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Abstract—In this work, we derive two numerical schemes for 
solving a class of nonlinear partial differential equations. The first 
method is of second order accuracy in space and time directions, the 
scheme is unconditionally stable using Von Neumann stability 
analysis, the scheme produced a nonlinear block system where 
Newton’s method is used to solve it. The second method is of fourth 
order accuracy in space and second order in time. The method is 
unconditionally stable and Newton's method is used to solve the 
nonlinear block system obtained. The exact single soliton solution 
and the conserved quantities are used to assess the accuracy and to 
show the robustness of the schemes. The interaction of  two solitary 
waves for different parameters are also discussed. 

Keywords—Crank-Nicolson Scheme, Douglas Scheme, Partial 
Differential Equations 

I. INTRODUCTION 
N this work, we aim to solve numerically the class of 
nonlinear partial differential equations [3] 
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where ),,(1 tyxψ  is a complex valued function of the spatial 

coordinates yx,  and the timet , ),,(2 tyxψ  is a real valued 

function. And
 

( )2,1,,, =jCBAp jjj
 are real constants which 

prove that: .0,0,0,0 211 ≠≠≠≠ CCBp      

The exact solution of )1(  is 
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where  
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C  is an integration constant,
 002121 ,,,,,,, ηξβωαα kk  are 

real constants.     
The class of nonlinear partial differential equations (1) has 

the conserved quantities 
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To avoid complex computation, we assume 
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where ( ){ }4

1
,,

=jj tyxu are real functions. 
  

This will reduce (1) to the system 
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   (7)            

The paper is organized as follows: in Section 2, finite 
difference method is used to derive two numerical schemes. In 
section 3, numerical results for single soliton and the 
interaction of two solitons are given. The error and the 
conserved quantities are used to assess the efficiency of the 
proposed methods. Concluding remarks contained in Section 
4. 

II.  NUMERICAL METHOD 

Consider the class of nonlinear partial differential equations 
(1) in a finite domain [4]-[5]-[6] 
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In the region ]0[][ , ≥≤≤≤≤= × tyyyxxxR LRLR  

with the initial conditions
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and boundary conditions
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A. Crank-Nicolson Scheme 

We will adopt in Crank-Nicolson type replacement, which 
is of second order accurate in time and it work well with 
longer time steps because of its stability properties. So the full 
discretization of (10) is 
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for  ,,,1,0,,,2,1, NTnNml …… ==   
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The scheme form a nonlinear block system can be solved by 

using Newton's method. 
1. Accuracy of the Scheme 

Truncation error which is given by 
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This means the scheme in (12) is second order accuracy in 
space and time. And it is consistent, since the principal part of 
the truncation error will be vanish as 0, →kh . 
2. Stability of the Scheme 
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(13)  

where 1−=i  , ℜ∈γβ ,  , 
44×ℜ∈G  , by substituting  in 

(11) and after some manipulation we get 
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This means that the suggested scheme is unconditionally 
stable according to Von Neumann stability analysis in the 
linearized sense, which means that no restriction on the grid 
sizes of h  and k  [1]-[2]. 

B. Douglas Scheme 

Douglas scheme is fourth order in space and second order in 
time for the system in can be obtained  
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for ,,,1,0,,,2,1, NTnNml …… ==   

Where ,
2 21 h

Bk
r =

 

.
2

,
2

,

1

,*
,22

n

ml

n

ml

ml

UU
U

h

Ck
r

+
==

+

  

The scheme form a nonlinear block system can be solved by 
using Newton's method.  

1. Accuracy of the Scheme 

Truncation error which is given by 
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This means the scheme in (16) is fourth order accuracy in 
space and second order time. And it is consistent, since the 
principal part of the truncation error will be vanish as 0, →kh

2. Stability of the Scheme 

By substituting in (15) and after some manipulation we get
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(17) 

 

This means that the suggested scheme is unconditionally 
stable according to Von Neumann stability analysis in the 
linearized sense, which means that no restriction on the grid 
sizes of h  and k . 

 
III.  NUMERICAL RESULTS 

A. Single Soliton 

In this test we choose the parameters [1] 
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The results of ( )1ψ∞L , ( )2ψ∞L  and conserved quantities in the 

tow schemes are given in following Tables. 
 

TABLE I 
 SINGLE SOLITON BY CRANK-NICOLSON SCHEME 

2con  1con ( )2ψ∞L  ( )1ψ∞L  
t  

-0.657426 1.843851 0.000000 0.000000 0.00  

-0.657425  1.843851  0.000372  0.000263 5.00  

-0.657424 1.843854 0.000417  0.001305  10.00  

-0.657425  1.843816 0.000763  0.001861  15.00  

-0.657426  1.843870  0.000542  0.001614  20.00  

cons1= mass conservation, con2= momentum conservation 

 
TABLE II 

SINGLE SOLITON BY DOUGLAS SCHEME 

2con 1con ( )2ψ∞L  ( )1ψ∞L  
t  

-0.657426 1.843851 0.000000 0.000000 0.00  

-0.657425  1.843851  0.000113  0.000109 5.00  

-0.657426  1.843852 0.000127  0.000654  10.00  

-0.657426  1.843843 0.000409  0.000671  15.00  

-0.657426  1.843865  0.000198  0.000720  20.00  

cons1= mass conservation, con2= momentum conservation 

 
We notice that both schemes are given almost the same 

results regarding the conserved quantities but the error in 
Douglas scheme is high accurate than the error in Crank-
Nicolson scheme.  

 

Fig. 1 (a) Single soliton with .,.h,.k
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Fig. 1 (b) Single soliton with .,.h,.k
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1
10010 00 ==== ξη  

B. Two Solitons Interaction 

In this test we choose the parameters  
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TABLE III 
                       TWO SOLUTIONS BY CRANK-NICOLSON SCHEME 

2con  1con  t  

-1.236993 4.378413  0.00  

-1.236851  4.378502 15.00  

-1.236971  4.378314 25.00  

-1.236879  4.378252 39.00  

-1.236642  4.378306  43.00  

cons1= mass conservation, con2= momentum conservation 
 
 

TABLE IV 
TWO SOLUTIONS BY DOUGLAS SCHEME 

2con  1con  t  

-1.236993 4.378413 0.00  

-1.236904  4.378422 15.00  

-1.236942  4.378435 25.00  

-1.236750  4.378400 39.00  

-1.236801  4.378417  43.00  

cons1= mass conservation, con2= momentum conservation 
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Fig. 2 (a) Interaction of two solitons with 
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Fig. 2 (b)  Interaction of two solitons with 
 

.,,,,.h,.k
3

2

4

1

5

2

4

1
02500010

2121 0000 ====== ηηξξ  

 
IV.  CONCLUSION 

In this work we have solved a class of nonlinear partial 
differential equations using two difference schemes. In Crank-
Nicolson Scheme, we got a nonlinear block system where 
Newton's method is used to solve it. In Douglas scheme we 
present a nonlinear block system which can be solved by 
Newton's method. Single soliton and the interaction of two 
solitons are used to assess the performance of these methods. 
We show that both methods simulate the solution in a very 
nice way and keep the conserved quantities are almost 
constants. As a conclusion we can say Crank-Nicolson 
Scheme is faster than Douglas scheme. 
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