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On 6-Figures in Finite Klingenberg Planes of

parameters (p

)
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Abstract—In this paper, we deal with finite projective Klingenberg
plane M (.A) coordinatized by local ring A := Z,+Z,e (where prime
power ¢ = Pk, e ¢ Z, and €2 = 0). So, we get some combinatorical
results on 6-figures. For example, we show that there exist p — 1
6-figure classes in M(.A).
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I. INTRODUCTION

Projective Klingenberg and Hjelmslev planes (more briefly:
PK-planes and PH-planes, resp.) are generalizations of or-
dinary projective planes. These structures were introduced
by Klingenberg in [15], [16]. As for finite PK-planes, these
structures introduced by Drake and Lenz in [12] have been
investigated in detail by Bacon in [4].

In our previous papers [1], [9], [10] we have studied a
certain class (which we will denote by M(.A)) of Moufang-
Klingenberg (briefly, MK) planes coordinatized by an local
alternative ring 4 := A( ) = A+ A of dual numbers
(an alternative ring A, & A and 2 = 0) introduced by
Blunck in [7]. So, we have obtained many results related to
6-figures. For more detailed information about 6-figures and
their properties, the reader is referred to the papers of [8] in the
case of Desarguesian planes and [11] in the case of Moufang
planes.

In the present paper we are interested in finite PK-plane
M(A) obtained by taking local ring Z, (where ¢ is a prime
power) instead of A. So, we will get some combinatorical
result related to 6-figures.

II. PRELIMINARIES

Let M = (P,L, &, ~) consist of an incidence structure
(P, L, €)(points, lines, incidence) and an equivalence relation
‘~’ (neighbour relation) on P and on L. Then M is called
a projective Klingenberg plane (PK-plane), if it satisfies the
following axioms:

(PK1) If P, Q are two non-neighbour points, then there is
a unique line P Q through P and Q.

(PK2) If g, h are two non-neighbour lines, then there is a
unique point g N A on both g and A.

(PK3) There is a projective plane M* = (P*,L*, €) and
incidence structure epimorphism ¥ : M — M, such that the
conditions

U(P)=V(Q<=P~Q ¥ =¥h<g~h
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hold for all P, Qe P, g he L.

PK-plane M is called a projective Hjelmslev plane (PH-
plane) If M furthermore provides the following axioms:

(PH1) If P, Q are two neighbour points, then there are at
least two lines through P and Q.

(PH2) If g, h are two neighbour lines, then there are at least
two points on both g and h.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M* is a
Moufang plane (for the details see [3]).

A point P € P is called near a line g € L iff there exists
a line h such that P € h for some line h ~ g.

An incidence structure automorphism preserving and reflec-
ting the neighbour relation is called a collineation of M.

Now we give the definition of an n-gon, which is meaningful
when 1 > 3: An n-tuple of pairwise non-neighbour points is
called an (ordered) n-gon if no three of its elements are on
neighbour lines [9].

An alternative ring (field) R is a not necessarily associa-
tive ring (field) that satisfies the alternative laws a(ab) =
a*b, (ba)a = ba®>, Va,b € R. An alternative ring R with
identity element 1 is called local if the set I of its non-unit
elements is an ideal.

We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [5].

Let R be a local alternative ring. Then M(R) = (P, L, €
,~) is the incidence structure with neighbour relation defined
as follows:

P = {(xyl):xyeR}
U{(l.y,2): ye R, ze I}
U{(w,1,2): w,ze 1}

L = {m1p:mpeR}
U{[L.npl:peR, nel}
U{lg.n.1]:q nel}

[m1,p = {(x,xm+p1l):xeR}
u{(l,zp+m,z2): ze1}
(Lnp = {yn+pyl):yeR}
U{(zp+n1,2): ze1}
[g.n1] = {(Lyyn+q:yeR}

U{(w,1,wg+n): wel}
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and
P = (X1 X x3)~ (V1. Yo, y3) = Q
& x,—yel(i=1,23),VP,QecP
g =[x XX~ DA ye ysl=h

& xi—y; €l (i=1,23)),Yg heL.

Baker et al. [3] use (O = (0,0,1),U = (1,0,0),V =
(0,1,0), E =(1,1,1)) as a coordinatization 4-gon. We stick
to this notation throughout this paper. For more detailed
information about the coordinatization see [3] and [5]. Now it
is time to give the following theorem from [3].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ¢ A. Consider A :=
A()=A+ A with componentwise addition and multipli-
cation as follows:

(1+a )b +b)=aib + (a1b + axby) |,

where a;, b; € A, i=1,2. Then A is an alternative ring with
ideal I = A of non-units. For more detailed information
about MK-planes M(.A) coordinatized by an local alternative
ring A:=A()=A+ A, see the papers of [7], [9], [1].

Theorem 2.2: If R is a (not necessarily commutative) local
ring then M(R) is a PK-plane (cf. [13, Theorem 4.1]).

Drake and Lenz [12, Proposition 2.5] observed that the
following corollary is true for PK-planes. This corollary is
a generalization of results which are given for PH-planes by
Kleinfeld [14, Theorem 1] and Liineburg [17, Satz 2.11].

Corollary 2.3: Let M(R) be PK-plane. Then there are
natural numbers ! and r which are called the parametres
of M(R) and they are uniquely determined by incidence
structure of a finite PK-plane [12, Proposition 2.7], with

1) every point (line) has P neighbours;

2) given a point P and a line | with P € |, there exist
exactly t points on | which are neighbours to P and
exactly t lines through P which are neighbours to I;

3) Let r be order of the projective plane M*. If # 1 we
have r < t (then M is called proper; we have t =1 iff
M is an ordinary projective plane)

4) every point (line) is incident with t(r+ 1) lines (points);

5 |Pl=|Ll=£2(r"+r+1).

Now consider ring Z, where prime power § = PF. We can
state the elements of Z, as Z, = U'U/ where U’ is the set of
units of Z, and / is the set of non-units of Z,. Here it is clear
that / = {0p,1p,2p,---, (P*"* —1) p} and so |/| = pF~L.
Let ¢ Z,. Then A :=Z,+Z, with componentwise addition
and multiplication above is a local ring with ideal I := /+Z,
of non-units, [I| = (p"~') p*. Note that the set of units of A
isU:=U'+Z, and [U|= (pF —pF=1) p" = (p—1) p**~1.
Since A is a proper local ring and A/I = Z,, ¥ induces an
incidence structure epimorphism from finite PK-plane M (.A)

onto the Desarguesian projective plane (with order p) coordi-
natized by the field Z,,. So, we can give the following corollary
from [2].

Corollary 2.4: For finite PK-plane M(.A), the parameters t
and r in Corollary 2.3 are equal to p?*~' and p, respectively.

A local ring R is called a Hjelmslev ring (briefly, H-ring)
if it satisfies the following two conditions:

(HR1) I consists of two-sided zero divisor.

(HR2) For a,b € I, one has @ € bR or b € aR, and also
acRbor beRa

By the last definition, we can say that A is not, in general,
a H-ring [2]. From now on we assume char Z,# 2 and also
we restrict ourselves to finite PK-plane M(A) = (P, L, €, ~)
coordinatized by the local ring A := Z,+Z, , with neighbour
relation defined above.

III. 6-FIGURES IN M(A)

Now we carry over some concepts related to 6-figures to
the M(.A), in view of the papers of [9], [1]. So, we will get
some combinatoric results on 6-figures in M(A).

A 6-figure is a sequence of six non-neighbour points (ABC,
A1B1 () such that (A, B, C) is 3-gon, and A, € BC, By €
CA, C, € AB. The points A, B, C, Ay, By, C; are called
vertices of this 6-figure. The 6-figures (ABC, A1 B;C;) and
(DEF, Dy E1Fy) are equivalent if there exists a collineation
of M(A) which transforms A, B, C, A1, By, Cy to D, E,
F, Dy, E;, F; respectively.

Now we need the following theorem from [9].

Theorem 3.1: Let 4 = (ABC, A1 B1Cy) be a 6-figure in
M(A). Then, there is an m € U such that {/ is equivalent
to (UVO,(0,1,1)(1,0,1)(1, m,0)) where U = (1,0,0),V =
(0,1,0),0 = (0,0,1) are elements of the coordinatization
basis of M(A).

6-ﬁgures H= (ABC, Al 81 Cl) and = (DEF, D1 El Fl)
are neighbour if the points A, B, C, Ay, By, C; are neighbour
to the points D, E, F, Dy, Ey, Fy; respectively.

Now, by the last definition and Theorem 3.1, we can give
the following corollary without proof.

Corollary 3.2: 6-figures 4 = (ABC,A1B,C;) and =
(DEF, Dy E1Fy) are neighbour if m; € U corresponding to
M and my € U corresponding to  are neighbour.

So, we have the following

Corollary 3.3: There are p—1 6-figures class in M(.A). The
classes are those: m=1, m=2, ..., m= p— 1 where the
elements in neighbour of any mare m+2, , lp+m+2, ,
204+ M+ Zg ... (PP =1)p+m+7Z, .

Proof: We can classify 6 figures in M(.A) by the number
of the elements of U. But, when it is considered the neighbours
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of the elements in U this number becomes p — 1. Hence, we
obtain p—1 6-figure classes in M[(\A). We can show the classes

asm=1m=2, .., m= p— 1 where the elements in
neighbour of any mare m+2, , 1o+ m+2, , 20+ m+
Zg - (PP =) p+m+Z, . |

Theorem 3.4: There are totally
(7 +p+1) (7)) (7 +0) ()
(2 (@ )°) (-1 1)’
6-figures in M(A).

Proof: First if we calculate the total number of 6-
figures in projective plane of order p, we have differently

(PP+p+1) (PP+p)p*(p— 1)® 6-figures by depending on
the choices of the points of a 6-figure. Finally if we consider
the neighbour relation in M(.A), that is, we consider Corollary
2.3 and 2.4 then the proof is clear. ]

Then, as a result of Corollary 3.3 and Theorem 3.4 we have
immediately the following

Corollary 3.5: The number of 6-figures corresponding to
an me Uis

(P +p+1) (P +p) PP (p— 1) ()"

Proof: Since there are totally
(2 +p+1) () (P +0) (1))
(7 (*)7) (- o)
6-figures in M(A) and [U| = (p— 1) p?*~! then the proof is

clear. [ |

Now we need the following theorem, one of the main results
of [2].

Theorem 3.6: The 6-figures (ABC, A1B1Cy), (BCA, By
C1A1), (CAB, C1 A1 By) are equivalent.

As a result of Corollary 3.5 and Theorem 3.6 we can state
the following

Corollary 3.7: The number (p* + p + 1)(p* + p)p?
(p—1)% (p*=1)% is divided by 3.

Blunck [7] gives the following algebraic definition of the
cross-ratio for the points on the line g :=[1,0,0] in M(A).
(A B;C,D):=(abcd
—<(a-a"-9) (-0 " @-0) >
(S,B;C, D)= (s', bc d)
—< ((1 —ds) (b d)) ((bf ot (1— cs)) >
(A S;C, D)= (a s ';cd)

—< ((a— o t1- ds)) ((1 —cs) M a— )) >
(A B;S,D):=(abs',d
—< ((a— o (b d)) ((1 — skt (1 - sa)) >
(A B;C S):=(abcst)
—< ((1 _sa)”! (1—sb)) ((b—c)*l(a_ )) >,

where A = (0,4,1), B = (0,b1), C = (0,¢ 1), D =
(0,d,1), Z= (0,1, s) are pairwise non-neighbour points of g
and < x >= {y~'xy ye A}.

The following theorem, the analogue of the theorem given
in [1], states a simple way for the calculation of the cross-ratio
of the points on any line /in M(A).

Theorem 3.8: According to types of lines, the cross-ratio of
the points on the line / can be calculated as follows:

If A, B, C, D and S are the pairwise non-neighbour points

(@) of the line | =[m, 1, p| where A= (a,am+p,1), B=
(b.bm+p, 1), C=(c.cm+p, 1), D= (d,dn+p,1)
are not near the line UV and S = (1, m+sp,s) ~ UV,

(b) of the line | = [1,n, p| where A= (an+p,a 1), B=
(bn+p,b 1), C = (cn+p.c 1), D = (dn+p.d. 1)
are not neighbour to V and S = (n+sp,1,s) ~ V,

(c) of the line | =[q,n, 1] where A= (1,a,g+ an), B =
(1,b,g+bn), C = (1,¢c,g+cn), D = (1,d,g+ dn)
are not near to V and S=(s,1,sqg+n) ~ V,

then

(A B;C,D) = (abcd

(SB;C,D) = (s bca
(A S;C,D) = (as'cd)
(A B;S,D) = (abs'ad
(A B;C.S) (abc st

Let /= (ABC, A; B1 Cy) be a 6-figure in M[(A). Let A® =
BCNBi1Cy, B*= CANC A1, C°= ABN A;B;. The 6-
figure (ACB, A°C¢B°) is called the first codescendant of L,
written (.  is called a first coancestor of LF.

So we can give the following Lemma from [1].

Lemma 3.1: If 4 = (ABC,A1B:G) = (UVO,(0,1,1)
(1,0,1)(1,m,0)), then

(A B;CI,CY) = (B,CiA,LAY)

(C,A; By, BY) =< —m > .

We are now ready to state the definition of the ratio of a
6-figure. The conjugacy class — (A, B; Cy, C°) is called the
ratio of the 6-figure 4 = (ABC, A1 B1C1) and denoted by
r(y), that is, r(4) =< m >.

(ABC, A1 B, Cy) is called a Menelaus 6-figure if Ay, By
and C; are collinear, and (ABC, A; B, Cy) is called a Ceva
6-figure if AA;, BB, and CC; are concurrent.
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Now we give the following theorem from [1].

Theorem 3.9: I is a Menelaus or Ceva 6-figure if and only
if r(y) =—1 or r(y) =1, respectively.

We immediately have

Corollary 3.10: Menelaus and Ceva 6-figures are belong to
the class m = p — 1 and the class m = 1 where p # 2,
respectively.

Proof: By Theorem 3.9 if f/ is a Ceva 6-figure then
r(y) =1 = m and also if y is a Menelaus 6-figure then
r(y) = —1 = m. For the proof it is enough to say that —1 is
neighbour to p — 1. |

From now on we call the class m = 1 as Ceva class and the
class m = p— 1 as Menelaus class. Now we need following
theorem from [6].

Theorem 3.11: Every cross-ratio consists only of elements
of A\({0, 1} +1). Conversely, the conjugacy class of any such
element appears as a cross-ratio; Given three pairwise non-
neighbour points A, B, C and an element r € A\ ({0,1} + 1),
then there is a (unique if r € Z( )) point D which is not
neighbour to A, B and C with (A, B; C, D) =< r >.

In M(A), any pairwise non-neighbour four points A, B, C,
D € | are called as harmonic if (A, B; C, D) =< —1 > and
we let h(A, B, C, D) represent the statement: A, B, C, D are
harmonic. Let (/= (ABC, A1 B C1) be a 6-figure in M(A).
By the last theorem, there exist unique points Ay € BC, B, €
CA, Cy € AB such that h(A, B, C1, Cs), h(B, C, A1, A2),
h(C, A, By, By). The 6-figure (ABC, A2 B2 Cy) is called the
conjugate of U, having symbol —L/. Likewise U/ is the conju-
gate of — L.

Let C? € AB be the point such that C, C¢ and AA; N BB,
are collinear. Let A? € BC and B? € CA be the points such
that A, A? and BB; N CC; are collinear and B, B* and
AA; N CCy are collinear. The 6-figure (ACB, AYC1B?) is
called the first descendant of LI, written . pis called a first
ancestor of LI,

Using the definitions of —p, ¢ and 4@ the following
lemmas are obtained (see [1, Lemma 20] for the first Lemma
and [10, Lemma 7] for the second Lemma).

Lemma 3.2: For any 6-figure {/ we have

@ (—p)" =4
) (ph)e = (1) = (UVO,(0,—m~*,1)(=m,0,1)(1,
-m?,0)),
where m e U.

Lemma 3.3: For any 6-figure {/ we have

@ (—p)° = = (UOV,(0,—m,1)(1,=1,0)(-=m"1,0
1))

®) (1) = (1) = (UVO,(0,m™",1)(m,0,1)(1, m*,
0)).

where m € U.

By using the results of the last two Lemmas and [10,
Theorem 9] we can give the following theorem which gives
the relation between the ratios of the 6-figures p—!, —p, L2,

e, ()" ()" (1) (1) and

Theorem 3.12: For any 6-figure [/ we have

@ r(pt)=(rE) " =<m?>

() r(-t)=—-r(p)=<-m>

© r(=0") = () = (r(p)* =< m* >

@ () = r() = = (r(p)* =< —m? >
© r((K))= ((ﬁf)c)d=< —m* >=—(r(y)

O (1)) = (@) =<t >= (),

where < x >2:=< X% > for any x€ U and m € U.

Proof: For the proof, it is enough to give the proof of
(e) and (f). From (b) of Lemma 3.2, we know that (/Jd)C =
(L) = (UVO,U' V' Q) where U' = (0,—-m™1,1), V' =
(=m,0,1), O = (1,—m?,0). Ratio of this 6-figure are equal
to croos-ratio — (U, V; (1, —m?,0), O°), where

o=uvnuVv = [001n[-m?>1-m"
= (1,-m72,0).
So, this cross-ratio is equal to
—((1,0,0),(0,1,0); (1, —m?*,0), (1, —m~2,0)) .

By (c) of Theorem 3.8, this is equal to (0,071;—m?,
—m~2) = —m*. Since the proof of (f) is similar to the proof
of (e) the proof is completed. u

As a direct result of Theorem 3.9 and Theorem 3.12 we
have the following result.

Corollary 3.13: a) If U is a Menelaus 6-figure then

W r(-p) = r) = r(@)?) = r(") =<1 >,
that is, —pJ, 1%, (1€)* and (,ud)d 6-figures are in the Ceva
class.

Q) r(p) =r@e) =r((#)°) =rip)) =< -1 >,
that is, p~1, 1, (1) and (1F)° 6-figures are in the
Menelaus class.

b) If pis a Ceva 6-figure, then

@) r(=p) =r@) = r((H)) =r(p)) =< -1 >,
that is, —f/, 1, ()" and (1°)° 6-figures are in the
Menelaus class. . 4

(i) r(pt)=r() = r((pc) ) = r((pd) ) =<1 >,
that is, !, 14, (1F)* and (/Jd)d 6-figures are in the
Ceva class.

The following theorem is the analogue of Theorem 12 given
in [10] for MK-planes M(.A). This theorem we give without
proof, tells the relation between the solvability of the equation
X2 =m (or X = —m) in A where m € U and the existence
of the special 6-figure with ratio < m > in M(A). In other
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words, this theorem provides a geometric property of M(.A)
that is equal to the condition that every element in U has a
square root in U.

Theorem 3.14: Let m € U. Then the equation X*> = m (or
X2 = —m) has a solution in U if and only if any 6-figure
with ratio < m > has ancestor (coancestor) in M(.A).
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