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Abstract—In this paper the exact solution of infinite boundary 

integral equation (IBIE) of the second kind with degenerate kernel 
is presented. Moreover Galerkin method with Laguerre polynomial 
is applied to get the approximate solution of IBIE. Numerical 
examples are given to show the validity of the method presented. 
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I. INTRODUCTION 
ROJECTION method has been applying for a long time, 
and its general abstract treatment goes back to the 

fundamental theory of Kantorovich (see [6]). In the paper 
Kantorovich gave a general schema for defining and analyzing 
the projection method to solve the linear operator equations. 
The detail of the method is given in [7, part II]. Elliott [4], 
collocation method based on the Chebyshev polynomials and 
Chebyshev expansions is applied to solve the numerical 
solution of Fredholm integral equation (FIE), and this often 
leads to the linear system of algebraic equations.  
To solve approximately the integral equation 

,,)(),()()( Dsdttgtsksfsg
D
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we usually choose a finite dimensional family of function that 
is believed to contain a function ( )ng s  close to true 

solution ( )g s . The desired approximate solution ( )ng s  is 
selected by forcing it to satisfy the equation (1). There are 
various means in which ( )ng s  can be said to satisfy equation 
(1) approximately, and this leads to different type of methods. 
The most popular and powerful tools are collocation and 
Galerkin method (see [2]).  
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Many problems of electromagnetics, scattering problems, 
boundary integral equations (see [12-14] leads to infinite 
boundary integral equation of the second kind 
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where ( )f s  is continuous function  and the kernel ( , )k s t  
might has singularity in the region },0:),{( ∞<≤= tstsD  
and ( )g s is to be determined.  

The theory of singular integral equations in which the 
integration contour of (2) is smooth, closed or open curve of 
finite length and the kernel has strong singularity, have been 
comprehensively developed by Gakhov and Muskhelishvili 
[5,10]. Many researchers have developed the approximate 
method to solve integral equation (2) when the limit of 
integration is finite (see [1], [3], [8-9], [11]) and literature 
cited therein. But for IBIE, few works have been done (see 
[13-14]). 

In this paper we develop Galerkin method with Laguerre 
polynomials to solve IBIE (2). Since Laguerre polynomials 
are orthogonal with weight function w(x)=exp(-x) on the 
interval [0,∞] it good fits the density function g(s). The details 
of the method is given in section 2. The exact solution for 
degenerate kernel k(s,t) is outlined in section 3. Finally, some 
numerical examples for different kernel k(s,t) and f(t) are 
presented in section 4. 

II. GALERKIN METHOD 
Consider Laguerre base functions as 
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with the following  properties 
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and 
( ) 1, 0,1, 2,...mL s m= =  . 

By taking the linear combination of Laguerre polynomials  
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and substituting into (2), yields  
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Let
0

( ) ( , ) ( )j jh t k s t L t dt
∞

= ∫ , then equation (4) can be 

written as  
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Multiplying (5) by )(sLi , we obtain 
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where (a,b) is the inner product of a and b. 
Using orthogonolity condition the equation (6) can be 

written as  
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The system of equation (7) has unique solution if λ is not 
eigenvalues.  

III. EXACT SOLUTION FOR THE DEGENERATE KERNEL 

Let )()(),( 21 tpsptsk =  then the equation (2) becomes 
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Denoting the integral on the right side of (8) by c  
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we get 
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Substitution (10) into (9) gives 
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From (11) and (10) we obtain 
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IV. NUMERICAL EXAMPLE 
 

Examples 1: Let λ=1 and 
 

2

( , ) t sk s t e− −= , 5( ) sf s s e−= − . 
 
Due to (12) the exact solution of (2) is 5( )g s s= . For fixed 
λ=1, the system of equation (7) has unique solution and 
numerical results are shown in Fig. 1 and 2 for n=6. 

 

 
Fig. 1 For n=.6 
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Fig. 2 For n=.6 

 
 

Example 2: Let λ=1 and 

2 2

( , ) t sk s t e− −= ,     
24 3( )

8
sf s s eπ −= − . 

Since the kernel k(s,t) is a degenerate kernel from (12) it 
follows that 4( )g s s= . For n=6, the results are shown in 
Figs. 3 and 4.  
 
 

 
Fig. 3 For n= 6. 

 

 
Fig. 4 For n= 6. 

 

V. CONCLUSION 

Due to the orthogonality property on the interval [0, )∞  
with exponential weight function, we have used the Laguerre 
polynomials as an approximate solution. Galerkin method is 
applied to find the unknown coefficients. Mapple software is 
used to obtain the approximate solution. Figure 1 and 3 show 
good convergence for finite interval for small n, while Figure 
2 and 4 demonstrate excellent convergence for infinite interval 
[0,∞].  
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