
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

735

Abstract—Software maintenance and mainly software
comprehension pose the largest costs in the software lifecycle. In
order to assess the cost of software comprehension, various
complexity measures have been proposed in the literature. This paper
proposes new cognitive-spatial complexity measures, which combine
the impact of spatial as well as architectural aspect of the software to
compute the software complexity. The spatial aspect of the software
complexity is taken into account using the lexical distances (in
number of lines of code) between different program elements and the
architectural aspect of the software complexity is taken into
consideration using the cognitive weights of control structures
present in control flow of the program. The proposed measures are
evaluated using standard axiomatic frameworks and then, the
proposed measures are compared with the corresponding existing
cognitive complexity measures as well as the spatial complexity
measures for object-oriented software. This study establishes that the
proposed measures are better indicators of the cognitive effort
required for software comprehension than the other existing
complexity measures for object-oriented software.

Keywords—cognitive complexity, software comprehension,
software metrics, spatial complexity, Object-oriented software

I. INTRODUCTION
OFTWARE comprehension may account for over one
third of the lifetime cost of a software system [1] and cost

of software comprehension is directly affected by complexity
of the software. The software complexity has been measured
by many researchers using various affecting attributes such as
control flow paths [2], the volume of operands and operators
[3], identifier density [4], cognitive complexity [5], [6], [7],
[8] and spatial complexity [9], [10], [11], [12]. Spatial
complexity measures account for the difficulty of reading the
source code of a program for understanding, in terms of the
lexical distance (measured in lines of code) that the maintainer
is required to traverse to follow control and/or data
dependencies as they build a mental model [9]. This type of
complexity was based on the spatial distance between the
definition and use of various program elements.
Understanding of the use of a program element also requires
knowledge of control flow in which the program element has
been used [13]. Thus, the type of control structure in which

Varun Gupta is with the Directorate/Information Technology, PSEB,

Patiala, India (phone: 91-175-2201433; e-mail: varun3dec@ yahoo.com).
 Jitender Kumar Chhabra is with Department of Computer Engineering,

National Institute of Technology, Kurukshetra, Kurukshetra-136119 India
(email: jitenderchhabra@rediffmail.com).

the program elements are being used, should also be
considered to measure effort required for program
comprehension. Many researchers have already stressed the
importance of considering the kind of control structure while
computing the cognitive complexity [6], [8], [13]. This
architectural aspect of the complexity of the software can
easily be reflected in cognitive complexity with help of using
weights of various types of Basic Control Structures (BCS).
Wang and Shao [6] identified the cognitive weights for
various control structures. The measures of cognitive
complexity proposed by various authors [6], [7], [8]
considered only these weights, which were reflection of
architectural viewpoint only and did not look into the spatial
aspect at all. On the other hand, the importance of spatial
distance towards complexity is well established and reported
in [14], [9], [10], [11]. Thus it is very pertinent to combine the
impact of architectural as well as spatial aspects of the
software to compute the cognitive complexity. We will term
this type of software complexity as cognitive-spatial
complexity of the software.

The remainder of the paper is structured as follows: Section
2 presents the definitions of the proposed cognitive-spatial
complexity metrics. Section 3 evaluates the proposed
measures using Weyuker’s properties [15] and Section 4
validates the proposed measures using the Briand et al.
framework [16]. Section 5 compares the proposed measures
with the existing cognitive and spatial complexity measures
for object-oriented software. Finally, Section 6 concludes the
work.

II. PROPOSED COGNITIVE-SPATIAL COMPLEXITY MEASURES
In this paper, we have proposed two categories of measures

of cognitive-spatial complexity of object-oriented software-
class cognitive-spatial complexity (CCSC), and object
cognitive-spatial complexity (OCSC). The class cognitive-
spatial complexity (CCSC) measures the cognitive-spatial
complexity of both members of the classes- methods and
attributes. To understand the behaviour of any class, one
needs to comprehend both the entities. The method’s code
helps in understanding the processing logic and the attributes
help in recognizing the properties of the class. The second
category of proposed cognitive-spatial complexity is based on
the definition of objects and usages of object-members. The
cognitive-spatial complexity of object-oriented software is the
combination of class cognitive-spatial complexity and object
cognitive-spatial complexity.

Object-Oriented Cognitive-Spatial Complexity
Measures

Varun Gupta and Jitender Kumar Chhabra

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

736

A. Class cognitive-spatial complexity
In object-oriented software, class encapsulates the state and

behavior of the concept it represents. It encapsulates state
through attributes (or member/ instance variables) and
behavior through methods (member functions). So the effort
needed to understand a class depends on the attributes and the
methods of the class. Thus, class cognitive-spatial complexity
consists of two parts – attribute cognitive-spatial complexity
and method cognitive-spatial complexity.

1) Attribute cognitive-spatial complexity
The spatial complexity of an attribute is measured using the

distance (in LOC) between its definition and first use within
the method and subsequently taking into account the distance
between two successive uses within the same method [11].
Since, attributes of a class represent data of the class.
Understanding the use of data also requires knowledge of
control flow in which the data has been used [13]. Thus, the
type of control structure in which the attributes are used,
should also be considered to measure program
comprehension. If a data member is used in a simple
assignment statement, understanding its purpose is much
easier than the use of same member in a control statement.
This aspect of the complexity of use of attributes can easily be
reflected with help of using weights of various types of Basic
Control Structures (BCS) as defined by Wang and Shao[6].
The cognitive-spatial complexity of an attribute at a particular
point of use is the product of the cognitive weight of the BCS,
in which the attribute is being used and the absolute difference
(in LOC) of the current use of the attribute from its previous
use/definition. Thus, Attribute Cognitive-Spatial Complexity
of an attribute i at line number k is defined as: -

kACSC(i,k)= W * Distance(i,k)
where Wk is the cognitive weight of the BCS, in which the

attribute, i has been used at line number k and
Distance(i,k) is the absolute difference (in LOC) of the
current use of the attribute from its previous use/definition. In
case of multiple files coming into picture for measurement of
this distance, the distance is defined as:
Distance = (distance of first use of the attribute from the top of
the current file) + (distance of definition of the attribute from
the top of the file containing definition)

Thus, Attribute Cognitive-Spatial Complexity of an
attribute i in a class is defined as the average of cognitive-
spatial complexities of all uses of the attribute i.e.

1
(,)

p

k
i

ACSC i k
ACSC

p
==
∑

 where p represents the count of

uses of the attribute i in the class.
Class Attribute Cognitive-Spatial Complexity of a class

(CACSC) is defined as the average of Attribute Cognitive-
Spatial Complexity (ACSCi) of all attributes of the class.

1

q

i
i

ACSC
CACSC =

q
=
∑

 where q is the total number of

attributes in the class.
2) Method cognitive-spatial complexity

The spatial complexity of a method is defined in terms of
distance (in LOC) from its definition to its direct call (without
using objects) in the other methods of the same class [12].
More the distance between definition of the method and
use/call of the method, more cognitive effort would be
required to correlate its usages with its definition. The type of
control structure in which the method is being called, would
also affect the cognitive effort required for comprehension.
Thus, the cognitive-spatial complexity of a method at a
particular point of use is the product of the cognitive weight of
the BCS, in which the method is being called and the absolute
difference (in LOC) of the current call of the method from its
previous call/definition. Thus, Method Cognitive-Spatial
Complexity of a method i at line number k is defined as: -

kMCSC(i,k)= W * Distance(i,k)
where Wk is the cognitive weight of the BCS, in which the

method, i has been called at line number k and
Distance(i,k) is the absolute difference (in LOC) of the
current call/use of the method from its definition. In case of
multiple files, the distance is defined as:-
Distance = (distance of call of the method from the top of the
current file) + (distance of definition of the method from the
top of the file containing definition)

Thus, Method Cognitive-Spatial Complexity of a method i
in a class is defined as the average of cognitive-spatial
complexities of all calls of the method i i.e.

m

k=1
i

MCSC(i,k)
MCSC

m
=
∑

 where m is the total number of

calls of the method i in the class.
Class Method Cognitive-Spatial Complexity of a class

(CMCSC) is defined as the average of Method Cognitive-
Spatial complexity (MCSCi) of all methods of the class.

1

n

i
i

MCSC
CMCSC =

n
=
∑

 where n is the count of method in the

class.
A class consists of attributes and methods; the class

cognitive-spatial complexity is the summation of the class
attribute cognitive-spatial complexity and the class method
cognitive-spatial complexity i.e.

CCSC = CACSC + CMCSC

B. Object cognitive-spatial complexity measures
Objects are instances of the classes. Classes do not execute

directly, but their instances are used in form of the objects in
object-oriented software. The proposed object cognitive-
spatial complexity estimates the cognitive effort needed to
correlate various definitions of the objects with their

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

737

corresponding classes, and various usages of object-members
to their respective definitions. Thus, object cognitive-spatial
complexity is of two types– object definition cognitive-spatial
complexity and object-member usage cognitive-spatial
complexity.
1) Object definition cognitive-spatial complexity

The object definition spatial complexity (ODSC) of an
object is defined as the distance of the definition of the object
from the corresponding class declaration [11]. The type of
statement in which the object is defined, would also affect the
cognitive effort required for comprehension. Thus, the object
definition cognitive-spatial complexity (ODCSC) of an object
is the product of the cognitive weight of the BCS, in which the
object is being defined and the absolute difference (in LOC)
of the definition of the object from its class declaration. Thus,
Object Definition Cognitive-Spatial Complexity (ODCSC) of
an object i at line number k is defined as: -

kODCSC(i)= W * Distance(i,k)
where Wk is the cognitive weight of the BCS, in which the

object, i has been defined at line number k and Distance(i, k)
is the absolute difference (in LOC) of the definition of the
object from the corresponding class declaration. In case of
multiple files, the distance is defined as: -
Distance = (distance of object definition from top of current
file) + (distance of declaration of the corresponding class
from the top of the file containing class)

2) Object member usage cognitive-spatial complexity

The Object member usage spatial complexity (OMUSC) of
a member through a particular object is defined as the average
of distances (in LOC) between definitions of the member in
the corresponding class and calls of that member through the
object [11]. The type of control structure in which the object-
member is called/used, would also affect the cognitive effort
required for comprehension. Thus, the cognitive-spatial
complexity of an object-member at a particular point of use is
the product of the cognitive weight of the BCS, in which the
object-member is being used and the absolute difference (in
LOC) of the current use of the object-member from its
previous use/definition. Thus, Object Member Usage
Cognitive-Spatial Complexity of an object member i at line
number k is defined as: -

kOMUCSC(i,k)= W * Distance(i,k)
where Wk is the cognitive weight of the BCS, in which the

object-member, i has been used at line number k and
Distance(i,k) is the absolute difference (in LOC) of the
current use of the object-member from its definition in the
corresponding class. In case of multiple files coming into
picture for measurement of this distance, the distance is
defined as: -
Distance = (distance of call from the top of the file containing
call) + (distance of definition of the member from the top of
the file containing definition)

Thus, Object Member Usage Cognitive-Spatial Complexity
of an object-member i is defined as the average of cognitive-

spatial complexities of all usages of the object-member i.e.

m

k=1
i

OMUCSC(i,k)
OMUCSC

m
=
∑

 where m is the total

number of uses of the object-member i.
Object Member Cognitive-Spatial Complexity of an object

is defined as the average of Object-Member Usage Cognitive-
Spatial Complexity (OMUCSCi) of all members of the object.

1

n

i
i

OMCSC
OMCSC =

n
=
∑

 where n is the count of object-

members being called through that object.
The Object Cognitive-Spatial Complexity of an object is
defined as summation of the Object Definition Cognitive-
Spatial Complexity (ODCSC) of the object and the Object-
Member Cognitive-Spatial complexity (OMCSC) i.e.
OCSC = ODCSC + OMCSC

III. EVALUATION OF THE PROPOSED MEASURES USING
WEYUKER’S PROPERTIES

The new proposed measures are acceptable only when a
validation process has proved their usefulness. In this section,
we evaluate the proposed object-oriented cognitive-spatial
measures using well-known nine Weyuker’s properties [15].
Weyuker proposed a formal list of nine properties for
evaluating software complexity metrics. Many well known
authors have used these properties for evaluating complexity
measures [17], [18], [19], [20], [21], [22]. We have applied
Weyuker’s nine properties to evaluate the object oriented
cognitive-spatial complexity measures proposed in Section 2.
While describing these properties, P denotes an object-
oriented program/class and |P| represents its cognitive-spatial
complexity, which will always be a non-negative number.

Property 1: This property states that (∃P), (∃Q) such that
(|P| ≠ |Q|)

This property states that a complexity measure must not be
“too coarse” such that it rates all programs as equally
complex. Two object-oriented programs P and Q can always
differ in values of class cognitive-spatial complexity measures
or values of object cognitive-spatial complexity measures,
since the measures are defined in terms of distances (in LOC),
which will have most of the times different values for two
different programs. Thus, object-oriented cognitive-spatial
measures satisfy Property 1.

Property 2: Let c be a non-negative number, and then there
is only finite number of programs of complexity c.

This property is a strengthening of Property 1, which
requires that the complexity measure must not be too
“coarse”. Since, the class cognitive-spatial complexity is the
summation of the attribute cognitive-spatial complexity and
the method cognitive-spatial complexity of the class i.e.
CCSC = CACSC + CMCSC

Further, attribute cognitive-spatial complexity depends on
number of attributes and distances in LOC between the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

738

different uses of the attributes and class method cognitive-
spatial complexity depends on number of methods and
distances between calls and definitions of the methods. Also,
Object Cognitive-Spatial Complexity of an object is defined
as summation of the Object Definition Cognitive-Spatial
Complexity (ODCSC) of the object and the Object-Member
Cognitive-Spatial complexity (OMCSC) i.e.
 OCSC = ODCSC + OMCSC

Also, the object definition cognitive-spatial complexity
(ODCSC) of an object is the product of the cognitive weight
of the BCS, in which the object is being defined and the
absolute difference (in LOC) of the definition of the object
from its class declaration i.e.

kODCSC(i)= W * Distance(i,k)
and similarly, the object member cognitive-spatial

complexity (OMCSC) is defined in terms of the cognitive
weights of the BCS (in which the object-member is being
used) and the absolute distance (in LOC) of the uses of the
object-member from its previous uses/definition. There can be
always a finite number of programs having same value of
these factors and thus, property 2 is well satisfied by the
object-oriented cognitive-spatial complexity measures.

Property 3: There are distinct programs P and Q such that
(|P| = |Q|)

This property states that a complexity measure must not be
“too fine” i.e. any specific value of the metric should not only
be given by a single program. This property requires that
CCSCP = CCSCQ where CCSCP and CCSCQ are the class
cognitive-spatial complexities for two different classes P and
Q respectively and OCSCP = OCSCQ where OCSCP and
OCSCQ are the object cognitive-spatial complexities for
objects P and Q respectively. This is quite possible that two
different and totally unrelated object-oriented programs P and
Q may come out with the same values of object-oriented
cognitive-spatial complexity measures after performing the
various calculations involved in their measurement process.
Thus object-oriented cognitive-spatial complexity measures
satisfy property 3.

Property 4: (∃P) (∃Q) such that (P ≡ Q & |P| ≠ |Q|)
This property states that there is no one-to-one

correspondence between functionality and complexity that
means two programs having same functionality can have
different complexity. Since, object-oriented cognitive-spatial
complexity measures depend on the implementation details of
programs. Two object-oriented programs P and Q having
same functionality but different implementations will have
different values of cognitive- spatial complexity i.e.

CCSCP ≠ CCSCQ and OCSCP ≠ OCSCQ may hold true for
any two object-oriented programs P and Q where P ≡ Q.

Thus, Property 4 holds for the object-oriented cognitive-
spatial complexity measures.

Property 5: (∀P) (∀Q) (|P| ≤ |P;Q| and |Q|| ≤ |P;Q|)
Property 5 states the concept of monotonicity with respect

to composition. This property requires that complexity of a
concatenated program obtained from the concatenation of two

programs can never be less than the complexity of either of
the programs. Let CCSCP and CCSCQ be the class cognitive-
spatial complexity of object-oriented programs P and Q
respectively and CCSCPQ be the class cognitive-spatial
complexity of the concatenated program of P and Q. Then, as
per the definition of the measures, the resultant class
cognitive-spatial complexity of the combined program would
approximately be the sum of class cognitive-spatial
complexities of individual programs, if they were independent
and if the code of program Q was just appended after the code
of program P, without disturbing the individual distances of
definition and usage of members of class i.e.
CCSCPQ ≈ CCSCP + CCSCQ

Similarly, if OCSCP and OCSCQ are the object cognitive-
spatial complexities of independent programs P and Q
respectively and OCSCPQ is the object cognitive-spatial
complexity of the concatenated program of P and Q, then,
according to the definition of the measures, the resultant
object cognitive-spatial complexity of the combined program
would approximately be the sum of object cognitive-spatial
complexities of individual programs, if they were independent
i.e. OCSCPQ ≈ OCSCP + OCSCQ

If programs P and Q were not independent, then the
common classes and objects may appear once in the
concatenated program. In that case the class/object cognitive-
spatial complexity of common portion will contribute once in
the measures and independent portions of both P and Q will
continue to have their original contribution towards CCSC as
well as OCSC. In that situation,
CCSCPQ = CCSCP + CCSCQ - CCSCcommon-classes

and OCSCPQ = OCSCP + OCSCQ - OCSCcommon-objects

It is obvious that CCSCcommon-class can never be greater than
either CCSCP or CCSCQ. So in both cases whether P and Q
are independent or not, it is evident that CCSCP ≤ CCSCPQ
and CCSCQ ≤ CCSCPQ

Similarly, OCSCP ≤ OCSCPQ and OCSCQ ≤ OCSCPQ
Thus, the object-oriented cognitive-spatial complexity

metrics satisfy the Property 5.
Property 6: a: (∃P) (∃Q) (∃R) (|P| = |Q| & | P; R| ≠ | Q; R|)
 b: (∃P) (∃Q) (∃R) (|P| = |Q| & | R; P| ≠ | R; Q|)
As already stated in Property 3, object-oriented programs

having different implementations may have the same values
for the object-oriented cognitive-spatial complexity measures.
When these two different programs having equal cognitive-
spatial complexity are combined with the same program, this
may result into different cognitive-spatial complexities for the
two different combinations. This means, (∃P) (∃Q) (∃R)
(CCSCP = CCSCQ & CCSCPR ≠ CCSCQR) and (∃P) (∃Q) (∃R)
(CCSCP = CCSCQ & CCSCRP ≠ CCSCRQ) where CCSCP and
CCSCQ are the class cognitive-spatial complexities for two
different and unrelated object-oriented programs P and Q
respectively and CCSCPR and CCSCQR denote class spatial
complexities of programs obtained after concatenating
program P with R, and Q with R respectively. Similarly,
CCSCRP and CCSCRQ represent class cognitive-spatial

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

739

complexities of programs obtained after concatenating
program R with P, and R with Q respectively. Also, (∃P)
(∃Q) (∃R) (OCSCP = OCSCQ & OCSCPR ≠ OCSCQR) and (∃P)
(∃Q) (∃R) (OCSCP = OCSCQ & OCSCRP ≠ OCSCRQ) where
OCSCP, OCSCQ, OCSCPR, OCSCQR, OCSCRP and OCSCRQ
represent the object cognitive-spatial complexities of
programs P, Q, P concatenated with R, Q concatenated with
R, R concatenated with P, and R concatenated with Q
respectively. Thus, property 6a and 6b are well satisfied by the
object-oriented cognitive-spatial complexity measures.

Property 7: This property says that there are two programs
P and Q such that Q is formed by permuting the order of the
statements of P and |P| ≠ |Q| that means a complexity measure
should be sensitive to the permutation of statements.

The values of object-oriented cognitive-spatial complexity
measures depend on the distances (in LOC) between uses of
different program elements such as class-members and object-
members. Thus, cognitive-spatial complexity of an object-
oriented program depends on the order of statements of the
program. When program Q is formed by permuting the order
of the statements of the program P, then values of object-
oriented cognitive-spatial complexity measures for the
program Q will differ from the values of the measures
obtained from the program P due to the change in LOC
between different program elements. Thus, for programs P
and Q, CCSCP ≠ CCSCQ and OCSCP ≠ OCSCQ where program
Q is formed by permuting the order of the statements of P.
Hence, the object-oriented cognitive-spatial complexity
measures satisfy property 7.

Property 8: If P is a renaming of Q, then |P| = |Q|
Since, names of a program and its elements do not

contribute to the values of the object-oriented cognitive-
spatial complexity measures, thus renaming of an object-
oriented program does not have any effect on its cognitive-
spatial complexity i.e. CCSCP =CCSCQ and OCSCP = OCSCQ
where P is a renaming of Q. Thus, property 8 is well satisfied
by the object-oriented cognitive-spatial complexity measures.

Property 9: (∃P) (∃Q) such that (|P| + |Q| < |P; Q|)
According to property 9, the complexity of a new program

obtained from the combinations of two programs, can be
greater than the sum of complexities of two individual
programs. This can be true for both the class cognitive-spatial
complexity as well as the object cognitive-spatial complexity
measures as classes and objects are brought into a single
program from two different programs, this may increase
distances (in LOC) between different program elements. For
instance, the method cognitive-spatial complexity of a method
of class depends on the distances (in LOC) between the calls
and the definition of the method and this distance may
increase in the combined program due to the presence of other
program elements. Thus, same method when used in the
combined program may contribute more to the class
cognitive-spatial complexity than its use in the individual
program. Similarly, it holds for attribute cognitive-spatial
complexity also. Further, the object definition cognitive-

spatial complexity (ODSC) of an object depends on the
distance of the definition of the object from the corresponding
class declaration and this distance may increase in the
combined program due to introduction of new classes and
objects in the new program. The same logic is also applicable
in case of object-member cognitive-spatial complexity
measures. Thus, the same object when used in the combined
program may contribute more to the object cognitive-spatial
complexity than its use in the individual program. Hence, the
cognitive-spatial complexity of a combined program might be
more than the sum of the cognitive-spatial complexities of
individual programs i.e. (∃P) (∃Q) such that (CCSCP + CCSCQ
< CCSCPQ) where CCSCP, CCSCQ and CCSCPQ denote the
class cognitive-spatial complexity of programs P, Q and P; Q
respectively. Similarly, (∃P) (∃Q) such that (OCSCP + OCSCQ
< OCSCPQ) where OCSCP, OCSCQ and OCSCPQ represent
object cognitive-spatial complexity of programs P, Q and P; Q
respectively. Thus, object-oriented cognitive-spatial
complexity measures satisfy property 9.

IV. APPLICATION OF BRIAND ET AL. FRAMEWORK
In this section, we validate object-oriented cognitive-spatial

complexity measures by using the evaluation framework given
by Briand et al [16] to provide more credibility to the object-
oriented cognitive-spatial complexity measures. In the
framework, Briand et al. have given five properties, which a
complexity measure must satisfy to be a useful complexity
measure. Before the application of the framework, the basic
definitions required for the evaluation process are given.

System: An object-oriented system S is represented as a <E,
R>, where E represents the set of elements of S, and R is a
binary relation on E (R ⊆ E × E) representing the relationships
between elements of S. For the purpose of evaluation of
object-oriented cognitive-spatial complexity measures, E is
defined as the set of all classes, objects and their members in
the program and R as the set of definitions of classes and
objects and usages of classes and objects through their
members.

Module: For a given object-oriented system S = <E, R>, a
system m = <Em, Rm> is a module of S if and only if Em ⊆
E, R ⊆ Em × Em and Rm ⊆ R. A module m may be a class or
a subprogram.

Complexity: The cognitive-spatial complexity of an object
oriented system S is a function Complexity(S) that is
described by Property 1 to Property 5.

Property 1 (Nonnegative): The complexity of a system S =
<E, R> is nonnegative if Complexity (S) ≥0.

Proof: Object-oriented cognitive-spatial complexity
measures are defined in terms of weights of BCS and
distances (in LOC), which are always non-negative numbers.
Thus, cognitive-spatial complexity of an object-oriented
system will always be non-negative. Hence, the proposed
measures satisfy Property 1.

Property 2 (Null Value): The complexity of a system S =
<E, R> is null if R is empty i.e. R = Ø ⇒ Complexity (S) = 0.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

740

Proof: For object-oriented cognitive-spatial complexity
measures, R has been defined above as the set of definitions of
all classes, objects, and their members and usages of classes
and objects through their members. If there were no
definitions of classes and objects or usages of class-members
and object-members in the program, values of the class
cognitive-spatial complexity (CCSC) measures as well as
object cognitive-spatial complexity (OCSC) measures will be
zero. Thus, property 2 is well satisfied by the proposed
measures.

Property 3 (Symmetry): The complexity of a system S = <E,
R> does not depend on the convention chosen to represent the
relationships between its elements i.e. (S = <E, R> and S-1 =
<E, R-1>) ⇒ Complexity(S) = Complexity(S-1).

Proof: According to this property, a complexity measure
should not be sensitive to representation conventions used for
relationships. A relationship can be represented by two
equivalent representation conventions “active” (R) or
“passive” (R-l) form [16]. As defined in the beginning of this
section, relationships for the object-oriented cognitive-spatial
complexity measures represent the set of definitions of classes
and objects and usages of classes and objects through their
members. As per the definitions of the proposed measures,
count of these relationships is taken into consideration during
measurement, not the conventions used to represent these
relationships. Thus, object-oriented cognitive-spatial
complexity of a program does not depend on the convention
chosen to represent the relationships between its elements.
Hence, the proposed measures satisfy property 3 also.

Property 4 (Module Monotonicity): The complexity of a
system S = <E, R> is no less than the sum of the complexities
of any two of its modules with no relationships in common i.e.
(S = <E, R> and m1 = <Em1, Rm1> and m2 = <Em2, Rm2> and
m1∪ m2 ⊆ S and Rm1 ∩ Rm2 = Ø) ⇒ Complexity(S) ≥
Complexity (m1) + Complexity (m2).

Proof: This property is analogous to Weyuker’s property 9
and as already explained above, the object-oriented cognitive-
spatial complexity measures satisfy this property of module
monotonicity very well. Thus, property 4 also holds for the
proposed measures.

Property 5 (Disjoint Module Additivity): The complexity of
a system S = <E, R> composed of two disjoint modules m1,
m2, is equal to the sum of the complexities of the two modules
i.e. (S = <E, R> and S = m1 ∪ m2, and m1 ∩ m2= Ø) ⇒
Complexity(S) = Complexity (m1) +Complexity (m2).

Proof: If two independent subprograms/classes are
combined together in a single program, then there will be no
usage of class/object or their members of one subprogram
from the other subprogram as the two subprograms are totally
independent. Thus, their individual cognitive-spatial
complexities will not get affected due to the combination of
the two. The cognitive-spatial complexity value of the
combined program will definitely be the summation of
cognitive-spatial complexity values of the subprograms. Thus,
the proposed measures satisfy property 5 very well.

V. COMPARISON OF THE PROPOSED MEASURES WITH THE
COGNITIVE AND SPATIAL MEASURES

The Cognitive Functional Size (CFS) [5] metric proposed
by Wang et al. mainly measure algorithmic complexity of a
program independent of the language implementation. The
CFS metric is not able to indicate comprehension level of a
program completely since the cognitive effort required to
comprehend a program also depends on the programming
language in which the particular program has been written as
different languages have different levels and the language
level has been reported to affect cognitive efforts of
understanding the programs [3], [23], [24]. Thus, the
cognitive measures should also take into account the
implementation details of a program while measuring the
effort required for comprehension of the program. Similarly,
the spatial complexity measures [9], [10], [11], [12] are based
on the spatial distance between the definition and use of
various program elements. However, many researchers have
already stressed the importance of considering the program
control flow [13] and the kind of control structure while
computing the cognitive complexity [6], [7], [8]. The
proposed cognitive-spatial complexity measures take into
account both the control structures as well as the spatial
distances between program entities. Thus, the proposed
measures are more suitable than both of the earlier approaches
of cognitive complexity and spatial complexity measures. In
order to compare the proposed measures with the existing
cognitive and spatial measures, let us conduct a comparative
study using a program first written in Java and then, C++
language.

1. Class Stack
2. {
3. int stck[];
4. int tos;
5. Stack(int size)
6. {
7. stck=new int [size];
8. tos=-1;
9. }
10. void push(int item)
11. {
12. if (tos = = stck.length-1)
13. System.out.println(“Stack

full”);
14. else
15. stck[++tos]=item;
16. } //push method
17. int pop()
18. {
19. if(isStackEmpty())
20. {
21. System.out.println(“Stack

Underflow”);

22. return 0;
23. }
24. else
25. return stck[tos--];
26. } //pop method
27. int isStackEmpty()
28. {
29. return tos = = -1;
30. }// isStackEmpty() method
31. int topOfStack()
32. {
33. return stck[tos-1];
34. }// topOfStack() method
35. public static void

main(String str[])
36. {
37. Stack s1=new Stack(5);
38. for(int i=0; i<5; i++)
39. s1.push(i);
40. for(int i=0; i<5; i++)
41. System.out.println(s1.pop());
42. } //main method
43. }// Class Stack

Fig.1. Program written using Java language

Figure 1 shows the Java implementation of the program and

below Figure 2 shows its implementation in C++.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

741

1 #include<iostream.h>
2 Class Stack
3 {
4 int *stck;
5 int tos;
6 public:
7 Stack(int size)
8 {
9 stck=new int [size];
10 tos=-1;
11 }
12 void push(int item)
13 {
14 if (tos = = stck.length-1)
15 cout<<“Stack is full”;
16 else
17 stck[++tos]=item;
18 } //push function
19 int pop()
20 {
21 if(isStackEmpty())
22 {
23 cout<<“Stack Underflow”;

24 return 0;
25 }
26 else
27 return stck[tos--];
28 } //pop function
29 int isStackEmpty()
30 {
31 return tos = = -1;
32 }//isStackEmpty()

function
33 int topOfStack()
34 {
35 return stck[tos-1];
36 }// topOfStack() function
37 }; // Class Stack
38 void main()
39 {
40 Stack s1(5);
41 for(int i=0; i<5; i++)
42 s1.push(i);
43 for(int i=0; i<5; i++)
44 cout<<s1.pop();
45 } //main function

Fig. 2. Program written using C++ language

We compare the proposed measures with cognitive

complexity measure (CFS) [5] and spatial complexity
measures (CSC and OSC) [11] for programs shown in Fig. 1
and Fig. 2 and results of the comparison are shown in
following Table 1.

TABLE I COMPUTATION RESULTS FOR THE MEASURES
OO Cognitive-

Spatial
Complexity
Measures

Cognitive
Complexity
Measures

OO Spatial
Complexity
Measures

CCSC OCSC CFS CSC OSC
Java
Progra
m
(Fig.1)

12.46 115.50 13 6.58 62.50

C++
Progra
m
(Fig.2)

12.81 120.50 13 6.60 65.50

Figure 3 depicts the graphical representations of the

computed values of the measures for Java and C++ programs.

Fig. 3. Values of different measures as given in Table 1

Table 1 and Figure 3 clearly show that value of the CFS
metric is same for both the programs having the same
algorithm but different language implementation. This proves
that the cognitive complexity measure, CFS computes only
algorithmic complexity and is not a suitable measure for the
estimation of cognitive effort required for the comprehension
of a program. Since, the programs written using core Java and
C++ languages differ to some extent in their implementation.
The object-oriented cognitive-spatial complexity measures
also differ slightly for both the implementations as shown in
Table 1 whereas Object Spatial Complexity (OSC) for both
the programs is the same as it does not consider control
statements present in the programs. Thus, cognitive-spatial
measures are better indicators of cognitive effort required for
program comprehension as the proposed measures take into
account the architectural aspects of the programs along with
spatial orientations.

VI. CONCLUSIONS
In this paper, we have proposed new cognitive-spatial

complexity measures for object-oriented software. The
proposed measures take spatial as well as architectural
complexity of the software into account for the estimation of
the cognitive effort required for software comprehension
process. The spatial complexity has been taken into
consideration using the lexical distances (in LOC) between
different program elements and architectural complexity of the
software has been taken into account using the cognitive
weights of various control structures present in the control
flow of the program. Moreover, the proposed measures have
been validated using standard axiomatic frameworks given by
Weyuker [15] and Briand et al. [16] to prove their usefulness.
Further, the proposed measures have been compared with
existing cognitive and spatial complexity measures for object-
oriented software. This comparative study has shown that the
proposed measures are better indicators of the cognitive effort
required for program comprehension than the corresponding
existing cognitive and spatial complexity measures. In future
work, we plan to conduct a more detailed empirical study over
software of various sizes to judge their suitability for
estimating the maintenance efforts of the software.

REFERENCES
[1] M. .P. O’Brien and J. Buckley, “Inference-Based and Expectation based

Processing in Program Comprehension”, in Proc. Ninth IEEE Int’l
Workshop Program Comprehension, 2001, pp. 71-78.

[2] T. J. McCabe, “A complexity measure”, IEEE Transactions on Software
Engineering, vol. SE-2 (4), pp. 308-320, 1976.

[3] M.H. Halstead, Elements of Software Science, Elsevier North-Holland,
New York, 1997.

[4] W. Harrison, “An entropy-based measure of software complexity”, IEEE
Transactions on Software Engineering, vol. 18(11), 1992, pp. 1025-
1029.

[5] Y. Wang and J. Shao, “Measurement of the cognitive functional
complexity of software”, in Proc. IEEE International Conference on
Cognitive Informatics, ICCI’03, 2003, pp. 67-71.

[6] Y. Wang, and J. Shao, “A new measure of software complexity based on
cognitive weights”, Canadian Journal of Electrical & Computer
Engineering, vol. 28(2), 2003, pp. 69-74.

0

50

100

150

Java C++

CCSC OCSC CSC OSC CFS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

742

[7] S. Misra, “Modified cognitive complexity measure”, 21st ISCIS’06,
LNCS, vol. 4263, pp. 1050-59, 2006.

[8] S. Misra, “A complexity measure based on cognitive weights”,
International Journal of Theoretical and Applied Computer Science, vol.
l (1), 2006, pp. 1-10.

[9] C.R. Douce, P.J. Layzell, and J. Buckley, “Spatial measures of software
complexity”, in Proc. 11th Meeting of Psychology of Programming
Interest Group, 1999.

[10] J. K. Chhabra, K. K. Aggarwal, and Y. Singh, “Code and data spatial
complexity: two important software understandability measures”,
Information and Software Technology, vol. 45(8), 2003, pp. 539-546.

[11] J. K. Chhabra, K. K. Aggarwal, and Y. Singh, “Measurement of object
oriented software spatial complexity”, Information and Software
Technology, vol. 46(10), 2004, pp. 689-699.

[12] J. K. Chhabra and V. Gupta, “Towards spatial complexity measures for
comprehension of Java programs”, in Proc. IEEE International
Conference on Advanced Computing and Communications, 2006, pp.
430-433.

[13] N. E. Gold and P. J. Layzell, “Spatial complexity metrics: an
investigation of utility”, IEEE Transactions on Software Engineering,
vol. 3(1), 2005, pp. 203-212.

[14] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering
Metrics and Models, Cummings Pub. Coi. Inc., USA, 1986.

[15] E. J. Weyuker, “Evaluating software complexity measure”, IEEE
Transaction on Software Engineering, vol. 14(9), 1988, pp. 1357-1365.

[16] L. C Briand, S. Morasca, and V. R. Basili, “Property based software
engineering measurement”, IEEE Transactions on Software
Engineering, vol. 22(1), 1996, pp. 68-86.

[17] S. Chidamber and C. Kemerer, “A metrics suite for object-oriented
design”, IEEE Transactions on Software Engineering, vol. 20(6), 1994,
pp. 476-493.

[18] J. K. Chhabra, K. K. Aggarwal, and Y. Singh, “A unified measure of
complexity of object-oriented software”, Journal of the Computer
Society of India, vol. 34(3), 2004, pp. 2-13.

[19] S. Misra and A. K. Misra, “Evaluating cognitive complexity measures
with Weyuker properties”, in Proc. third IEEE International Conference
on Cognitive Informatics (ICCI2004), 2004, pp.103-108.

[20] S. Misra and A. K. Misra, “Evaluation and comparison of cognitive
complexity measure”, ACM SIGSOFT Software Engineering Notes , vol.
32(2), 2007, pp. 1-5.

[21] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “The effectiveness of
traditional metrics for object-oriented systems”, in Proc. Twenty-Fifth
Hawaii International Conference on System Sciences, 1992.

[22] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “A software
complexity model of object-oriented systems”, Decision Support
Systems: the International Journal, vol. 13, 1995, pp. 241-262.

[23] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, “Software Science
Revisited: A Critical Analysis of the Theory and its Empirical Support”,
IEEE Transactions on Software Engineering, vol. SE-9 (2), 1983, pp.
155-165.

[24] Y. Singh, “Metrics and Design Techniques for Reliable Software”, PhD
Thesis, Kurukshetra University, Kurukshetra, 1995.

Varun Gupta
Varun Gupta is pursuing his Ph.D. degree in the area of Software Engineering
from Department of Computer Engineering, National Institute of Technology
(Deemed University), Kurukshetra-136119 (INDIA). He obtained his
Bachelor of Technology degree in computer science & engineering from Guru
Nanak Dev University, Amritsar in 1999 and Master of Engineering degree in
software engineering from Thapar Institute of Engineering and Technology,
Patiala (Deemed University) in 2003. He worked as a lecturer in Department
of Computer Science & Engineering, RIMT Institute of Engineering and
Technology for 4 years. Presently, he is working as Assistant Director in
Directorate of Information Technology, PSEB, Patiala. His areas of interest
include Software Engineering, Object Oriented Design & Development, and
Data Mining.

Jitender Kumar Chhabra
Jitender Kumar Chhabra, PhD, is working as Assistant Professor in
Department of Computer Engineering, National Institute of Technology
(Deemed University), Kurukshetra-136119 (INDIA). He received his B.Tech.
in Computer Engineering as 2nd rank holder and M.Tech in Computer
Engineering as Gold Medalist, both from Regional Engineering College, (now

N. I. T.) Kurukshetra. He completed his PhD degree on Software Metrics from
GGS Indraprastha University, Delhi (INDIA). He is teaching in N.I.T.
Kurukshetra since last 14 years. He has also worked in collaboration with
companies like Hewellet-Packard & Tata Consultacy Services. He has
published more than 50 research papers in various international and national
journals and conferences including IEEE, Elsevier, ACM. He is reviewer of
many reputed research journals like IEEE and Elsevier. He is adaptation
author of Gottfried's Schaum-Series book on Programming with C from Tata
McGraw Hill. His areas of interest include software engineering, data base
system, data structure, programming techniques.

