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Numerical Treatment of Matrix Differential Models
Using Matrix Splines

Kholod M. Abualnaja

Abstract—This paper considers the solution of the matrix
differential models using quadratic, cubic, quartic, and quintic
splines. Also using the Taylor’s and Picard’s matrix methods; one
illustrative example is included.
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. INTRODUCTION

N this work, the evaluation of matrix functions is frequent
in the solution of differential systems. So, the system [8]

YO=AOY®, YO0)=Y, A=[01] )

where A(t) is matrix and Y, is a vector arises of the parabolic
equation. The matrix differential equation [3], [4]

YO=AOY®, YO)=Y, YO)=Y, A=[01] (2

where A(t) is matrix, Y, and Y, are vectors arises of the
hyperbolic equation. The matrix differential equation [10]
Y () = A®H) Y1) + Y () B(Y),

Y0)=Y, A=[01] (3

where A(t) and B(t) are matrices appears in systems stability

and control.
Consider the matrix differential equation in the form [5]

Y () = A®) Y(1)+B(), Y(0)=D, A=[01] 4)

where Y(t) eC™, A(t), B(t), C(t) and D(t) are matrices. Let
A is partition as A={0=t, <..<t, =1}.The set of matrix
splines of order m defined as [1]

Q‘[t‘,lm (t) e R[],
M _CFXF(A)EA :{Q:A S C™ : i e{l,...,n}
QeC™(a)

®)
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If m=2 the matrix splines are called matrix quadratic
splines, m=3 called matrix cubic splines, m=4 called
matrix quartic splinesand m =5 called matrix quintic splines.

Reference [2] deals with the construction of an approximate
solution of the first order matrix linear differential equations
using matrix cubic splines. The present paper extended the
first order linear differential equations using different matrix
splines and also approximate the solution by using Picard's
method and Taylor's method which are best than all matrix
splines [6], [7], [9]-

Il. THE MATRIX SPLINE METHODS

This section gives the theoretical studies for the matrix
differential equation in the form (4) using the matrix quadratic
splines, matrix cubic splines, matrix quartic splines and matrix
quintic splines.

A. The Matrix Quadratic Splines

Consider the interval A, =[0,k], k=At, suppose the
solution in the form

So(t)zY(O)+\;(O)t+%a0t2 (6)

where Y(0)=D, \.((0):A(O)Y(0)+Y(0) B(0) + C(0), but
to find a, we suppose that S, (t) satisfies the matrix
differential equation (4) at t =k, so

So(k) = A(K) S, (k) + B(K) )
From (6) and (7) we get
L _ v v (8)
(1 =5 Al = AK) (Y ) +Y (0)K) +B(K)-Y (0)
where | is the identity matrix, from (8) we get ¢, and so
S,(t) as in (6). Consider A, =[ik,(i+1)k], 1<i<n-1;
suppose the matrix quadratic solution in the form

S.(t)=S,.( k)+éi4(ik)(t—ik)+%ai (t=ik)® (9)

As above we determine o, from
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k(1 —g A+DK)) @ = A +DK) (S, , (1K) 10)

+5.,(ik) K)+ B((i+Dk) - S, (iK),
and then S,(t) are determined for all i=1,...,n. Note that

solubility of the suggested scheme (10) is guaranteed showing
that the matrix coefficient of ¢r; is invertible.

If M=max

0<t<1

A(t)| then <1, SO we

I—(l —gA((i +1)k))

get k<2 and then (10) has a unique solution ¢; .
M

B. The Matrix Cubic Splines

Consider the interval A, =[0,K]; suppose the solution in

the form
. l o 2 1 3
So(t)zY(O)+Y(0)t+§Y(0)t +€aot , (11)
where Y(©0)=D, Y(0) = A(0) Y(0) + B(0) and

Y(0) = AQ) Y(0) + A(0) Y(0) +B(0).
To determine a, we suppose that S, (t) satisfies the matrix
differential equation (4) at t =k, so
k? k

7('—EA(k))ao=A(k)(Y(0)+Y(0)k (12)

+%\7(O)k2) +B(K)-Y (0)-Y (0)k
and S,(t) asin (11).

Consider A, =[ik,(i+1)k], 1<i<n-1,
matrix cubic solution in the form

suppose the

S,(t) =S, ,(ik)+Sia(ik) (t—ik)

Lo . . _ (13)
+5 Sk (i k)2 oot k),
As above we determine o, from
k—;(l ‘% A(i +DK))ar, = Al +1)K) (S, (1 k)
(14)

#SLL KK+ 284K + B +DK)
~S74(K) - S1a(ikk,

and then S,(t) are determined for all i=1..,n. Note that

solubility of the suggested scheme (14) is guaranteed showing
that the matrix coefficient of «, is invertible.

If M= rglg("A(t) | then H|,(|,gA((i+1)k)) <1, SO we get

k<-3 andthen (14) has a unique solution Q;.
M

C. The Matrix Quartic Splines
Consider the interval A, =[0,k]; suppose the solution in
the form

B 0 En 2 1--- 3 i 4 15
So(t)_Y(0)+Y(0)t+2Y(0)t +6Y(0)t gt , (15)

for this case o, can be determined from

k3 k . 1 5
(= A, = AK) (Y Q) +Y Ok + Y OK (1)
+%'\?(0)k3)+B(k)—\F(O)—V(O)k—'\?'(O)kZ,

and S,(t) as in (15). Consider A, =[ik,(i+1)k],

1<i<n-1; suppose the matrix quartic solution in the form
S.(0) =S, (1K) +Sia(ik) (t=iK)+2 80 a(iK) (t—ik)?
2 an
S0k L t—ik)
6 24" ’
as above we determine o, from

‘%:(l —%A«i FDK)) = A +DK) (S, (1K) + S, (1K) k

+%§H(i k2 +%§;(i K+ B +DK) -5 (k) D

~S(ik)k —%S.:l(i K)k?,

and then S,(t) are determined for all i=1..,n. Note that

solubility of the suggested scheme (18) is guaranteed showing
that the matrix coefficient of a, is invertible.

If M= rgl%"A(t)" then I—(I—%A((Hl)k)) <1, SO we get

k< % and then (18) has a unique solution «, .

D. The Matrix Quintic Splines
Consider the interval A, =[0,k]; suppose the solution in

the form
. 1 e 2 l ooe 3
So(t)zY(0)+Y(0)t+5Y (0)t +€Y(O)t (19)

+i"Y"(O)t4 +ia0 t°,
24 120
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for this case o, can be determined from
k4

24
+%?’(0) K2 +2i4'\7'(0) k*)+B(k)=Y(0)-Y (0)k 0

(1 - Al = AR Y O +Y Ok + T O

Y (k=Y ()3,

and S,(t) asin (19).
Consider A, =[ik,(i+2)k], 1<i<n-1;
matrix quintic solution in the form

suppose the

S,(t) =S, ,(iK)+Sia(ik) (t—ik) +%§H(i K) (t—iK)?

E see N 3 i sese N 4 (21)
+68i_1(lk)(t ik) +24Si_l(lk)(t ik)

1 .
+@0{i(t—lk) y

as above we determine o, from

%(' —EA((i +Dk))e;, = A((i+1)K) (S, (1k)

. 1o . , Lo .
+SH(|k)k+ESi_1(|k)k +gSH(lk)k (22)
+2—14§i._.1(ik)k“)+ B(+1k)—S, (k)

.o ) 1 eoe ) 2 1 ceee ) 3
~8(ik-2 8 (KK -2 81Kk

and then S, (t) are determined for all i=1,...,n.

Note that solubility of the suggested scheme (22) is
guaranteed showing that the matrix coefficient of o, is

invertible.

If M =max|A(t)| then H|_(|_§A((i+1)k)) <1, SO we get

k<> and then (22) has a unique solution o, .
M

I11. THE MATRIX PICARD'S METHOD

In this section we see the Picard’s method for the matrix
differential equation in the form (4) then the first
approximation is

Yia(®) =Y, (t)+j(A(t)Yi (t)+B(t))dt (23)

where Y, (t)=D, i=0L12,.... As in ordinary differential

equation we get a sequence {Y, (t)}|: which is convergent to
the exact solution.

IV. THE MATRIX TAYLOR'S METHOD

Suppose the approximate solution for the matrix differential
equation (4) takes the form

Yn(t):Y(O)+\;(O)t+%\.('(O)t2+...+%Y((n6)t“ (24)

. (n)
where Y(0),Y(0),...,Y(0) all can be determined from the
matrix differential equation (4).

V. ILLUSTRATION OF THE ANALYSIS

In this section, distinct matrix differential equations will be
tested by using the proposed methods.

Example: We first consider the matrix differential equation
in the form

[yf(t)]_ 1o (20-1 toat-1 [y&t)]
v0) t-t-1lt-1 e+2-t-1 \y,®)
0<ts<l,

(yl(o)]:[lj [yl(t)lecz
v,0) (0)" (y,(@) '

: - . . . e'
this matrix differential equation has the exact solution [t [J,
e

(25)

in the following table we see the matrix splines methods.

TABLE |
THE MATRIX SPLINES METHODS
Quintic Quartic Cubic Quadratic [ti , ti—l]
1.7956E-9  1.14628E-7 6.33769E-6  3.06573E-4 [0,0.1]
5.7101E-8  8.81776E-7 6.33769E-6 7.11688E-4 [0.1,0.2]
5.46782E-7  2.2721E-6  8.32925E-6  12.397E-4 [0.2,0.3]
1.7956E-9  1.14628E-7 6.33769E-6 3.06573E-4 [0,0.1]

In the following table we see the approximation solution
using quadratic matrix method in some intervals.

TABLE Il
QUADRATIC MATRIX METHOD
[t,,t_.] Quadratic
1+t +0.527889t2
[0,0.1]
t+1.0804t2

0102 1.00056 + 0.988792t + 0.5839281>

o 0.00172163 + 0.965567 t +1.25257 t?
0207 1.00304 + 0.964035t + 0.645822 2

o 0.009578 + 0.887004 t +1.44897 t*
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V1. CONCLUSION

In this work we have found the solution of the matrix
differential models using quadratic, cubic, quartic, and quintic
splines. Also using the Taylor’s and Picard’s matrix methods
we reached these important numerical methods of solution
through the application in the examples.
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