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Abstract—As we know, most differential equations concerning 
physical phenomenon could not be solved by analytical method. Even 
if we use Series Method, some times we need an appropriate change 
of variable, and even when we can, their closed form solution may be 
so complicated that using it to obtain an image or to examine the     
structure of the system is impossible. For example, if we consider 
Schrodinger equation, i.e.,                                                                                                                   
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We come to a three-term recursion relations, which work with it 
takes, at least, a little bit time to get a series solution[6]. For this 
reason we use a change of variable such as 
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or when we consider the orbital angular momentum[1], it will be 
necessary to solve 
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As we can observe, working with this equation is tedious.                                               
In this paper, after introducing Clenshaw method, which is a kind 

of Spectral method, we try to solve some of such equations.     
                                                                     
Keywords—Chebyshev  polynomials, Clenshaw method, 

ODEs, Spectral methods.  

I.INTRODUCTION 

HE spectral methods arises from the fundamental 
problem of approximation of a function by interpolation 

on an interval, and are very much successful for the numerical 
solution of ordinary or partial differential equations[1]. Since 
the time of Fourier(1882), spectral representations in analytic 
study of differential equations are used and their applications 
for numerical solution of ordinary differential equations refers, 
at least, to the time of Lanczos[2]. Spectral methods have 
become increasingly popular, especially, since the 
development of Fast transform methods, with applications in 
numerical weather predication, numerical Simulations of 
turbulent flows, and other problems where high accuracy is 
desired for complicated solutions.  
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A survey of some application is given in [3]. Spectral 
methods may be viewed as an extreme development of the 
class of discretization scheme for differential equations known 
generally as the method of weighted residuals (MVR) 
(Finlayson and Scriren (1966)). The key elements of the 
MWR are the trial functions (also called approximating 
functions) which are used as basis functions for a truncated 
series expansion of the solution, and the test functions (also 
known as weight functions) which are used to ensure that the 
differential equation is satisfied as closely as possible by the 
truncated series expansion. The choice of such functions 
distinguishes between the three most commonly used spectral 
schemes, namely, Galerkin, collocation (also called pseudo-
spectral) and Tau version. The Tau approach is a modification 
of Galerkin method that is applicable to problems with non-
periodic boundary conditions. In broad terms, Galerkin and 
Tau methods are implemented in terms of the expansion 
coefficients, where as collocation methods are implemented in 
terms of physical space values of unknown function. The basic 
of spectral methods to solve differential equations is to expand 
the solution function as a finite series of very smooth basis 
function, as given  
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in which, as we know, the best choice of  k , are the 
eigenfunctions of a singular Sturm-Liouville problem. If the 
function y belongs to ],[ baC , the produced error of 

approximation (1), when N tends to infinitly, approaches zero 
with exponential  rate [1]. This phenomenon is usually 
referred to as “spectral accuracy”, [3]. The accuracy of 
derivatives obtained by direct, term by term differentiation of 
such truncated expansion naturally deteriorates [1], but for low 
order derivatives and sufficiently high-order truncations this 
deterioration is negligible .So, if solution function and 
coefficient functions are analytic on ],[ ba , spectral methods 
will be very efficient and suitable. 

II. SPECTRAL METHODS 

In this section, we are going, briefly, to introduce spectral 
methods. For this reason, first we consider the following 
differential equation :
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Where if  , fMi ,,...,1,0 ,are known real functions of 
iDx ,  denotes thi  order  of differentiation with respect to 

Tx ,  is a linear functional of rank N  and MC .
Here (3) can be initial, boundary or mixed conditions. The 

basic of spectral methods to solve this class of equations is to  
expand  the solution function, y , in (2) and (3)  as a finite 
series of very smooth basis function, as given below    
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Where, k
k xT 0)(  is sequence of Chebyshev  polynomials 

of first kind, defined as, )(xTn )coscos( 1 xn ,

,...1,0n
With replacing Ny in (2), we define residual term by 

)(xr N  as follows 

fLyxr NN )( .                                                    (5)  

In spectral methods, main target is to minimize )(xr N ,
through domain as much as possible with regard to(3). 
Implementatian of  these methods lead to a system of linear 
equations with 1N  equations and 1N  unknowns 

Naaa ,...,, 10 .

In rest of this section, we discuss, briefly, three spectral 
methods, namely, Tau, Galerkin and collocation (also known 
as pseudo- and use it for numerical solution of second order 
linear differential equations. It is to be noted that this 
discussion can be extended to the general form (2),(3). 

A. Tau method  
Consider the following linear ordinary differential 

equation(ODE) : 
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Our target is to find, t
Naaaa ),...,,( 10 . For this 

reason, we multiply both sides of (1) by 
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Here, to compute the right-hand side of this equation it is 
sufficient to use an appropriate numerical integration method 
such as Gauss-Chebyshev method. 

B.  Galerkian method  
This method is similar to tau method, where 1N  basis 

functions ,,...,, 32 N  are obtained through 

Chebyshevpolynomials ,,...,, 10 NTTT  in order to satisfy 
both boundary conditions (6). Then we multiply both sides of 
(1) by 

,,...,3,2,
1
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 to obtain 1N  equations. 

C.  Pseudo-spectral method 
In this method, we substitute points 

,1,...,2,1),cos( Njx N
j

j  in (1) and put: 
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to obtain N-1 equations. 
Now we are going to introduce Clenshaw method and use it 

for numerical solution of linear(ODEs).                  

III.CLENSHAW  METHOD 

Consider the following linear ODE: 
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First, for an arbitrary natural number, N , we suppose that 
the approximate solution of equations (6) is given by (4). Our 
target is to find  t

Naaaa ),...,,( 10 .For this reason, put 
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Using this fact that the Chebyshev expansion of a function  
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we can find coefficients ii ,  and i  as follows :
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 where,  20c  and  ,1ic for .1i
To compute the right-hand side of (8) it is sufficient to use 

an appropriate numerical integration method. Here, we 
use )1(N  points Chebyshev-Gauss-Lobatto quadrature 
given as; 
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jc  for 1,...,2,1 Nj .              

Note that for simplicity of the notation these points are 
arranged in descending order, namely 
, 011 ... xxxx NN .
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half .Therefore, we will have : 
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Now, replacing (4) and (9) in equations (6), and using this 
fact that 
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In this manner, we get 
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Now, we multiply both sides of (10) by
21
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and integrating from -1 to 1, gives   
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 where, 
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 with, 1, ji ,when ji ,and  zero when ji ,[5] . 

We also can use 1N  points Chebyshev-Gauss-Lobatto 
quadrature to compute right-hand side integration .Therefore, 
with replacing (13) in (12) and using this fact 
that i

iT )1()1( , equations (12) and (11) make a 

system of 1N  equations and  1N  unknown 

Naaa ,...,, 10 , we can obtain from this system 
t

Naaa ),...,,( 10   to obtain 1N  equations. 

IV.NUMERICAL EXAMPLES 
Here we consider some ordinary differential equations 

problems with Clenshaw method and discuss the results. 
We start this section with Schrodinger equation. 
Example 1:  Let us consider 

                    .0)2( 222 xmEh
Let's ,1,2 2mEh  with y(0)=1, y(1)=e and exact 

solution .)(
2xexy Using change of variable such as  

2/)1(xt  we can transfer interval [0,1] to [-1,1]. 
We solved this equation by Clenshaw method and compare 

the results with different values of  N . The results 
for ,13,10,7,4N  respectively, were; 

.10730.7,10901.5,10469.4,10660.1 11852

As we expected when N increases errors decrease. 
Example.2: Consider Legendre's equation, 

                 .0)1(2)1( 2 yyxyx
As we know, this equation for ,1  and boundary 

conditions ,2)1(y  has solution .31)( 2xxy
 We choose 10,6,4N and the results were; 

171617 107756.2,102204.2,105511.5 .
Since our solution is a polynomial then for ,3N  we 

come to a solution with error zero. If you find the error is not 
zero but close to it, is because of rounding error. We must put 
in our mind this method is so good whenever the exact 
solution is a polynomial. 

Example 3: Let's consider Laguerre's equation given by; 

                      
                            0)1( yyxyx .

Suppose ,2 with boundary 
conditions .2/1)1(,2/7)1( yy

The exact solution is 2/21)( 2xxxy . Here we 
have, again a polynomial solution so we expect solutions with 
very small error. We examined for different values of N such 
as 3,2N  and get the results 0, 17107756.2 .

A nice discussion was published whenever coefficient 
functions or solution function are not analytic [7]. 
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