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Abstract—Recently, Electric Vehicles (EVs) have received
extensive consideration since they offer a more sustainable and
greener transportation alternative compared to fossil-fuel propelled
vehicles. Lithium-lon (Li-ion) batteries are increasingly being
deployed in EVs because of their high energy density, high cell-level
voltage, and low rate of self-discharge. Since Li-ion batteries
represent the most expensive component in the EV powertrain,
accurate monitoring and control strategies must be executed to ensure
their prolonged lifespan. The Battery Management System (BMS)
has to accurately estimate parameters such as the battery State-of-
Charge (SOC), State-of-Health (SOH), and Remaining Useful Life
(RUL). In order for the BMS to estimate these parameters, an
accurate and control-oriented battery model has to work
collaboratively with a robust state and parameter estimation strategy.
Since battery physical parameters, such as the internal resistance and
diffusion coefficient change depending on the battery state-of-life
(SOL), the BMS has to be adaptive to accommodate for this change.
In this paper, an extensive battery aging study has been conducted
over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells.
Instead of using fixed charging/discharging aging cycles at fixed C-
rate, a set of real-world driving scenarios have been used to age the
cells. The test has been interrupted every 5% capacity degradation by
a set of reference performance tests to assess the battery degradation
and track model parameters. As battery ages, the combined model
parameters are optimized and tracked in an offline mode over the
entire batteries lifespan. Based on the optimized model, a state and
parameter estimation strategy based on the Extended Kalman Filter
(EKF) and the relatively new Smooth Variable Structure Filter
(SVSF) have been applied to estimate the SOC at various states of
life.

Keywords—Lithium-Ion batteries, genetic algorithm optimization,
battery aging test, and parameter identification.

[LINTRODUCTION

Vs are becoming a widely used transportation mode since

they offer numerous benefits such as their small
environmental impact and their high well-to-wheel efficiency
[1]. The battery pack is one of the most expensive components
in the EV powertrain, therefore, highly accurate monitoring,
control, and protection strategies have to be implemented
onboard of the BMS to prolong the battery lifespan and ensure
safety [2]. However, several electrification challenges, such as
cost, range anxiety, safety, and reliability still hinder the wide
adoption and mass market production of EVs [3]. These
challenges could be significantly mitigated by incorporating
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an advanced BMS. The BMS represents the brain of the
battery; it is responsible for monitoring the battery SOC and
SOH, and ensuring safety by safeguarding against short
circuits and over-charge/under-discharge conditions. In
addition, the BMS ensures cell-to-cell balancing, conducts
thermal management, and estimates instantaneous available
power [4]. The battery SOC is one of the key variables
monitored by the BMS since it is strongly linked to the vehicle
driving range which is of a great concern to the driver.
Therefore, an accurate SOC estimation will ultimately
improve the customer satisfaction and accelerate the mass
market acceptance of EVs. The battery SOC estimation is a
relatively complex task since the battery characteristics change
over time; as battery ages, it exhibits capacity and power fade,
and its internal resistance increases which in turn affect the
model and SOC estimation accuracy. Thus, battery models
have to be adaptive in order to accommodate for the changes
in battery characteristics and performance across the entire
battery states of life.

Recently, several incidents of battery degradation have been
reported. For instance, as per October, 2012, there were 112
documented cases of customers complaining of capacity loss
in EVs [5]. Manufacturers generally have lifetime data on
batteries, but these are generated by using predefined
charging/discharging cycles at fixed temperatures and fixed
charging/discharging rates referred to as C-rate. Relying on
this data in model development will result in inaccuracies and
errors in SOC and SOH estimations. The EV battery is not
simply like portable application whose current rate profile is
piecewise constant [5]. The battery in EV applications
operates in a dynamic environment with fast transients and
aggressive current requirement. Accordingly, these fast
transients need to be captured by the battery aging model and
parameters have to be tracked accordingly.

Numerous research studies on battery aging and SOH
estimation have been presented in the literature [6]-[9] Based
on a ninth-order polynomial model, Stamps et al. have
implemented a hybrid estimation algorithm and discrete
filtering of batch estimation to predict the capacity fade and
the change of inner resistance in Li-ion batteries [10]. Eric et
al. utilized capacity-based SOC measurements to compare the
capacity and internal discharge resistance at various battery
states of life [11]. Various research papers have introduced
aging analysis using Electrochemical Impedance Spectrometry
(EIS) technique, Saha et al. have analyzed shifts in EIS data
(such as battery impedance) based on equivalent electric
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circuit parameters to predict the aging process [12]. Aging has
been characterized in reduced-order electrochemical-based
battery models, by tracking growth in the Solid Electrolyte
Interface (SEI) layer in [13].

In this paper, an extensive battery aging test has been
conducted over 12-months period on 5.4 Ah, 3.7 V Lithium
polymer cells by using a set of real-world driving cycles. The
experimental data for healthy (Capacity = 100%) and aged
cells (Capacity = 80%) are used to fit the combined model
based in an offline mode. Parameters of the combined model
are tracked along various battery states of life. Finally, offline
battery model parameters identification and state of charge
estimation at various states of life have been implemented.

II.LAGING STUDY EXPERIMENT

As shown in Fig. 1, three benchmark driving cycles have
been used during the aging study and model fitting; namely,
an Urban Dynamometer Driving Schedule (UDDS), a light
duty drive cycle for high speed and high load (US06), and a
Highway Fuel Economy Test (HWFET) [14].

A mid-size all-EV model has been modified from an
existing hybrid vehicle model and simulated in
MATLAB/SimScape environment in order to generate the
current profile from the velocity profile. The EV model
consists of Li-ion battery pack, vehicle dynamic model, DC
motor, DC-DC converter and vehicle speed controller. The
aging test has been interrupted by a series of reference
performance test schedules to track changes in the battery
performance, these tests include:

(1) A static capacity test at 1C, 2C, 3C, and 4C;

(2) Static capacity test at low C-rate (C/15 — C/25) in order to
obtain the relationship between the open circuit voltage
(OCV) and the state of charge (OCV-SOC);

(3) A series of UDDS, US06, and HWFET driving cycles
(Schedule A) (that scans the entire SOC range from 90%
to approximately 20%);

Velocity Profiles for UDDS, US06, and HWFET Cycles

Velocity [Kph]

Velocity [Kph]

Velocity [Kph]

Time [Mins]

Fig. 1 Velocity profiles for the UDDS (upper), US06 (middle), and
HWFET (lower) cycles [14]

The current generated from the electric vehicle has been
converted from the pack level to the cell level based on the
battery construction. Then the cell level current profile has
been put into the experiment setup which includes 3 channel
Arbin BT 2000 tester, 3 environmental chambers, AVL Lynx
data acquisition system, AVL Lynx user-interface software
and Li-ion cells to extract the terminal voltage and actual
(reference) SOC. Driving Schedule A lasts approximately 290
minutes and is mixed by UDDS, US06, and HWFET test
schedules. The current range of Schedule A is from -2C to 2C
and covers the entire SOC from 90% to 20%. In order to
demonstrate the difference in terminal voltage and SOC using
the same driving schedule at different states of life, both
voltage and SOC data for fresh (healthy) and aged battery at
approximately 80% capacity for driving Schedule A are
plotted as shown in Figs. 2 and 3, respectively.
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Fig. 2 Terminal Voltage for healthy cell and aged cell at 80%
capacity — Driving Schedule A
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IIT.OFFLINE PARAMETER IDENTIFICATION

Behavioral battery models use various empirical functions
and formulas to describe the behavior of the battery cells.
These models are simple to implement with fewer parameters
to tune and are therefore easy to be implemented in real-time
applications on a BMS. Examples are as follows [15].

o Shepherd model: y;,, = Eq — Ri, — K;/zj,

e Unnewehr universal model: y, = Ey — Riy — K;z;,

e Nernst model: y, = Ey — Rij, — KyInz, + K3In(1 —
Zk)

In these models, y; is cell terminal voltage (Replaced by
V(t) in the following), ik is input current, z;, is SOC, R is
internal resistance which may change when charging and
discharging, K; is the polarization resistance chosen to make
the model fit the data well. The combined model is defined as
the collection of the three aforementioned models as [15]:

K
v = Ko — Rij, — Z—1 — Kyzi + K3 In(z) + K, In(1 — z.) (1)
k

_ niALy )
Zg+1 = Zk — C L

The combined model has been used in this paper since it is
relatively simple and can provide an acceptable accuracy. The

parameter vector 8 consists of Ko, K1, Kz, Ks, Ks, Renargings
Ruischarging need to be estimated. The objective function is a
cumulative sum of the squared voltage error as [16]:

T >
mjnf V(@) =V(t;0))%dt 3)
6 Jo

The objective function is targeted at minimizing the error
between the model output terminal voltage V1t) and the
experimentally measured terminal voltage V(t). The initial
value, lower bound, and upper bound of the combined model
parameters are presented in Table 1.

TABLE I

PARAMETER INITIALIZATION
Initial Lower  Upper
value bound  bound

R_charging 0.0177 0 0.1
R discharging  0.0221 0 0.1
KO 3.5190 3 45

K1 0.0233 0 0.2

K2 0.0212 0 0.2

K3 -0.0867 -0.2 0.2

K4 -0.2950 -0.5 0.1

I[V.OPTIMIZED RESULTS

In this section, the offline parameter identification using
Genetic Algorithm optimization is presented. Two states of
life are considered; namely: fresh (healthy) battery state and
aged (80% capacity). The GA algorithm has been applied to
estimate battery parameters by using current and voltage data
from Schedule A driving cycle. The model is simulated once

for every member of the population and the terminal voltage is
further compared with the experimental terminal voltage. The
GA optimization has been set to five runs and to 2500
population size. The algorithm has been conducted on a
mobile workstation with 2.40 GHz, Dual-core i7-5500U
processor.

The optimized terminal voltage vs. the actual (measured)
voltage for both fresh and aged states are as shown below in
Figs. 4 and 5, respectively. It is important to note that in this
method, one set of parameters are used over the entire SOC
range.

The optimized parameters for both healthy and aged cells
are as shown below in Table II. The charging and discharging
internal resistances: Repargings Raischarging inCrease over the
lifespan of the battery which reflects aging effects.
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Fig. 4 Estimated Vs. actual terminal voltage for driving Schedule A
(Healthy cell)
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Fig. 5 Estimated Vs. actual terminal voltage for driving Schedule A
(Aged cell)
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V.STATE-OF-CHARGE ESTIMATION

In this section, two estimation strategies have been applied
to the battery to extract information regarding the battery SOC
based on the optimized model. The strategies are known as
EKF and SVSF, which both work in a predictive-corrective
form.

TABLE II
OPTIMIZED PARAMETERS
Healthy cell Aged cell

R charging 0.0130 0.0177
R _discharging 0.0103 0.0165
KO 3.5190 3.5190

K1 0.0233 0.0233

K2 0.0212 0.0876

K3 -0.0666 -0.0867

K4 -0.2950 -0.3282

Kalman Filter (KF) is the optimal filter on the conditions of
the linear system and white noise. EKF is an extended form of
KF and used for the non-linear system [17]. In the EKF, the
system model is linearized around the current a priori state
estimate and the linearized model is then used for calculating
the Kalman gain to correct the predicted result.

The SVSF use the same concept as sliding mode control’s
switching action to correct state estimates and has been
demonstrated robustness to modeling uncertainties and sensor
noise [18]. It can be applied to linear or non-linear systems
and for both state and parameter estimation applications. It
works by using the SVSF gain that forces the states to switch
back and forth across the state trajectory within a region
referred to as the existence subspace which is a function of
modeling uncertainties.

After trial and error, the system and measurement noise
covariance in the EKF, and the convergence rate and boundary
layers in the SVSF were obtained as in Table III.

The estimated SOC is initialized at 0.7, while the actual
SOC is at 0.9. The SOC estimation results both for fresh cell
and aged cell by EKF and SVSF are shown in Figs. 6 and 7.
Fig. 8 shows the zoom-in configuration at the very beginning
of the estimation process. Furthermore, the root mean square
error (RMSE) associated with SOC estimation compared to
the optimized model are shown in Table IV, respectively.

The result demonstrates that both EKF and SVSF provide
fast convergence even though the error between the initial
SOC and the actual SOC is quite different. Moreover, EKF
and SVSF can provide a very good estimation accuracy if the
filter parameters are properly tuned. Specifically, when the
model is relatively accurate, such as aged cell model, EKF has
shown better results compared to SVSF. However, as one can
see in Table IV, the SOC error of optimized model of the aged
cell is very small and is more accurate than the fresh cell. As
the model uncertainties grow, SVSF can provide a better
estimation result which shows a better robustness of SVSF
compared to EKF.

TABLE III
THE EKF SYSTEM AND MEASUREMENT NOISE COVARIANCE, AND THE SVSF
CONVERGENCE RATE AND BOUNDARY LAYERS

Filter Parameters EKF  SVSF

Q le-10 /
R 0.1 /
] / 3
Y / 0.8
TABLE IV
ESTIMATION ERROR
RMSE SOC error for Fresh Cell SOC error for Aged Cell
EKF 2.26% 0.75%
SVSF 1.68% 1.30%
Optimized Model 6.83% 0.41%
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Fig. 6 Estimated Vs. Actual SOC by EKF and SVSF estimation
strategies (Fresh cell)
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Fig. 8 Zoom-in at the very beginning of estimation process

VIL.FUTURE WORK

Since EKF can provide a better result when the model is
accurate but SVSF does well when there are much more
model uncertainties. The future work will involve combining
both strategies to improve the state-of-charge estimation
accuracy and to estimate the state-of-health based on the
optimized model over the entire battery lifespan.

VII.CONCLUSIONS

In this paper, an extensive battery aging study based on
real-world driving scenarios has been conducted. The battery
parameter based on the combined model has been identified in
an offline mode. Model parameters, such as the internal
resistance, change over the entire lifespan of the battery.
Therefore, the BMS has to be adaptive to accommodate for the
change in the battery physical parameters to ensure accurate
SOC and SOH estimation. EKF and a relatively new state
estimation strategy known as SVSF have been applied to
estimate the battery state-of-charge and compared in terms of
accuracy and robustness.

ACKNOWLEDGMENT

This research was facilitated through the MECH ENG 739
course: “Management and Control of Electric Vehicle
batteries” offered by Dr. Ryan Ahmed at the faculty of
Engineering, McMaster University.

REFERENCES

[1] S. Campanari, G. Manzolini, and F. Garcia de la Iglesia, “Energy
analysis of electric vehicles using batteries or fuel cells through well-to-
wheel driving cycle simulations,” J. Power Sources, vol. 186, no. 2, pp.
464-477,2009.

[2] G. L. Plett, “Extended Kalman filtering for battery management systems

(3]

(4]

(6]

(7]

(8]

(9]

(10]

(11

[14]

[15

of LiPB-based HEV battery packs Part 1. Background,” J. Power
Sources, vol. 134, no. 2, pp. 252261, 2004.

D. Anderson, “An evaluation of current and future costs for lithium-ion
batteries for use in electrified vehicle powertrains,” Chem. ..., no. May,
p. 48,2009.

A. Andrea, Battery Management Systems for Large Lithium-lon Battery
Packs. 2010.

M. Conte, F. V. Conte, 1. D. Bloom, K. Morita, T. Ikeya, and J. R. Belt,
“Ageing testing procedures on lithium batteries in an international
collaboration context,” World Electr. Veh. J., vol. 4, pp. 335-346, 2011.
R. Ahmed, J. Gazzarri, S. Onori, S. Habibi, R. Jackey, K. Rzemien, J.
Tjong, and J. LeSage, “Model-Based Parameter Identification of Healthy
and Aged Li-ion Batteries for Electric Vehicle Applications,” SAE Int. J.
Altern. Powertrains, vol. 4, no. 2, pp. 2015-01-0252, Apr. 2015.

J. Remmlinger, M. Buchholz, M. Meiler, P. Bernreuter, and K.
Dietmayer, “State-of-health monitoring of lithium-ion batteries in
electric vehicles by on-board internal resistance estimation,” J. Power
Sources, vol. 196, no. 12, pp. 5357-5363, 2011.

V. Pop, H. J. Bergveld, P. P. L. Regtien, J. H. G. Op het Veld, D.
Danilov, and P. H. L. Notten, “Battery Aging and Its Influence on the
Electromotive Force,” J. Electrochem. Soc., vol. 154, no. 8, p. A744,
2007.

C. Guenther, B. Schott, W. Hennings, P. Waldowski, and M. A. Danzer,
“Model-based investigation of electric vehicle battery aging by means
of vehicle-to-grid scenario simulations,” J. Power Sources, vol. 239, pp.
604-610, 2013.

A. T. Stamps, C. E. Holland, R. E. White, and E. P. Gatzke, “Analysis of
capacity fade in a lithium ion battery,” J. Power Sources, vol. 150, no.
December 2004, pp. 229-239, 2005.

E. Wood, M. Alexander, and T. H. Bradley, “Investigation of battery
end-of-life conditions for plug-in hybrid electric vehicles,” J. Power
Sources, vol. 196, no. 11, pp. 5147-5154, 2011.

J. C. B. Saha, K. Goebel, S.Poll, “An integrated approach to battery
health monitoring using Bayesian regression and state estimation,” leee,
no. November, pp. 646-653, 2007.

R. Ahmed, M. El Sayed, I. Arasaratnam, J. Tjong, and S. Habibi,
“Reduced-Order Electrochemical Model Parameters Identification and
SOC Estimation for Healthy and Aged Li-lon Batteries. Part I
Parameterization Model Development for Healthy Batteryies,” IEEE J.
Emerg. Sel. Top. Power Electron., vol. 2, no. 3, pp. 659-677, 2014.

J. R. Belt, “Battery Test Manual For Plug-In Hybrid Electric Vehicles,”
Dec. 2010.

G. L. Plett, “Extended Kalman filtering for battery management systems

1388



[16]

[17]

(18]

International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:10, No:11, 2016

of LiPB-based HEV battery packs: Part 2. Modeling and identification,”
J. Power Sources, vol. 134, no. 2, pp. 262-276, 2004.

J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, “Genetic
identification and fisher identifiability analysis of the Doyle-Fuller-
Newman model from experimental cycling of a LiFePO 4 cell,” J.
Power Sources, vol. 210, pp. 263-275, 2012.

G. L. Plett, “Extended Kalman filtering for battery management systems
of LiPB-based HEV battery packs Part 3. State and parameter
estimation,” J. Power Sources, vol. 134, no. 2, pp. 277-292, 2004.

S. Habibi, “The Smooth Variable Structure Filter,” Proc. IEEE, vol. 95,
no. 5, 2007.

1389



