and for which M^* is a Moufang plane (for the details see [3]).

A point $P \in \mathbf{P}$ is called *near* a line $g \in \mathbf{L}$ iff there exists a line h such that $P \in h$ for some line $h \sim g$.

An incidence structure automorphism preserving and reflecting the neighbour relation is called a *collineation* of M.

Now we give the definition of an n-gon, which is meaningful when $n \ge 3$: An n-tuple of pairwise non-neighbour points is called an (ordered) n-gon if no three of its elements are on neighbour lines [9].

An alternative ring (field) \mathbf{R} is a not necessarily associative ring (field) that satisfies the alternative laws $a(ab) = a^2b$, (ba) $a = ba^2$, $\forall a, b \in \mathbf{R}$. An alternative ring \mathbf{R} with identity element 1 is called *local* if the set \mathbf{I} of its non-unit elements is an ideal.

We summarize some basic concepts about the coordinatization of MK-planes from [5].

Let \mathbf{R} be a local alternative ring. Then $\mathbf{M}(\mathbf{R}) = (\mathbf{P}, \mathbf{L}, \in$, \sim) is the incidence structure with neighbour relation defined as follows:

$$\mathbf{P} = \{(x, y, 1) : x, y \in \mathbf{R}\} \\ \cup \{(1, y, z) : y \in \mathbf{R}, z \in \mathbf{I}\} \\ \cup \{(w, 1, z) : w, z \in \mathbf{I}\} \\ \mathbf{L} = \{[m, 1, p] : m, p \in \mathbf{R}\} \\ \cup \{[1, n, p] : p \in \mathbf{R}, n \in \mathbf{I}\} \\ \cup \{[q, n, 1] : q, n \in \mathbf{I}\} \\ [m, 1, p] = \{(x, xm + p, 1) : x \in \mathbf{R}\} \\ \cup \{(1, zp + m, z) : z \in \mathbf{I}\} \\ [1, n, p] = \{(yn + p, y, 1) : y \in \mathbf{R}\} \\ \cup \{(zp + n, 1, z) : z \in \mathbf{I}\} \\ [q, n, 1] = \{(1, y, yn + q) : y \in \mathbf{R}\} \\ \cup \{(w, 1, wq + n) : w \in \mathbf{I}\}$$

and

$$P = (x_1, x_2, x_3) \sim (y_1, y_2, y_3) = Q$$

$$\Leftrightarrow x_i - y_i \in \mathbf{I} \ (i = 1, 2, 3)), \forall P, Q \in \mathbf{P}$$

$$g = [x_1, x_2, x_3] \sim [y_1, y_2, y_3] = h$$

$$\Leftrightarrow x_i - y_i \in \mathbf{I} \ (i = 1, 2, 3)), \forall g, h \in \mathbf{L}.$$

Baker *et al.* [3] use (O = (0,0,1), U = (1,0,0), V = (0,1,0), E = (1,1,1)) as a coordinatization 4-gon. We stick to this notation throughout this paper. For more detailed information about the coordinatization see [3] and [5]. Now it is time to give the following theorem from [3].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane is isomorphic to some M(R).

Let **A** be an alternative field and $\not\in$ **A**. Consider $\mathcal{A}:=$ **A** () = **A** + **A** with componentwise addition and multiplication as follows:

$$(a_1 + a_2)(b_1 + b_2) = a_1b_1 + (a_1b_2 + a_2b_1)$$
,

where $a_i, b_i \in \mathbf{A}$, i = 1, 2. Then \mathcal{A} is an alternative ring with ideal $\mathbf{I} = \mathbf{A}$ of non-units. For more detailed information about MK-planes $\mathbf{M}(\mathcal{A})$ coordinatized by an local alternative ring $\mathcal{A} := \mathbf{A}$ () = $\mathbf{A} + \mathbf{A}$, see the papers of [7], [9], [1].

Theorem 2.2: If \mathbf{R} is a (not necessarily commutative) local ring then $\mathbf{M}(\mathbf{R})$ is a PK-plane (cf. [13, Theorem 4.1]).

Drake and Lenz [12, Proposition 2.5] observed that the following corollary is true for PK-planes. This corollary is a generalization of results which are given for PH-planes by Kleinfeld [14, Theorem 1] and Lüneburg [17, Satz 2.11].

Corollary 2.3: Let $\mathbf{M}(\mathbf{R})$ be PK-plane. Then there are natural numbers t and r which are called the parametres of $\mathbf{M}(\mathbf{R})$ and they are uniquely determined by incidence structure of a finite PK-plane [12, Proposition 2.7], with

- 1) every point (line) has t² neighbours;
- given a point P and a line I with P ∈ I, there exist exactly t points on I which are neighbours to P and exactly t lines through P which are neighbours to I;
- 3) Let r be order of the projective plane M^* . If $t \neq 1$ we have $r \leq t$ (then M is called *proper*; we have t = 1 iff M is an ordinary projective plane)
- 4) every point (line) is incident with t(r+1) lines (points);
- 5) $|\mathbf{P}| = |\mathbf{L}| = t^2 (r^2 + r + 1).$

Now consider ring \mathbf{Z}_q where prime power $q=p^k$. We can state the elements of \mathbf{Z}_q as $\mathbf{Z}_q=U'\cup I$ where U' is the set of units of \mathbf{Z}_q and I is the set of non-units of \mathbf{Z}_q . Here it is clear that $I=\left\{0p,1p,2p,\cdots,\left(p^{k-1}-1\right)p\right\}$ and so $|I|=p^{k-1}$. Let $\not\in\mathbf{Z}_q$. Then $A:=\mathbf{Z}_q+\mathbf{Z}_q$ with componentwise addition and multiplication above is a local ring with ideal $\mathbf{I}:=I+\mathbf{Z}_q$ of non-units, $|\mathbf{I}|=\left(p^{k-1}\right)p^k$. Note that the set of units of A is $\mathbf{U}:=U'+\mathbf{Z}_q$ and $|\mathbf{U}|=\left(p^k-p^{k-1}\right)p^k=(p-1)p^{2k-1}$. Since A is a proper local ring and $A/\mathbf{I}=\mathbf{Z}_p$, Ψ induces an incidence structure epimorphism from finite PK-plane $\mathbf{M}(A)$

onto the Desarguesian projective plane (with order p) coordinatized by the field \mathbf{Z}_p . So, we can give the following corollary from [2].

Corollary 2.4: For finite PK-plane $\mathbf{M}(\mathcal{A})$, the parameters t and r in Corollary 2.3 are equal to p^{2k-1} and p, respectively.

A local ring R is called a *Hjelmslev ring* (briefly, H-ring) if it satisfies the following two conditions:

(HR1) I consists of two-sided zero divisor.

(HR2) For $a, b \in \mathbf{I}$, one has $a \in b\mathbf{R}$ or $b \in a\mathbf{R}$, and also $a \in \mathbf{R}b$ or $b \in \mathbf{R}a$.

By the last definition, we can say that \mathcal{A} is not, in general, a H-ring [2]. From now on we assume char $\mathbf{Z}_q \neq \mathbf{2}$ and also we restrict ourselves to finite PK-plane $\mathbf{M}(\mathcal{A}) = (\mathbf{P}, \mathbf{L}, \in, \sim)$ coordinatized by the local ring $\mathcal{A} := \mathbf{Z}_q + \mathbf{Z}_q$, with neighbour relation defined above.

III. 6-FIGURES IN $\mathbf{M}(\mathcal{A})$

Now we carry over some concepts related to 6-figures to the $\mathbf{M}(\mathcal{A})$, in view of the papers of [9], [1]. So, we will get some combinatoric results on 6-figures in $\mathbf{M}(\mathcal{A})$.

A 6-figure is a sequence of six non-neighbour points $(ABC, A_1B_1C_1)$ such that (A, B, C) is 3-gon, and $A_1 \in BC, B_1 \in CA, C_1 \in AB$. The points A, B, C, A_1, B_1, C_1 are called vertices of this 6-figure. The 6-figures $(ABC, A_1B_1C_1)$ and $(DEF, D_1E_1F_1)$ are equivalent if there exists a collineation of $\mathbf{M}(A)$ which transforms A, B, C, A_1, B_1, C_1 to D, E, F, D_1, E_1, F_1 respectively.

Now we need the following theorem from [9].

Theorem 3.1: Let $\mu = (ABC, A_1B_1C_1)$ be a 6-figure in $\mathbf{M}(\mathcal{A})$. Then, there is an $m \in \mathbf{U}$ such that μ is equivalent to (UVO, (0,1,1)(1,0,1)(1,m,0)) where U = (1,0,0), V = (0,1,0), O = (0,0,1) are elements of the coordinatization basis of $\mathbf{M}(\mathcal{A})$.

6-figures $\mu = (ABC, A_1B_1C_1)$ and $= (DEF, D_1E_1F_1)$ are *neighbour* if the points A, B, C, A_1, B_1, C_1 are neighbour to the points D, E, F, D_1, E_1, F_1 ; respectively.

Now, by the last definition and Theorem 3.1, we can give the following corollary without proof.

Corollary 3.2: 6-figures $\mu = (ABC, A_1B_1C_1)$ and $= (DEF, D_1E_1F_1)$ are neighbour if $m_1 \in \mathbf{U}$ corresponding to μ and $m_2 \in \mathbf{U}$ corresponding to are neighbour.

So, we have the following

Corollary 3.3: There are p-1 6-figures class in $\mathbf{M}(\mathcal{A})$. The classes are those: $m=1,\ m=2,\dots$, m=p-1 where the elements in neighbour of any m are $m+\mathbf{Z}_q$, $1p+m+\mathbf{Z}_q$, $2p+m+\mathbf{Z}_q$,..., $\left(p^{k-1}-1\right)p+m+\mathbf{Z}_q$.

Proof: We can classify 6 figures in M(A) by the number of the elements of U. But, when it is considered the neighbours

of the elements in **U** this number becomes p-1. Hence, we obtain p-1 6-figure classes in $\mathbf{M}(\mathcal{A})$. We can show the classes as $m=1,\ m=2,\ldots,\ m=p-1$ where the elements in neighbour of any m are $m+\mathbf{Z}_q$, $1p+m+\mathbf{Z}_q$, $2p+m+\mathbf{Z}_q$, \cdots , $(p^{k-1}-1)$ $p+m+\mathbf{Z}_q$.

Theorem 3.4: There are totally

$$\left(\left(p^2 + p + 1 \right) \left(p^{2k-1} \right)^2 \right) \left(\left(p^2 + p \right) \left(p^{2k-1} \right)^2 \right)$$

$$\left(p^2 \left(p^{2k-1} \right)^2 \right) \left(\left(p - 1 \right) p^{2k-1} \right)^3$$

6-figures in $\mathbf{M}(\mathcal{A})$.

Proof: First if we calculate the total number of 6-figures in projective plane of order p, we have differently $(p^2 + p + 1)(p^2 + p)p^2(p - 1)^3$ 6-figures by depending on the choices of the points of a 6-figure. Finally if we consider the neighbour relation in $\mathbf{M}(\mathcal{A})$, that is, we consider Corollary 2.3 and 2.4 then the proof is clear.

Then, as a result of Corollary 3.3 and Theorem 3.4 we have immediately the following

Corollary 3.5: The number of 6-figures corresponding to an $m \in \mathbf{U}$ is

$$(p^2+p+1)(p^2+p)p^2(p-1)^2(p^{2k-1})^8$$
.

Proof: Since there are totally

$$\left(\left(p^2 + p + 1 \right) \left(p^{2k-1} \right)^2 \right) \left(\left(p^2 + p \right) \left(p^{2k-1} \right)^2 \right)$$

$$\left(p^2 \left(p^{2k-1} \right)^2 \right) \left(\left(p - 1 \right) p^{2k-1} \right)^3$$

6-figures in $\mathbf{M}(\mathcal{A})$ and $|\mathbf{U}|=(p-1)\,\rho^{2k-1}$ then the proof is clear.

Now we need the following theorem, one of the main results of [2].

Theorem 3.6: The 6-figures $(ABC, A_1B_1C_1)$, $(BCA, B_1C_1A_1)$, $(CAB, C_1A_1B_1)$ are equivalent.

As a result of Corollary 3.5 and Theorem 3.6 we can state the following

Corollary 3.7: The number
$$(p^2+p+1)(p^2+p)p^2$$
 $(p-1)^2\left(p^{2k-1}\right)^8$ is divided by 3.

Blunck [7] gives the following algebraic definition of the cross-ratio for the points on the line g := [1, 0, 0] in $\mathbf{M}(A)$.

$$(A, B; C, D) := (a, b; c, d)$$

$$= < ((a - d)^{-1} (b - d)) ((b - c)^{-1} (a - c)) >$$

$$(S, B; C, D) := (s^{-1}, b; c, d)$$

$$= < ((1 - ds)^{-1} (b - d)) ((b - c)^{-1} (1 - cs)) >$$

$$(A, S; C, D) := (a, s^{-1}; c, d)$$

$$= < ((a-d)^{-1} (1-ds)) ((1-cs)^{-1} (a-c)) >$$

$$(A, B; S, D) := (a, b; s^{-1}, d)$$

$$= < ((a-d)^{-1} (b-d)) ((1-sb)^{-1} (1-sa)) >$$

$$(A, B; C, S) := (a, b; c, s^{-1})$$

$$= < ((1-sa)^{-1} (1-sb)) ((b-c)^{-1} (a-c)) >,$$

where A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d, 1), Z = (0, 1, s) are pairwise non-neighbour points of g and $\langle x \rangle = \{y^{-1}xy \ y \in A\}$.

The following theorem, the analogue of the theorem given in [1], states a simple way for the calculation of the cross-ratio of the points on any line l in $\mathbf{M}(\mathcal{A})$.

Theorem 3.8: According to types of lines, the cross-ratio of the points on the line / can be calculated as follows:

If A, B, C, D and S are the pairwise non-neighbour points

- (a) of the line I = [m, 1, p] where A = (a, am + p, 1), B = (b, bm + p, 1), C = (c, cm + p, 1), D = (d, dm + p, 1) are not near the line UV and $S = (1, m + sp, s) \sim UV$,
- (b) of the line I = [1, n, p] where A = (an + p, a, 1), B = (bn + p, b, 1), C = (cn + p, c, 1), D = (dn + p, d, 1) are not neighbour to V and $S = (n + sp, 1, s) \sim V$,
- (c) of the line I = [q, n, 1] where A = (1, a, q + an), B = (1, b, q + bn), C = (1, c, q + cn), D = (1, d, q + dn) are not near to V and $S = (s, 1, sq + n) \sim V$,

then

$$\begin{array}{rcl} (A,B;C,D) & = & (a,b;c,d) \\ (S,B;C,D) & = & (s^{-1},b;c,d) \\ (A,S;C,D) & = & (a,s^{-1};c,d) \\ (A,B;S,D) & = & (a,b;s^{-1},d) \\ (A,B;C,S) & = & (a,b;c,s^{-1}) \,. \end{array}$$

Let $\mu = (ABC, A_1B_1C_1)$ be a 6-figure in M(A). Let $A^c = BC \cap B_1C_1$, $B^c = CA \cap C_1A_1$, $C^c = AB \cap A_1B_1$. The 6-figure $(ACB, A^cC^cB^c)$ is called the *first codescendant* of μ , written μ^c . μ is called a *first coancestor* of μ^c .

So we can give the following Lemma from [1].

Lemma 3.1: If $\mu = (ABC, A_1B_1C_1) = (UVO, (0, 1, 1) (1, 0, 1)(1, m, 0))$, then

$$(A, B; C_1, C^c) = (B, C; A_1, A^c)$$

= $(C, A; B_1, B^c) = < -m > .$

We are now ready to state the definition of the ratio of a 6-figure. The conjugacy class $-(A, B; C_1, C^c)$ is called *the ratio of the 6-figure* $\mu = (ABC, A_1B_1C_1)$ and denoted by $\Gamma(\mu)$, that is, $\Gamma(\mu) = \langle m \rangle$.

 $(ABC, A_1B_1C_1)$ is called a *Menelaus* 6-figure if A_1 , B_1 and C_1 are collinear, and $(ABC, A_1B_1C_1)$ is called a *Ceva* 6-figure if AA_1 , BB_1 and CC_1 are concurrent.

Now we give the following theorem from [1].

Theorem 3.9: μ is a Menelaus or Ceva 6-figure if and only if $\Gamma(\mu) = -1$ or $\Gamma(\mu) = 1$, respectively.

We immediately have

Corollary 3.10: Menelaus and Ceva 6-figures are belong to the class m = p - 1 and the class m = 1 where $p \neq 2$, respectively.

Proof: By Theorem 3.9 if μ is a Ceva 6-figure then $r(\mu) = 1 = m$ and also if μ is a Menelaus 6-figure then $r(\mu) = -1 = m$. For the proof it is enough to say that -1 is neighbour to p-1.

From now on we call the class m = 1 as Ceva class and the class m = p - 1 as Menelaus class. Now we need following theorem from [6].

Theorem 3.11: Every cross-ratio consists only of elements of $A\setminus(\{0,1\}+\mathbf{I})$. Conversely, the conjugacy class of any such element appears as a cross-ratio; Given three pairwise nonneighbour points A, B, C and an element $r \in A \setminus (\{0, 1\} + \mathbf{I})$, then there is a (unique if $r \in \mathbf{Z}()$) point D which is not neighbour to A, B and C with $(A, B; C, D) = \langle r \rangle$.

In M(A), any pairwise non-neighbour four points A, B, C, $D \in I$ are called as harmonic if (A, B; C, D) = <-1 > and we let h(A, B, C, D) represent the statement: A, B, C, D are harmonic. Let $\mu = (ABC, A_1B_1C_1)$ be a 6-figure in $\mathbf{M}(A)$. By the last theorem, there exist unique points $A_2 \in BC$, $B_2 \in$ CA, $C_2 \in AB$ such that $h(A, B, C_1, C_2)$, $h(B, C, A_1, A_2)$, $h(C, A, B_1, B_2)$. The 6-figure $(ABC, A_2B_2C_2)$ is called the conjugate of μ , having symbol $-\mu$. Likewise μ is the conjugate of $-\mu$.

Let $C^d \in AB$ be the point such that C, C^d and $AA_1 \cap BB_1$ are collinear. Let $A^d \in BC$ and $B^d \in CA$ be the points such that A, A^d and $BB_1 \cap CC_1$ are collinear and B, B^d and $AA_1 \cap CC_1$ are collinear. The 6-figure $(ACB, A^dC^dB^d)$ is called the first descendant of μ , written μ^d . μ is called a first ancestor of μ^d .

Using the definitions of $-\mu$, μ^c and μ^d the following lemmas are obtained (see [1, Lemma 20] for the first Lemma and [10, Lemma 7] for the second Lemma).

Lemma 3.2: For any 6-figure μ we have

(a)
$$(-\mu)^d = \mu^d$$

(a)
$$(-\mu) = \mu$$

(b) $(\mu^d)^c = (\mu^c)^c = (UVO, (0, -m^{-1}, 1)(-m, 0, 1)(1, -m^2, 0)),$

where $m \in \mathbf{U}$.

Lemma 3.3: For any 6-figure μ we have

(a)
$$(-\mu)^c = \mu^c = (UOV, (0, -m, 1)(1, -1, 0)(-m^{-1}, 0, 1))$$

(b)
$$(\mu^c)^d = (\mu^d)^d = (UVO, (0, m^{-1}, 1)(m, 0, 1)(1, m^2, 0)),$$

where $m \in \mathbf{U}$.

By using the results of the last two Lemmas and [10, Theorem 9] we can give the following theorem which gives the relation between the ratios of the 6-figures μ^{-1} , $-\mu$, μ^d , μ^c , $(\mu^d)^d$, $(\mu^c)^c$, $(\mu^d)^c$, $(\mu^c)^d$ and μ .

Theorem 3.12: For any 6-figure μ we have

(a)
$$r(u^{-1}) = (r(u))^{-1} = \langle m^{-1} \rangle$$

(b)
$$r(-\mu) = -r(\mu) = < -m >$$

(a)
$$r(\mu^{-1}) = (r(\mu))^{-1} = < m^{-1} >$$

(b) $r(-\mu) = -r(\mu) = < -m >$
(c) $r((-\mu)^d) = r(\mu^d) = (r(\mu))^2 = < m^2 >$

(d)
$$r((-\mu)^c) = r(\mu^c) = -(r(\mu))^2 = < -m^2 >$$

(e) $r((\mu^d)^c) = r((\mu^c)^c) = < -m^4 > = -(r(\mu))^4$

(e)
$$r((\mu^a)^c) = r((\mu^c)^c) = \langle -m^4 \rangle = -(r(\mu))^c$$

(f)
$$r((\mu^c)^d) = r((\mu^d)^d) = \langle m^4 \rangle = (r(\mu))^4,$$

where $\langle x \rangle^2 := \langle x^2 \rangle$ for any $x \in \mathbf{U}$ and $m \in \mathbf{U}$.

Proof: For the proof, it is enough to give the proof of (e) and (f). From (b) of Lemma 3.2, we know that $(\mu^d)^c =$ $(\mu^c)^c = (UVO, U'V'O')$ where $U' = (0, -m^{-1}, 1)$, V' =(-m, 0, 1), $O' = (1, -m^2, 0)$. Ratio of this 6-figure are equal to croos-ratio $-(U, V; (1, -m^2, 0), O^c)$, where

$$O^c = UV \cap U'V' = [0, 0, 1] \cap [-m^{-2}, 1, -m^{-1}]$$

= $(1, -m^{-2}, 0)$.

So, this cross-ratio is equal to

$$-((1,0,0),(0,1,0);(1,-m^2,0),(1,-m^{-2},0))$$
.

By (c) of Theorem 3.8, this is equal to $(0,0^{-1};-m^2)$ $-m^{-2}$) = $-m^4$. Since the proof of (f) is similar to the proof of (e) the proof is completed.

As a direct result of Theorem 3.9 and Theorem 3.12 we have the following result.

Corollary 3.13: a) If μ is a Menelaus 6-figure then

- (i) $r(-\mu) = r(\mu^d) = r((\mu^e)^d) = r((\mu^d)^d) = < 1 >$, that is, $-\mu$, μ^d , $(\mu^e)^d$ and $(\mu^d)^d$ 6-figures are in the Ceva
- (ii) $r(\mu^{-1}) = r(\mu^c) = r((\mu^d)^c) = r((\mu^c)^c) = <-1>$, that is, μ^{-1} , μ^c , $(\mu^d)^c$ and $(\mu^c)^c$ 6-figures are in the Menelaus class.
- b) If μ is a Ceva 6-figure, then
- (i) $\Gamma(-\mu) = \Gamma(\mu^c) = \Gamma(\left(\mu^d\right)^c) = \Gamma(\left(\mu^c\right)^c) = <-1>$, that is, $-\mu$, μ^c , $\left(\mu^d\right)^c$ and $\left(\mu^c\right)^c$ 6-figures are in the Menelaus class.
- (ii) $r(\mu^{-1}) = r(\mu^d) = r((\mu^c)^d) = r((\mu^d)^d) = <1>,$ that is, μ^{-1} , μ^d , $(\mu^c)^d$ and $(\mu^d)^d$ 6-figures are in the Ceva class.

The following theorem is the analogue of Theorem 12 given in [10] for MK-planes M(A). This theorem we give without proof, tells the relation between the solvability of the equation $x^2 = m$ (or $x^2 = -m$) in \mathcal{A} where $m \in \mathbf{U}$ and the existence of the special 6-figure with ratio $\langle m \rangle$ in $\mathbf{M}(\mathcal{A})$. In other

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934 Vol:3, No:11, 2009

words, this theorem provides a geometric property of $\mathbf{M}(\mathcal{A})$ that is equal to the condition that every element in \mathbf{U} has a square root in \mathbf{U} .

Theorem 3.14: Let $m \in U$. Then the equation $x^2 = m$ (or $x^2 = -m$) has a solution in **U** if and only if any 6-figure μ with ratio < m > has ancestor (coancestor) in $\mathbf{M}(A)$.

REFERENCES

- [1] A.Akpinar, B.Celik and S.Ciftci. *Cross-ratios and 6-figures in some Moufang-Klingenberg planes*. Bulletin of the Belgian Math. Soc.-Simon Stevin **15**(2008), 49–64.
- [2] A.Akpinar, B.Celik and S.Ciftci. 4-Transitivity and 6-Figures in Finite Klingenberg Planes of parameters (p^{2k-1}, p). International Journal of Comp. and Math. Sci. 4(1)(2010), 48-51.
- [3] CA.Baker, ND.Lane and JW.Lorimer. A coordinatization for Moufang-Klingenberg Planes. Simon Stevin 65(1991), 3–22.
- [4] PY.Bacon. An Introduction to Klingenberg planes. Vol. I (1976), Vol. II and III (1979), Florida.
- [5] A.Blunck. Projectivities in Moufang-Klingenberg planes. Geom. Dedicata 40(1991), 341–359.
- [6] A.Blunck. Cross-ratios Over Local Alternative Rings. Res Math 19(1991), 246–256.
- [7] A.Blunck. Cross-ratios in Moufang-Klingenberg Planes. Geom Dedicata 43(1992), 93–107.
- [8] FS.Cater. On Desarguesian Projective Planes. Geom Dedicata 7(1978), 433–441
- [9] B.Celik, A.Akpinar and S.Ciftci. 4-Transitivity and 6-figures in some Moufang-Klingenberg planes. Monatshefte für Mathematik 152(2007), 283–294.
- [10] N.Celik, S.Ciftci and A.Akpinar. Some Properties of 6-Figures and Cross-Ratios in some Moufang-Klingenberg Planes. Journal of Algebra and Its Applications, accepted paper
- [11] S.Ciftci. On 6-figures in Moufang Projective Planes. Commun. Fac Sci Univ Ank Series A₁ 38(1989), 21–28.
- [12] DA.Drake and H.Lenz. Finite Klingenberg Planes. Abh. Math. Sem. Univ. Hamburg 44(1975), 70–83.
- [13] DA.Drake and H.Lenz. Finite Hjelmslev planes and Klingenberg epimorphisms. Rings and geometry (Istanbul, 1984), 153–231 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 160(1985), Reidel, Dordrecht
- [14] E.Kleinfeld. Finite Hjelmslev Planes. Illiois J. Math. 3(1959), 403–407.
- [15] W.Klingenberg. Projektive und affine Ebenen mit Nachbarelementen. Math. Z. 60(1954), 384–406.
- [16] W.Klingenberg. Projektive Geometrien mit Homomorphismus. Math. Ann. 132(1956), 180–200.
- [17] H.Lüneburg. Affine Hjelmslev-Ebenen mit transitiver Translationsgruppe. Math. Z. 79(1962), 60–288.