
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:5, 2010

832

 

 

  
Abstract—The global chaos synchronization for a class of 

time-delayed power systems is investigated via observer-based 
approach. By employing the concepts of quadratic stability theory and 
generalized system model, a new sufficient criterion for constructing 
an observer is deduced. In contrast to the previous works, this paper 
proposes a theoretical and systematic design procedure to realize 
chaos synchronization for master-slave power systems. Finally, an 
illustrative example is given to show the applicability of the obtained 
scheme. 
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I. INTRODUCTION 
chaotic system is a highly complex dynamic nonlinear 
system and its response exhibits a number of specific 

characteristics, including an excessive sensitivity to the initial 
conditions, broad Fourier transform spectra, and fractal 
properties of the motion in phase space. Since the pioneering 
work of Pecora and Carroll in 1990 [1], chaos synchronization 
has received increasing attention over the last few years. Chaos 
synchronization can be applied in the vast areas of physics and 
engineering systems such as in chemical reactions, power 
converters, biological systems, information processing, 
especially in secure communication [2-8]. Therefore, various 
effective methods have been proposed in the past decades to 
achieve the synchronization of chaotic systems, such as 
impulsive control [9, 10], linear feedback control [11], variable 
structure control [12-14], optimal control [15], digital redesign 
control [16], backstepping control [17, 18], and so on.  

On the other hand, power system has been widely used and 
studied in the industry. In the past years, many classes of power 
systems have been found with rich phenomena of chaos. Study 
of chaos and its control in power systems is with considerable 
importance from the point of view of avoiding undesired 
behaviors such as power blackout. Kopell and Washburn [19] 
used Menikov’s technique to analyze chaotic motions in the 
two-degree-of-freedom swing equations. Abed and Varaiya 
[20] employed the Hopf bifurcation theory to explain nonlinear 
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chaotic behaviors in power systems. Chen et al. [21] used a 
single model equation to analyze the qualitative chaotic 
behaviors of a single-machine-infinite-bus (SMIB) power 
system. Shahverdiv et al. [22] investigated chaos 
synchronization for such SMIB power systems via numerical 
simulations to estimate the coupling strengths between the 
master and slave systems. 

In this paper, the global synchronization for the state 
trajectories of two SMIB power systems described by delay 
differential equations (DDE) is investigated. The type of power 
systems described by ordinary differential equations (ODE) 
can be though as a special case of DDE. By employing the 
quadratic stability theory [23] and the concept of the 
generalized model [24], a new design scheme for 
observer-based controller can be derived. Compared with the 
previous works [21, 22], avoiding using numerical analysis, 
this paper proposes a theoretical and systematic design 
procedure to realize complete synchronization. This paper is 
organized as follows. Section 2 describes the dynamics of a 
DDE power system. In Section 3, the synchronization problem 
for master-slave DDE power systems is formulated. Then a 
new sufficient condition is proposed. Numerical simulations 
those confirm the validity and feasibility of the proposed 
method are shown in Section 4. Finally, conclusions are 
presented in Section 5.  

II. DYNAMICS OF THE DDE POWER SYSTEM 
Consider the classical DDE power system. The equation 

governing the motion of this DDE in terms of the variable θ  is 
given by [22]. 

τθθθ PPPDM m +=++ sinmax
&&&            (1) 

where M is the moment of inertia, D is the damping constant, 
maxP  is the maximum power of generator, wtAPm sin=  is the 

power of the machine, ))(sin( τθτ −= tRrP  is the delayed 
feedback with a constant delay time τ , and RrwA ,,,  are all 
constant. System (1) can be rewritten as a system of first order 
equations as follows. 
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available output y is 
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The dynamics of this system has been extensively studied in 
[22] for a space range of the amplitude of the term R. In 
particular, for the parameter values of 

5,5,3,2,2,6.0 ====== fwc εβτ  and 5=R , this DDE 
power system displays chaotic behavior. Figures 1-2 show the 
chaotic attractor and state responses, respectively, with initial 
condition of 1)0(];0,[,1)( 2001 =−∈∀= xttx τ . 

III. PROBLEM FORMULATION AND MAIN RESULTS  
In this section, our goal is to investigate chaos 

synchronization for two identical DDE power systems coupled 
by an observer-based feedback controller. For this purpose, 
consider the following master and slave DDE systems. 
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where state vectors of the master and slave systems are denoted 
with mx and sx , respectively. [ ] 21

21
×∈= RccC  is the output 

gain matrix and ),( CA  is observable. 12×∈ RL is the coupling 
vector designed to guarantee the synchronization between 
Systems (4) and (5). Define the synchronization error between 
System (5) and System (4) as 

[ ] [ ]Tmsms
T xxxxeee 221121 −−== , then the error dynamics 

is governed by the following equation.  
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According to the differential mean-value theorem, one has 
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, thus )(tF  and )(tFτ  can be simplified as 
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The considered goal of this paper is that for any given 
master-slave DDE power systems as (4) and (5), a sufficient 
condition for the observer-based controller is proposed such 
that the trajectories of )(txm  and )(txs , wherever the choice of 
initial states, satisfy   0)()( →− txtx sm  as ∞→t .  

As a sequence, to achieve synchronization via the 
observer-based controller is equivalent to select the coupling 
matrix L such that the error dynamics (6) is asymptotically 
stable at the origin. The following lemma will be applied to 
prove the main theorem of this paper. 
 
Lemma 1 [23]: Define the Hamiltonian matrix 
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Assume that (i) ),( MLCA −  and )( LCA −  are observable and 
stable, respectively, and (ii) H with 1>η  has no eigenvalues 
on the imaginary axis. Then the algebraic Riccati equation 
(ARE) 

0)()( =++−+− MMPPLCAPPLCA TT η       (11) 
has a positive definite solution P . 
 
Proof: It is an immediate result of the work of Doyle et al.[23] 
and hence is omitted. 
 
Lemma 1 [24]: The error system (6) is asymptotically stable 
independent of time delay τ  if and only if the following 
‘generalized system model’ 

)()()())(( tzetFtetFLCAe τ+++=& ,         (12) 
is asymptotically stable. Where z is the complex number; 

[ ]πσσσσ 2,0),sin()cos()exp( ∈∀+== jjz  and 1=z . 

 
Theorem 1: Suppose the coupling matrix L is selected such 
that ),( MLCA −  and )( LCA −  are observable and stable, 
respectively. If the Hamiltonian matrix H  with some 1>η  as 
defined in (10) has no eigenvalues on the imaginary axis, then 
the master-slave system defined in (4) and (5) achieves global 
chaos synchronization. 
 
Proof: Suppose the coupling matrix L is selected such that 

),( MLCA −  and )( LCA −  are observable and stable, 
respectively. According to Lemma 1, if the Hamiltonian matrix 
(10) has no eigenvalues on the imaginary axis, then the 
following algebraic Riccati equation (ARE) is obtained. 

0)()( =++−+− MMPPLCAPPLCA TT η          (13) 
where P is a positive definite solution. Now, introducing a 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:5, 2010

834

 

 

Lyapunov function )(tV  as 

0)()()( ≥= tPetetV T                (14) 
It is easily verified that )(tV  is a non-negative function 
over ),0[ +∞  and radially unbounded, i.e. ∞→)(tV  as 

∞→)(te . Subsequently, evaluating the time derivative of V 
along the trajectory of generalized system model (12) in 
Lemma 2,  it yields 

( )[ ]
( )[ ]

eztFtFPeeLCAPPLCAe

eztFtFPeeLCAPPLCAe

(t)zeFeF(t)LCAPe

PezetFetFLCA

ePePeeV

TTT

TTT
τ

T

T

TT

))()((2)]()[(

))()((2)]()[(

))()(

τ

τ

τ

++−+−≤

++−+−=

++−+

++−=

+= &&&

(15) 

Furthermore, 

1for ; )(

))cos()cos((

))()(())()((

))()((

))()((2

2
1

2

2
1

2
21

22

=∀+=++≤

+−+=

+++=

++≤

+

zMeMePPeeeRPPee

ezRPPee

eztFtFztFtFePPee

eztFtFPe

eztFtFPe

TTTT

T

TTT

T

T

εβ

ηεηβ
ττ

τ

τ

 (16) 

Therefore, from (15) and (16), it yields 
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where 1>η . Since P is the positive definite solution of 

ARE(13), one has 0)( <tV& . According to Lyapunov stability 

theory and Lemma 2, the last inequality 0)( <tV&  indicates 

)(tV  as well as )(te  converge to zero asymptotically. This 
completes the proof. 
 
Remark 1: Roughly speaking, the eigenvalues of 
Hamiltonian matrix (10) will not be located on the imaginary 
axis, if matrix )( LCA −  has more negative eigenvalues. 
Fortunately, since ),( CA  is observable, it is easy to select 
appropriate L such that  )( LCA −  has desired negative 
eigenvalues so that the conditions in Theorem 1 are easily 
satisfied. 

IV. NUMERICAL EXAMPLE  
In this section, simulation results are presented to 

demonstrate the effectiveness of the proposed synchronization 
scheme. All the simulation procedures are coded and executed 
using the software of MATLAB. The system parameters are 
chosen as follows: 5,5,3,2,2,6.0 ====== fwc εβτ  
and 5=R . The initial states of the master system (4) are 

1)0(];0,[,1)( 2001 =−∈∀= mm xttx τ  and initial states of the slave 
system (5) are 2)0(];0,[,0)( 2001 =−∈∀= ss xttx τ . The output 
matrix ]01[=C  is selected. According to Remark 1, the 
coupling matrix L is chosen as [ ]7019 −−=L  such that the 

eigenvalues of )( LCA − are -9 and -12. Then the Hamiltonian 
matrix H with 11.1 >=η  is obtained as 
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It is easy to check that H has no eigenvalues on the imaginary 
axis. Thus according to Theorem 1,  the master and slave 
systems (4)(5) are globally synchronized. The simulation 
results are shown in Fig.3. Fig. 3 shows the corresponding state 
and error responses for the controlled master-slave DDE 
systems. From the simulation results, it shows that the 
trajectories of master-slave systems are synchronized and the 
synchronization error also converges to zero. 

V. CONCLUSION 
In this paper, the global synchronization for a class of 

chaotic time-delayed power systems has been investigated via 
observer-based approach. By employing the concepts of 
quadratic stability theory and generalized system model, a new 
sufficient criterion has been proposed to construct an observer. 
Numerical simulations have verified the effectiveness of the 
proposed method. 
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Fig. 1 The phase portrait of the chaotic DDE power system. 
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Fig. 2 The time history of the chaotic DDE power system 
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Fig. 3 State and error responses for the controlled master-slave DDE 

power system. 
 


