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Abstract—Software maintenance and mainly software 
comprehension pose the largest costs in the software lifecycle. In 
order to assess the cost of software comprehension, various 
complexity measures have been proposed in the literature. This paper 
proposes new cognitive-spatial complexity measures, which combine 
the impact of spatial as well as architectural aspect of the software to 
compute the software complexity. The spatial aspect of the software 
complexity is taken into account using the lexical distances (in 
number of lines of code) between different program elements and the 
architectural aspect of the software complexity is taken into 
consideration using the cognitive weights of control structures 
present in control flow of the program. The proposed measures are 
evaluated using standard axiomatic frameworks and then, the 
proposed measures are compared with the corresponding existing 
cognitive complexity measures as well as the spatial complexity 
measures for object-oriented software. This study establishes that the 
proposed measures are better indicators of the cognitive effort 
required for software comprehension than the other existing 
complexity measures for object-oriented software. 

Keywords—cognitive complexity, software comprehension, 
software metrics, spatial complexity, Object-oriented software 

I. INTRODUCTION 
OFTWARE comprehension may account for over one 
third of the lifetime cost of a software system [1] and cost 

of software comprehension is directly affected by complexity 
of the software. The software complexity has been measured 
by many researchers using various affecting attributes such as 
control flow paths [2], the volume of operands and operators 
[3], identifier density [4], cognitive complexity [5], [6], [7], 
[8] and spatial complexity [9], [10], [11], [12]. Spatial 
complexity measures account for the difficulty of reading the 
source code of a program for understanding, in terms of the 
lexical distance (measured in lines of code) that the maintainer 
is required to traverse to follow control and/or data 
dependencies as they build a mental model [9]. This type of 
complexity was based on the spatial distance between the 
definition and use of various program elements. 
Understanding of the use of a program element also requires 
knowledge of control flow in which the program element has 
been used [13]. Thus, the type of control structure in which 
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the program elements are being used, should also be 
considered to measure effort required for program 
comprehension. Many researchers have already stressed the 
importance of considering the kind of control structure while 
computing the cognitive complexity [6], [8], [13]. This 
architectural aspect of the complexity of the software can 
easily be reflected in cognitive complexity with help of using 
weights of various types of Basic Control Structures (BCS). 
Wang and Shao [6] identified the cognitive weights for 
various control structures. The measures of cognitive 
complexity proposed by various authors [6], [7], [8] 
considered only these weights, which were reflection of 
architectural viewpoint only and did not look into the spatial 
aspect at all. On the other hand, the importance of spatial 
distance towards complexity is well established and reported 
in [14], [9], [10], [11]. Thus it is very pertinent to combine the 
impact of architectural as well as spatial aspects of the 
software to compute the cognitive complexity.  We will term 
this type of software complexity as cognitive-spatial 
complexity of the software.  

The remainder of the paper is structured as follows: Section 
2 presents the definitions of the proposed cognitive-spatial 
complexity metrics. Section 3 evaluates the proposed 
measures using Weyuker’s properties [15] and Section 4 
validates the proposed measures using the Briand et al. 
framework [16]. Section 5 compares the proposed measures 
with the existing cognitive and spatial complexity measures 
for object-oriented software. Finally, Section 6 concludes the 
work. 

II. PROPOSED COGNITIVE-SPATIAL COMPLEXITY MEASURES 
In this paper, we have proposed two categories of measures 

of cognitive-spatial complexity of object-oriented software- 
class cognitive-spatial complexity (CCSC), and object 
cognitive-spatial complexity (OCSC). The class cognitive-
spatial complexity (CCSC) measures the cognitive-spatial 
complexity of both members of the classes- methods and 
attributes. To understand the behaviour of any class, one 
needs to comprehend both the entities. The method’s code 
helps in understanding the processing logic and the attributes 
help in recognizing the properties of the class. The second 
category of proposed cognitive-spatial complexity is based on 
the definition of objects and usages of object-members. The 
cognitive-spatial complexity of object-oriented software is the 
combination of class cognitive-spatial complexity and object 
cognitive-spatial complexity.  
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A. Class cognitive-spatial complexity 
In object-oriented software, class encapsulates the state and 

behavior of the concept it represents. It encapsulates state 
through attributes (or member/ instance variables) and 
behavior through methods (member functions). So the effort 
needed to understand a class depends on the attributes and the 
methods of the class. Thus, class cognitive-spatial complexity 
consists of two parts – attribute cognitive-spatial complexity 
and method cognitive-spatial complexity.  

1) Attribute cognitive-spatial complexity 
The spatial complexity of an attribute is measured using the 

distance (in LOC) between its definition and first use within 
the method and subsequently taking into account the distance 
between two successive uses within the same method [11]. 
Since, attributes of a class represent data of the class. 
Understanding the use of data also requires knowledge of 
control flow in which the data has been used [13]. Thus, the 
type of control structure in which the attributes are used, 
should also be considered to measure program 
comprehension. If a data member is used in a simple 
assignment statement, understanding its purpose is much 
easier than the use of same member in a control statement. 
This aspect of the complexity of use of attributes can easily be 
reflected with help of using weights of various types of Basic 
Control Structures (BCS) as defined by Wang and Shao[6]. 
The cognitive-spatial complexity of an attribute at a particular 
point of use is the product of the cognitive weight of the BCS, 
in which the attribute is being used and the absolute difference 
(in LOC) of the current use of the attribute from its previous 
use/definition. Thus, Attribute Cognitive-Spatial Complexity 
of an attribute i at line number k is defined as: -  

kACSC(i,k)= W  * Distance(i,k)  
where Wk is the cognitive weight of the BCS, in which the 

attribute, i has been used at line number k and 
Distance(i,k)  is the absolute difference (in LOC) of the 
current use of the attribute from its previous use/definition. In 
case of multiple files coming into picture for measurement of 
this distance, the distance is defined as: 
Distance = (distance of first use of the attribute from the top of 
the current file) + (distance of definition of the attribute from 
the top of the file containing definition) 

Thus, Attribute Cognitive-Spatial Complexity of an 
attribute i in a class is defined as the average of cognitive-
spatial complexities of all uses of the attribute i.e. 

1
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  where p represents the count of 

uses of the attribute i in the class.  
Class Attribute Cognitive-Spatial Complexity of a class 

(CACSC) is defined as the average of Attribute Cognitive-
Spatial Complexity (ACSCi ) of all attributes of the class. 
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 where q is the total number of 

attributes in the class. 
2) Method cognitive-spatial complexity 

The spatial complexity of a method is defined in terms of 
distance (in LOC) from its definition to its direct call (without 
using objects) in the other methods of the same class [12]. 
More the distance between definition of the method and 
use/call of the method, more cognitive effort would be 
required to correlate its usages with its definition. The type of 
control structure in which the method is being called, would 
also affect the cognitive effort required for comprehension. 
Thus, the cognitive-spatial complexity of a method at a 
particular point of use is the product of the cognitive weight of 
the BCS, in which the method is being called and the absolute 
difference (in LOC) of the current call of the method from its 
previous call/definition. Thus, Method Cognitive-Spatial 
Complexity of a method i at line number k is defined as: -  

kMCSC(i,k)= W  * Distance(i,k)  
where Wk is the cognitive weight of the BCS, in which the 

method, i has been called at line number k and 
Distance(i,k)  is the absolute difference (in LOC) of the 
current call/use of the method from its definition. In case of 
multiple files, the distance is defined as:- 
Distance = (distance of call of the method from the top of the 
current file) + (distance of definition of the method from the 
top of the file containing definition) 

Thus, Method Cognitive-Spatial Complexity of a method i 
in a class is defined as the average of cognitive-spatial 
complexities of all calls of the method i i.e. 
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 where m is the total number of 

calls of the method i in the class. 
Class Method Cognitive-Spatial Complexity of a class 

(CMCSC) is defined as the average of Method Cognitive-
Spatial complexity (MCSCi ) of all methods of the class. 
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    where n is the count of method in the 

class. 
A class consists of attributes and methods; the class 

cognitive-spatial complexity is the summation of the class 
attribute cognitive-spatial complexity and the class method 
cognitive-spatial complexity i.e.  

CCSC = CACSC + CMCSC 

B. Object cognitive-spatial complexity measures 
Objects are instances of the classes. Classes do not execute 

directly, but their instances are used in form of the objects in 
object-oriented software. The proposed object cognitive-
spatial complexity estimates the cognitive effort needed to 
correlate various definitions of the objects with their 
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corresponding classes, and various usages of object-members 
to their respective definitions. Thus, object cognitive-spatial 
complexity is of two types– object definition cognitive-spatial 
complexity and object-member usage cognitive-spatial 
complexity. 
1) Object definition cognitive-spatial complexity 

The object definition spatial complexity (ODSC) of an 
object is defined as the distance of the definition of the object 
from the corresponding class declaration [11]. The type of 
statement in which the object is defined, would also affect the 
cognitive effort required for comprehension. Thus, the object 
definition cognitive-spatial complexity (ODCSC) of an object 
is the product of the cognitive weight of the BCS, in which the 
object is being defined and the absolute difference (in LOC) 
of the definition of the object from its class declaration. Thus, 
Object Definition Cognitive-Spatial Complexity (ODCSC) of 
an object i at line number k is defined as: -  

kODCSC(i)= W  * Distance(i,k)  
where Wk is the cognitive weight of the BCS, in which the 

object, i has been defined at line number k and Distance(i, k) 
is the absolute difference (in LOC) of the definition of the 
object from the corresponding class declaration. In case of 
multiple files, the distance is defined as: - 
Distance = (distance of object definition from top of current 
file) + (distance of declaration of the corresponding class 
from the top of the file containing class) 
 
2) Object member usage cognitive-spatial complexity 

The Object member usage spatial complexity (OMUSC) of 
a member through a particular object is defined as the average 
of distances (in LOC) between definitions of the member in 
the corresponding class and calls of that member through the 
object [11]. The type of control structure in which the object-
member is called/used, would also affect the cognitive effort 
required for comprehension. Thus, the cognitive-spatial 
complexity of an object-member at a particular point of use is 
the product of the cognitive weight of the BCS, in which the 
object-member is being used and the absolute difference (in 
LOC) of the current use of the object-member from its 
previous use/definition. Thus, Object Member Usage 
Cognitive-Spatial Complexity of an object member i at line 
number k is defined as: -  

kOMUCSC(i,k)= W  * Distance(i,k)  
where Wk is the cognitive weight of the BCS, in which the 

object-member, i has been used at line number k and 
Distance(i,k)  is the absolute difference (in LOC) of the 
current use of the object-member from its definition in the 
corresponding class. In case of multiple files coming into 
picture for measurement of this distance, the distance is 
defined as: - 
Distance = (distance of call from the top of the file containing 
call) + (distance of definition of the member from the top of 
the file containing definition) 

Thus, Object Member Usage Cognitive-Spatial Complexity 
of an object-member i is defined as the average of cognitive-

spatial complexities of all usages of the object-member i.e. 

  

m
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m
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  where m is the total 

number of uses  of the object-member i.  
Object Member Cognitive-Spatial Complexity of an object 

is defined as the average of Object-Member Usage Cognitive-
Spatial Complexity (OMUCSCi ) of all members of the object. 

1

n

i
i

OMCSC
OMCSC = 

n
=
∑

 where n is the count of object-

members being called through that object. 
The Object Cognitive-Spatial Complexity of an object is 
defined as summation of the Object Definition Cognitive-
Spatial Complexity (ODCSC) of the object and the Object-
Member Cognitive-Spatial complexity (OMCSC) i.e. 
OCSC = ODCSC + OMCSC 

 

III. EVALUATION OF THE PROPOSED MEASURES USING 
WEYUKER’S PROPERTIES 

The new proposed measures are acceptable only when a 
validation process has proved their usefulness. In this section, 
we evaluate the proposed object-oriented cognitive-spatial 
measures using well-known nine Weyuker’s properties [15]. 
Weyuker proposed a formal list of nine properties for 
evaluating software complexity metrics. Many well known 
authors have used these properties for evaluating complexity 
measures [17], [18], [19], [20], [21], [22]. We have applied 
Weyuker’s nine properties to evaluate the object oriented 
cognitive-spatial complexity measures proposed in Section 2. 
While describing these properties, P denotes an object-
oriented program/class and |P| represents its cognitive-spatial 
complexity, which will always be a non-negative number. 

Property 1: This property states that (∃P), (∃Q) such that 
(|P| ≠ |Q|) 

This property states that a complexity measure must not be 
“too coarse” such that it rates all programs as equally 
complex. Two object-oriented programs P and Q can always 
differ in values of class cognitive-spatial complexity measures 
or values of object cognitive-spatial complexity measures, 
since the measures are defined in terms of distances (in LOC), 
which will have most of the times different values for two 
different programs. Thus, object-oriented cognitive-spatial 
measures satisfy Property 1. 

Property 2: Let c be a non-negative number, and then there 
is only finite number of programs of complexity c.  

This property is a strengthening of Property 1, which 
requires that the complexity measure must not be too 
“coarse”.  Since, the class cognitive-spatial complexity is the 
summation of the attribute cognitive-spatial complexity and 
the method cognitive-spatial complexity of the class i.e.  
CCSC = CACSC + CMCSC 

Further, attribute cognitive-spatial complexity depends on 
number of attributes and distances in LOC between the 
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different uses of the attributes and class method cognitive-
spatial complexity depends on number of methods and 
distances between calls and definitions of the methods. Also, 
Object Cognitive-Spatial Complexity of an object is defined 
as summation of the Object Definition Cognitive-Spatial 
Complexity (ODCSC) of the object and the Object-Member 
Cognitive-Spatial complexity (OMCSC) i.e. 
 OCSC = ODCSC + OMCSC 

Also, the object definition cognitive-spatial complexity 
(ODCSC) of an object is the product of the cognitive weight 
of the BCS, in which the object is being defined and the 
absolute difference (in LOC) of the definition of the object 
from its class declaration i.e.  

kODCSC(i)= W  * Distance(i,k)  
and similarly, the object member cognitive-spatial 

complexity (OMCSC) is defined in terms of the cognitive 
weights of the BCS (in which the object-member is being 
used) and the absolute distance (in LOC) of the uses of the 
object-member from its previous uses/definition. There can be 
always a finite number of programs having same value of 
these factors and thus, property 2 is well satisfied by the 
object-oriented cognitive-spatial complexity measures.  

Property 3: There are distinct programs P and Q such that 
(|P| = |Q|) 

This property states that a complexity measure must not be 
“too fine” i.e. any specific value of the metric should not only 
be given by a single program. This property requires that 
CCSCP = CCSCQ where CCSCP and CCSCQ are the class 
cognitive-spatial complexities for two different classes P and 
Q respectively and OCSCP = OCSCQ where OCSCP and 
OCSCQ are the object cognitive-spatial complexities for 
objects P and Q respectively. This is quite possible that two 
different and totally unrelated object-oriented programs P and 
Q may come out with the same values of object-oriented 
cognitive-spatial complexity measures after performing the 
various calculations involved in their measurement process. 
Thus object-oriented cognitive-spatial complexity measures 
satisfy property 3. 

Property 4: (∃P) (∃Q) such that (P ≡ Q & |P| ≠ |Q|) 
This property states that there is no one-to-one 

correspondence between functionality and complexity that 
means two programs having same functionality can have 
different complexity. Since, object-oriented cognitive-spatial 
complexity measures depend on the implementation details of 
programs. Two object-oriented programs P and Q having 
same functionality but different implementations will have 
different values of cognitive- spatial complexity i.e. 

CCSCP ≠ CCSCQ and OCSCP ≠ OCSCQ may hold true for 
any two object-oriented programs P and Q where P ≡ Q. 

Thus, Property 4 holds for the object-oriented cognitive-
spatial complexity measures.  

Property 5: (∀P) (∀Q) (|P| ≤ |P;Q| and |Q|| ≤ |P;Q|) 
Property 5 states the concept of monotonicity with respect 

to composition. This property requires that complexity of a 
concatenated program obtained from the concatenation of two 

programs can never be less than the complexity of either of 
the programs. Let CCSCP and CCSCQ be the class cognitive-
spatial complexity of object-oriented programs P and Q 
respectively and CCSCPQ be the class cognitive-spatial 
complexity of the concatenated program of P and Q.  Then, as 
per the definition of the measures, the resultant class 
cognitive-spatial complexity of the combined program would 
approximately be the sum of class cognitive-spatial 
complexities of individual programs, if they were independent 
and if the code of program Q was just appended after the code 
of program P, without disturbing the individual distances of 
definition and usage of members of class i.e.  
CCSCPQ ≈  CCSCP + CCSCQ 

Similarly, if OCSCP and OCSCQ are the object cognitive-
spatial complexities of independent programs P and Q 
respectively and OCSCPQ is the object cognitive-spatial 
complexity of the concatenated program of P and Q, then, 
according to the definition of the measures, the resultant 
object cognitive-spatial complexity of the combined program 
would approximately be the sum of object cognitive-spatial 
complexities of individual programs, if they were independent 
i.e.  OCSCPQ ≈  OCSCP + OCSCQ 

If programs P and Q were not independent, then the 
common classes and objects may appear once in the 
concatenated program. In that case the class/object cognitive-
spatial complexity of common portion will contribute once in 
the measures and independent portions of both P and Q will 
continue to have their original contribution towards CCSC as 
well as OCSC. In that situation, 
CCSCPQ = CCSCP + CCSCQ  - CCSCcommon-classes 

and OCSCPQ = OCSCP + OCSCQ  - OCSCcommon-objects 

It is obvious that CCSCcommon-class can never be greater than 
either CCSCP or CCSCQ. So in both cases whether P and Q 
are independent or not, it is evident that  CCSCP ≤ CCSCPQ 
and CCSCQ ≤ CCSCPQ 

Similarly, OCSCP ≤ OCSCPQ and OCSCQ ≤ OCSCPQ 
Thus, the object-oriented cognitive-spatial complexity 

metrics satisfy the Property 5. 
Property 6:  a: (∃P) (∃Q) (∃R) (|P| = |Q| & | P; R| ≠ | Q; R|) 
  b: (∃P) (∃Q) (∃R) (|P| = |Q| & | R; P| ≠ | R; Q|) 
As already stated in Property 3, object-oriented programs 

having different implementations may have the same values 
for the object-oriented cognitive-spatial complexity measures. 
When these two different programs having equal cognitive-
spatial complexity are combined with the same program, this 
may result into different cognitive-spatial complexities for the 
two different combinations. This means, (∃P) (∃Q) (∃R) 
(CCSCP = CCSCQ & CCSCPR ≠ CCSCQR) and (∃P) (∃Q) (∃R) 
(CCSCP = CCSCQ & CCSCRP ≠ CCSCRQ) where CCSCP and 
CCSCQ are the class cognitive-spatial complexities for two 
different and unrelated object-oriented programs P and Q 
respectively and CCSCPR and CCSCQR denote class spatial 
complexities of programs obtained after concatenating 
program P with R, and Q with R respectively. Similarly, 
CCSCRP and CCSCRQ represent class cognitive-spatial 
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complexities of programs obtained after concatenating 
program R with P, and R with Q respectively.  Also, (∃P) 
(∃Q) (∃R) (OCSCP = OCSCQ & OCSCPR ≠ OCSCQR) and (∃P) 
(∃Q) (∃R) (OCSCP = OCSCQ & OCSCRP ≠ OCSCRQ) where 
OCSCP, OCSCQ, OCSCPR, OCSCQR, OCSCRP and OCSCRQ 
represent the object cognitive-spatial complexities of 
programs P, Q, P concatenated with R, Q concatenated with 
R, R concatenated with P, and R concatenated with Q 
respectively. Thus, property 6a and 6b are well satisfied by the 
object-oriented cognitive-spatial complexity measures. 

Property 7: This property says that there are two programs 
P and Q such that Q is formed by permuting the order of the 
statements of P and |P| ≠ |Q| that means a complexity measure 
should be sensitive to the permutation of statements.  

The values of object-oriented cognitive-spatial complexity 
measures depend on the distances (in LOC) between uses of 
different program elements such as class-members and object-
members. Thus, cognitive-spatial complexity of an object-
oriented program depends on the order of statements of the 
program. When program Q is formed by permuting the order 
of the statements of the program P, then values of object-
oriented cognitive-spatial complexity measures for the 
program Q will differ from the values of the measures 
obtained from the program P due to the change in LOC 
between different program elements. Thus, for programs P 
and Q, CCSCP ≠ CCSCQ and OCSCP ≠ OCSCQ where program 
Q is formed by permuting the order of the statements of P. 
Hence, the object-oriented cognitive-spatial complexity 
measures satisfy property 7. 

Property 8: If P is a renaming of Q, then |P| = |Q| 
Since, names of a program and its elements do not 

contribute to the values of the object-oriented cognitive-
spatial complexity measures, thus renaming of an object-
oriented program does not have any effect on its cognitive-
spatial complexity i.e. CCSCP =CCSCQ and OCSCP = OCSCQ 
where P is a renaming of Q. Thus, property 8 is well satisfied 
by the object-oriented cognitive-spatial complexity measures. 

Property 9: (∃P) (∃Q) such that (|P| + |Q| < |P; Q|) 
According to property 9, the complexity of a new program 

obtained from the combinations of two programs, can be 
greater than the sum of complexities of two individual 
programs. This can be true for both the class cognitive-spatial 
complexity as well as the object cognitive-spatial complexity 
measures as classes and objects are brought into a single 
program from two different programs, this may increase 
distances (in LOC) between different program elements. For 
instance, the method cognitive-spatial complexity of a method 
of class depends on the distances (in LOC) between the calls 
and the definition of the method and this distance may 
increase in the combined program due to the presence of other 
program elements.  Thus, same method when used in the 
combined program may contribute more to the class 
cognitive-spatial complexity than its use in the individual 
program. Similarly, it holds for attribute cognitive-spatial 
complexity also. Further, the object definition cognitive-

spatial complexity (ODSC) of an object depends on the 
distance of the definition of the object from the corresponding 
class declaration and this distance may increase in the 
combined program due to introduction of new classes and 
objects in the new program. The same logic is also applicable 
in case of object-member cognitive-spatial complexity 
measures. Thus, the same object when used in the combined 
program may contribute more to the object cognitive-spatial 
complexity than its use in the individual program.  Hence, the 
cognitive-spatial complexity of a combined program might be 
more than the sum of the cognitive-spatial complexities of 
individual programs i.e. (∃P) (∃Q) such that (CCSCP + CCSCQ 
< CCSCPQ) where CCSCP, CCSCQ and CCSCPQ denote the 
class cognitive-spatial complexity of programs P, Q and P; Q 
respectively. Similarly, (∃P) (∃Q) such that (OCSCP + OCSCQ 
< OCSCPQ) where OCSCP, OCSCQ and OCSCPQ represent 
object cognitive-spatial complexity of programs P, Q and P; Q 
respectively. Thus, object-oriented cognitive-spatial 
complexity measures satisfy property 9. 

IV. APPLICATION OF BRIAND ET AL. FRAMEWORK   
In this section, we validate object-oriented cognitive-spatial 

complexity measures by using the evaluation framework given 
by Briand et al [16] to provide more credibility to the object-
oriented cognitive-spatial complexity measures. In the 
framework, Briand et al. have given five properties, which a 
complexity measure must satisfy to be a useful complexity 
measure. Before the application of the framework, the basic 
definitions required for the evaluation process are given.  

System: An object-oriented system S is represented as a <E, 
R>, where E represents the set of elements of S, and R is a 
binary relation on E (R ⊆ E × E) representing the relationships 
between elements of S. For the purpose of evaluation of 
object-oriented cognitive-spatial complexity measures, E is 
defined as the set of all classes, objects and their members in 
the program and R as the set of definitions of classes and 
objects and usages of classes and objects through their 
members. 

Module: For a given object-oriented system S = <E, R>, a 
system m = <Em, Rm> is a module of S if and only if Em ⊆ 
E, R ⊆ Em × Em and Rm ⊆ R. A module m may be a class or 
a subprogram. 

Complexity: The cognitive-spatial complexity of an object 
oriented system S is a function Complexity(S) that is 
described by Property 1 to Property 5.  

Property 1 (Nonnegative): The complexity of a system S = 
<E, R> is nonnegative if Complexity (S) ≥0.  

Proof: Object-oriented cognitive-spatial complexity 
measures are defined in terms of weights of BCS and 
distances (in LOC), which are always non-negative numbers. 
Thus, cognitive-spatial complexity of an object-oriented 
system will always be non-negative. Hence, the proposed 
measures satisfy Property 1. 

Property 2 (Null Value): The complexity of a system S = 
<E, R> is null if R is empty i.e. R = Ø ⇒ Complexity (S) = 0.  



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

740

 

 

Proof: For object-oriented cognitive-spatial complexity 
measures, R has been defined above as the set of definitions of 
all classes, objects, and their members and usages of classes 
and objects through their members. If there were no 
definitions of classes and objects or usages of class-members 
and object-members in the program, values of the class 
cognitive-spatial complexity (CCSC) measures as well as 
object cognitive-spatial complexity (OCSC) measures will be 
zero. Thus, property 2 is well satisfied by the proposed 
measures. 

Property 3 (Symmetry): The complexity of a system S = <E, 
R> does not depend on the convention chosen to represent the 
relationships between its elements i.e. (S = <E, R> and S-1 = 
<E, R-1>) ⇒ Complexity(S) = Complexity(S-1). 

Proof: According to this property, a complexity measure 
should not be sensitive to representation conventions used for 
relationships. A relationship can be represented by two 
equivalent representation conventions “active” (R) or 
“passive” (R-l) form [16]. As defined in the beginning of this 
section, relationships for the object-oriented cognitive-spatial 
complexity measures represent the set of definitions of classes 
and objects and usages of classes and objects through their 
members. As per the definitions of the proposed measures, 
count of these relationships is taken into consideration during 
measurement, not the conventions used to represent these 
relationships. Thus, object-oriented cognitive-spatial 
complexity of a program does not depend on the convention 
chosen to represent the relationships between its elements. 
Hence, the proposed measures satisfy property 3 also. 

Property 4 (Module Monotonicity): The complexity of a 
system S = <E, R> is no less than the sum of the complexities 
of any two of its modules with no relationships in common i.e.  
(S = <E, R> and m1 = <Em1, Rm1> and m2 = <Em2, Rm2> and 
m1∪ m2 ⊆ S and Rm1 ∩ Rm2 = Ø) ⇒ Complexity(S) ≥ 
Complexity (m1) + Complexity (m2).  

Proof: This property is analogous to Weyuker’s property 9 
and as already explained above, the object-oriented cognitive-
spatial complexity measures satisfy this property of module 
monotonicity very well. Thus, property 4 also holds for the 
proposed measures.  

Property 5 (Disjoint Module Additivity): The complexity of 
a system S = <E, R> composed of two disjoint modules m1, 
m2, is equal to the sum of the complexities of the two modules 
i.e. (S = <E, R> and S = m1 ∪ m2, and m1 ∩ m2= Ø) ⇒  
Complexity(S) = Complexity (m1) +Complexity (m2).  

Proof: If two independent subprograms/classes are 
combined together in a single program, then there will be no 
usage of class/object or their members of one subprogram 
from the other subprogram as the two subprograms are totally 
independent. Thus, their individual cognitive-spatial 
complexities will not get affected due to the combination of 
the two. The cognitive-spatial complexity value of the 
combined program will definitely be the summation of 
cognitive-spatial complexity values of the subprograms. Thus, 
the proposed measures satisfy property 5 very well. 

V. COMPARISON OF THE PROPOSED MEASURES WITH THE 
COGNITIVE AND SPATIAL MEASURES 

The Cognitive Functional Size (CFS) [5] metric proposed 
by Wang et al. mainly measure algorithmic complexity of a 
program independent of the language implementation. The 
CFS metric is not able to indicate comprehension level of a 
program completely since the cognitive effort required to 
comprehend a program also depends on the programming 
language in which the particular program has been written as 
different languages have different levels and the language 
level has been reported to affect cognitive efforts of 
understanding the programs [3], [23], [24]. Thus, the 
cognitive measures should also take into account the 
implementation details of a program while measuring the 
effort required for comprehension of the program. Similarly, 
the spatial complexity measures [9], [10], [11], [12] are based 
on the spatial distance between the definition and use of 
various program elements. However, many researchers have 
already stressed the importance of considering the program 
control flow [13] and the kind of control structure while 
computing the cognitive complexity [6], [7], [8]. The 
proposed cognitive-spatial complexity measures take into 
account both the control structures as well as the spatial 
distances between program entities. Thus, the proposed 
measures are more suitable than both of the earlier approaches 
of cognitive complexity and spatial complexity measures. In 
order to compare the proposed measures with the existing 
cognitive and spatial measures, let us conduct a comparative 
study using a program first written in Java and then, C++ 
language. 

 
1. Class Stack  
2. { 
3. int  stck[]; 
4. int  tos; 
5. Stack(int size) 
6. {  
7. stck=new int [size]; 
8. tos=-1; 
9. } 
10. void push(int item)  
11. { 
12. if (tos = = stck.length-1) 
13. System.out.println(“Stack 

full”); 
14. else 
15. stck[++tos]=item; 
16. } //push method 
17. int  pop() 
18.  { 
19. if(isStackEmpty()) 
20. { 
21. System.out.println(“Stack 

Underflow”); 
 

 

22. return 0;  
23. } 
24. else 
25. return stck[tos--]; 
26. } //pop method 
27. int  isStackEmpty()  
28. {  
29. return tos = = -1;  
30. }// isStackEmpty() method 
31. int  topOfStack()  
32. {  
33. return stck[tos-1];  
34.  }// topOfStack() method 
35. public static void 

main(String str[]) 
36. { 
37. Stack s1=new Stack(5);  
38. for(int i=0; i<5; i++)  
39. s1.push(i); 
40. for(int i=0; i<5; i++)  
41. System.out.println(s1.pop()); 
42. } //main method 
43. }// Class Stack 

Fig.1. Program written using Java language 
 
Figure 1 shows the Java implementation of the program and 

below Figure 2 shows its implementation in C++. 
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1 #include<iostream.h> 
2 Class Stack  
3 { 
4 int  *stck; 
5 int  tos; 
6 public: 
7 Stack(int size) 
8 {  
9 stck=new int [size]; 
10 tos=-1; 
11 } 
12 void push(int item)  
13 { 
14 if (tos = = stck.length-1) 
15 cout<<“Stack is full”; 
16 else 
17 stck[++tos]=item; 
18 } //push function 
19 int  pop() 
20  { 
21 if(isStackEmpty()) 
22 { 
23 cout<<“Stack Underflow”; 

 

24 return 0;  
25 } 
26 else 
27 return stck[tos--]; 
28 } //pop function 
29 int  isStackEmpty()  
30 {  
31 return tos = = -1;  
32 }//isStackEmpty() 

function 
33 int  topOfStack()  
34 {  
35 return stck[tos-1];  
36  }// topOfStack() function 
37 };  // Class Stack 
38 void main() 
39 { 
40 Stack s1(5);  
41 for(int i=0; i<5; i++)  
42 s1.push(i); 
43 for(int i=0; i<5; i++)  
44 cout<<s1.pop(); 
45 } //main function 

Fig. 2. Program written using C++ language 
 
We compare the proposed measures with cognitive 

complexity measure (CFS) [5] and spatial complexity 
measures (CSC and OSC) [11] for programs shown in Fig. 1 
and Fig. 2 and results of the comparison are shown in 
following Table 1.  

TABLE I COMPUTATION RESULTS FOR THE MEASURES 
OO Cognitive-

Spatial 
Complexity 
Measures 

Cognitive 
Complexity 
Measures 

OO Spatial 
Complexity 
Measures 

 

CCSC OCSC CFS CSC OSC 
Java 
Progra
m 
(Fig.1)  

12.46 115.50 13 6.58 62.50 

C++ 
Progra
m 
(Fig.2)  

12.81 120.50 13 6.60 65.50 

 
Figure 3 depicts the graphical representations of the 

computed values of the measures for Java and C++ programs. 

Fig. 3. Values of different measures as given in Table 1 
 

Table 1 and Figure 3 clearly show that value of the CFS 
metric is same for both the programs having the same 
algorithm but different language implementation. This proves 
that the cognitive complexity measure, CFS computes only 
algorithmic complexity and is not a suitable measure for the 
estimation of cognitive effort required for the comprehension 
of a program. Since, the programs written using core Java and 
C++ languages differ to some extent in their implementation. 
The object-oriented cognitive-spatial complexity measures 
also differ slightly for both the implementations as shown in 
Table 1 whereas Object Spatial Complexity (OSC) for both 
the programs is the same as it does not consider control 
statements present in the programs. Thus, cognitive-spatial 
measures are better indicators of cognitive effort required for 
program comprehension as the proposed measures take into 
account the architectural aspects of the programs along with 
spatial orientations. 

VI. CONCLUSIONS 
In this paper, we have proposed new cognitive-spatial 

complexity measures for object-oriented software. The 
proposed measures take spatial as well as architectural 
complexity of the software into account for the estimation of 
the cognitive effort required for software comprehension 
process. The spatial complexity has been taken into 
consideration using the lexical distances (in LOC) between 
different program elements and architectural complexity of the 
software has been taken into account using the cognitive 
weights of various control structures present in the control 
flow of the program. Moreover, the proposed measures have 
been validated using standard axiomatic frameworks given by 
Weyuker [15] and Briand et al. [16] to prove their usefulness. 
Further, the proposed measures have been compared with 
existing cognitive and spatial complexity measures for object-
oriented software. This comparative study has shown that the 
proposed measures are better indicators of the cognitive effort 
required for program comprehension than the corresponding 
existing cognitive and spatial complexity measures.  In future 
work, we plan to conduct a more detailed empirical study over 
software of various sizes to judge their suitability for 
estimating the maintenance efforts of the software. 
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