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Abstract—In this paper, we have proposed a Haar wavelet quasi-

linearization method to solve the well known Blasius equation. The 

method is based on the uniform Haar wavelet operational matrix 

defined over the interval [0, 1]. In this method, we have proposed the 

transformation for converting the problem on a fixed computational 

domain. The Blasius equation arises in the various boundary layer 

problems of hydrodynamics and in fluid mechanics of laminar 

viscous flows. Quasi-linearization is iterative process but our 

proposed technique gives excellent numerical results with quasi-

linearization for solving nonlinear differential equations without any 

iteration on selecting collocation points by Haar wavelets. We have 

solved Blasius equation for 1 2α≤ ≤ and the numerical results are 

compared with the available results in literature. Finally, we 

conclude that proposed method is a promising tool for solving the 

well known nonlinear Blasius equation. 

 

Keywords—Boundary layer Blasius equation, collocation points, 

quasi-linearization process, uniform haar wavelets. 

I. INTRODUCTION 

HE solutions of the one-dimensional third order boundary 

value problem described by the well known blasius 

equation is similarity solution of the two dimensional 

incompressible laminar boundary layer equations. Tsou et al. 

[1] made a numerically and theoretically experiment on this 

problem to prove that a blasius flow is physically realizable. A 

recent study by Boyd [2], [3] pointed out how this particular 

problem of boundary layer theory has arisen the interest of 

promient scientist. In fluid mechanics, the problems are 

usually governed by systems of partial differential equations. If 

somehow, a system can be reduced to a single ordinary 

differential equation, this constitutes a considerable 

mathematical simplification of the problem. If the number of 

independent variables can be reduced, then partial differential 

equations can be replaced by ordinary differential equation. In 

the modeling of boundary layer, this is sometimes possible and 

in some cases, the system of partial differential equations 

reduces to a system involving a third order differential 

equation. 

 
H. Kaur, corresponding author, is with the Mathematics Department, 

SLIET, Longowal, India (e-mail: maanh57@gmail.com). 

V. Mishra Author is with the Mathematics Department, SLIET, Longowal, 

India (e-mail: mishrasliet560@gmail.com). 

R. C. Mittal Author is with the Mathematics Department, IIT Roorkee, 

India (e-mail: rcmmmfma@iitr.ernet.in). 

Unfortunately, since Blasius equation is non-linear, there is 

not known analytic solution in closed form. The Blasius 

problem models the behavior of two-dimensional steady state 

laminar viscous flow of an incompressible fluid over a semi-

infinite flate plate, provided the boundary layer assumptions 

are verified is governed by the continuity and the Navier-

Stokes equations of motion for classical Blasius flate plate 

flow prob [4] and governing equations are simplified to 
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or 

 

where 0,y U U∞= =
 
at 0x = .

 The boundary conditions for this case are that both 

components of the velocity are zero at the wall due to no slip, 

and that the horizontal velocity approaches the constant free 

stream velocity at some distance away from the plate. 

 Assuming that the leading edge of the plate is 0x  and the 

plate is infinity long. To make this quantity dimensionless, it 

can be divided by y to obtain where uf the dimensionless 

stream function is. The velocity component u  can be 

expressed as follows: ( , ) asu x y y→ ∞ → ∞  for the Blasius 

flate plate flow introducing a similarity variable and a 

dimensionless stream function ( )f η  as; 

 

Rex

U y
y

vx x
η = =                             (3) 

1
; ( ' )

2

u Uv
f v f f

U x
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where Rex  is the local Reynolds number Ux

v

 = 
 

. We obtain by 

applying (3) and (4).  
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And the equation of continuity is satisfied identically on the 

other hand, we get

  
2 2

2
'' ; '''

u U u U
Uf f

y vx vxy

∂ ∂
= =

∂ ∂
 

                      (6) 

 

Note that in (3)-(6), U U∞= represents Blasius whereas 

U uw=  indicates sakiandis flow, respectively. By inserting 

(4)-(6) in (2), this system can be simplified further to an 

ordinary differential equation. To do this, we have an equation 

that reads 

 

'''( ) ( ) ''( ) 0f f fα η η η+ =                           (7) 

 

Transformed boundary conditions for the momentum (7) 

are ' 0 0f f atη= = = and ' 1 .f asη→ → ∞
 

In Blasius equation, the second derivative of ( )f η at zero 

plays an important role. Howarth [5] solved the Blasius 

equation numerically and found ''(0) 0.33206f = . Asaithambi 

[6] solved the Blasius equation more accurately and obtained 

this number as ''(0) 0.332057336f = . Some researchers have 

solved the problem numerically and some analytically. 

However, the solutions obtained were not very accurate. A 

homotopy perturbation solution to this problem was presented 

by Fang [7], He et al. [8] Ahmad [9], [10] also obtained the 

solution of Blasius problem using approximate analytical 

method. Liao [11], [12] obtained an analytic solution for the 

Blasius equation which is valid in the whole region of the 

problem. He constructed a five-term approximate-analytic 

solution for the Blasius using the variational iteration method 

[13] and Abbasbandy [14] obtained numerical solution of 

Blasius equation by adomians decomposition method. Many 

calculations should be done to construct the resulting semi-

analytic solutions and this increases considerably the CPU 

time especially when a large number of terms of solutions are 

to be used. From the review of the proposed schemes, two 

general limitations may be observed: The proposed 

approximate-analytic methods cannot yield accurate solutions 

when a rather small number of solution terms are used.  

Our main goal here is to show how to solve numerically the 

blasius problem by Haar wavelet approximation. In this work, 

the Haar wavelet quasilinearization (HWQ) process is 

proposed to solve the classical Blasius flat-plate problem. The 

numerical results are obtained via proposed method for 

1,1.2,1.5,1.8α = and 2  and compared with the available 

results in literature.  

II. STRUCTURE OF HAAR WAVELETS BASED ON MULTI 

RESOLUTION ANALYSIS (MRA) 

Wavelets were ripe for discovery in the 1980s. The great 

impetus came from two discoveries: the multiresolution of 

Mallat or Meyer and most of all the discovering by 

Daubechies [15] compactly supported orthogonal wavelets 

with arbitrary smoothness. Wavelets generalize readily to 

several dimensions. 

The
 
Haar wavelet function was introduced by Alfred Haar 

in 1910 [16] in the form of a rectangular pulse pair function. 

After that many other wavelet functions were generated and 

introduced. Those include the Shannon, Daubechies [15] and 

Legendre wavelets. Among these forms, Haar wavelet is the 

only real valued wavelet that is compactly supported, 

symmetric and orthogonal. The basic and simplest form of 

Haar wavelet is the Haar scaling function that appears in the 

form of a square wave over the interval [0,1]t ∈ , generally 

written as;  

 

1

1 [0,1)
( )

0 elsewhere

t
h t

∈
= 


                             (8) 

 

The above expression, called Haar father wavelet, is the 

zero
th
 level wavelet which has no displacement and dilation of 

unit magnitude. The following definitions illustrate the 

translation dilation of wavelet function. 

There are many excellent accounts of multiresolution and 

wavelet theory. 

The sequence { }
0i i

ψ ∞

=
 is a complete orthonormal system in 

2[0,1]L  and by using the concept of multiresolution analysis 

(MRA) as an example the space jV  can be defined like 

 

{ }, 0,1,2,....,2 1jj j k j
V sp ψ

= −
=

 
1

1 1 1 2 2 1 0
....... ,J

j j j j j j j
W V W W V W V+

− − − − − == ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕    (9) 

 

The linearly independent functions , ( )j k tψ spanning jW  are 

called wavelets. Original signal can be expressed as a linear 

combination of the box basis functions in jV .The functions 

( )tψ  and 
, ( )j k tψ  are all orthogonal in[ ]0,1 , with  

 
1

,

0

( ) ( ) 0j kt t dtψ ψ =∫ and 
1

, ,

0

( ) ( ) 0j k l mt t dtψ ψ =∫        (10)

 
 

For ( ) ( ), 0,0j k ≠  in the first case and ( ) ( ), ,j k l m≠  in 

the second. 

The Haar mother wavelet is the first level Haar wavelet and 

can be written as the linear combination of the Haar scaling 

function by using 

 

2 1 1( ) (2 ) (2 1)h t h t h t= + −                            (11) 

 

Similarly, the other wavelets can be generated with two 

operations of translation and dilation. Each Haar wavelet is 

composed of a couple of constant steps of opposite sign during 

its subinterval and is zero elsewhere. The term wavelet is used 
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to refer to a set of orthonormal basis functions generated by 

dilation and translation of a compactly supported scaling 

function
1( )h t (father wavelet) and a mother wavelet 

2 ( )h t
 

associated with an multiresolution analysis of 
2 ( )L R . Thus we 

can write out the Haar wavelet family as 

 

  

0.5
1

2 2

0.5 1
( ) (2 ) 1

2 2

0 elsewhere

j j

j

j j

k k
t

k k
h t h t k t

+ ≤ <


+ +
= − = − ≤ ≤




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                  (12) 

 

For 2, 2 1, 0, 0 2 1
j j

i i k j k≥ = + + ≥ ≤ ≤ −
 
and collocation 

points are defined as    

1

2 , 1, 2,...., 2 .
2

l

l

t l m
m

−
= =    

Here m is the level of the wavelet, we assume the maximum 

level of resolution is index J , then  2 ,( 0,1,2,...., );jm j J= =
 

in case of minimal values 1, 0m k= = then 2i = . For any 

fixed levelm , there are m series of i  to fill the interval 

[ )0,1 corresponding to that level and for a provided J , the 

index number i  can reach the maximum value 12JM += ,when 

including all levels of wavelets. 

We can find the required derivatives in terms of operational 

matrix. The operational matrix
,
( )

i n
p t of order 2 2m m×  can be 

obtained by integration of Haar wavelet. Integrals can be 

evaluated from (12) and the first two of them are given below. 

Also for the ease of implementation, we have used the same 

notations for Haar wavelets and their integrals as [17]. 
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III. TRANSFORMATION OF BLASIUS EQUATION AND SOLUTION 

PROCEDURE TO SOLVE THE PROBLEM 

We begin now the development of the numerical procedure 

for solving the Blasius problem. The transformation 

tan
2

tπ
η  =  

 
 and a collocation method with orthogonal Haar 

wavelets are introduced to solve numerically the third order 

nonlinear Blasius differential (7).  

Under the transformation tan
2

tπ
η  =  

 
, derivatives are derived 

as  

2 2
2

2 2
cos ( / 2) 2cos( / 2)sin( / 2).

2

d f d f df
t t t

dtd dt

π
π π π

η
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                               (14) 
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6 4

3 3 3 2

2
2 2 2

2

4 4cos( / 2) 18
cos ( / 2) cos ( / 2)sin( )

2
cos ( / 2) ( 2cos ( / 2)cos( ) sin ( ))

td f d f
t t t

d dx

d f df
t t t t

dtdt

π
π π π

η π π

π π π π
π

+
= −

+ − +
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The proposed technique is based on operational matrix at 

collocation points. The operational matrix is derived from 

integration of Haar wavelet family by Chen and Hsiao in 1997 

[17]. The Haar basis has the very important property of 

multiresolution analysis that 1 .j j jV V W+ = ⊕  The orthogonality 

property puts a strong limitation on the construction of 

wavelets and allows us to transform any square integral 

function on the interval time [ )0,1  into Haar wavelets series as 

 
2 1

0 0 2 2
0 0

( ) ( ) ( ), [0,1]

j

j jk k
j k

f t c h t c h t t
∞ −

+ +
= =

= + ∈∑ ∑
             

(16) 

 

Similarly the highest derivative can be written as wavelet 

series ( )i i

i

a h t
∞

=−∞
∑ . In applications, Haar series are always 

truncated to 2m terms, that is 
2

0

( )
m

i i

i

a h t
=
∑  [17], then we have 

used the quasi-linearization process. The quasi-linearization 

process is an application of the Newton Raphson Kantrovich 

approximation method in function space [18]. The idea and 

advantage of the method is based on the fact that linear 

equations can often be solved analytically or numerically while 

there are no useful techniques for obtaining the general 

solution of a nonlinear equation in terms of a finite set of 

particular solutions. Consider an n
th
 order nonlinear ordinary 

differential equation  

 
( ) (1) (2) (3) ( 1)

( ) ( ( ), ( ), ( ), ( )......, ( ), )
n n

L f t g f t f t f t f t f t t
−=

     
(17) 

 

with the initial conditions 

 
(1) (2) ( 1)

0 1 2 1
(0) , (0) , (0) ,......, (0)n

n
f f f fλ λ λ λ−

−= = = =
   

 (18) 

 

Here ( )nL  is the linear th
n  order ordinary differential 

operator, g
 
is nonlinear function of ( )f t

 
and its ( 1)n −

 

derivatives are 
( )

( ), 0,1,2,......, 1.
s

f t s n= −
 

The quasi-linearization prescription determines the  ( 1)
th

r +
 

iterative approximation to the solution of (17) and its 

linearized form is given by (19). 
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where (0)
( ) ( )r rf t f t= .The functions 

( )s su

g
g

f

∂
=

∂
 are functional 

derivatives of the functions. The zero
th
 approximation 

0 ( )f t  is 

chosen from mathematical or physical considerations. 

We linearize the nonlinear (7) by using quasi-linearization 

process and followed by simplification yields 

 
'' '' '' ''

1 1
( ) ( ) ( ) ( ) ( ( ) 2 ( )) ( ) ( ) ( )

r r r r r r r
f t f t f t f t f t f t f t f t f t+ += + − +    (20) 

 

Then by following Haar wavelet quasilinearization method 

[19]-[21], equation can easily be written as the system. 
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Fig. 1 Plot of Comparison of Present Method for 2α =  

IV. NUMERICAL RESULTS AND DISCUSSION 

In blasius equation, the second derivative of ( )f η at zero 

plays an important role. Numerical solutions by applying the 

proposed technique to several values of η and 2α = for 

( )f η and its derivatives are given in Table I and comparison 

is shown in Fig. 1. For different values of 1,1.2,1.5,1.8α =  

''( )f η are computed and dipicted in Table II and Fig. 2. 

Further the quantity 
2

2

d f

dη
for 0η = has been computed i.e 

''(0) 332057f = . Computational work is computed by C++ 

and MATLAB R2007b for wavelet mode 32.m =  
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Fig. 2 Plot of ''( )f η to the Blasius Flow for Different Values of α  
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TABLE I 

WAVELET SOLUTION ( )f η AND ITS DERIVATIVES FOR DIFFERENT VALUES OF 

η AND 2α =  

η  ( )f η  '( )f η  ''( )f η  

0.0156 

0.0469 

0.0781 

0.1094 

0.1719 

0.2031 

0.2344 

0.2656 

0.2969 

0.3281 

0.3594 

0.3906 

0.4219 

0.4531 

0.4844 

0.5156 

0.5469 

0.5781 

0.6094 

0.6406 

0.6719 

0.7031 

0.7344 

0.7969 

0.8281 

0.8594 

0.8906 

0.9531 

0.9844 

4.053e-005 

0.0003648 

0.0010133 

0.0019861 

0.0049046 

0.0068503 

0.0091202 

0.0117144 

0.0146329 

0.0178756 

0.0214426 

0.0253339 

0.0295495 

0.0340893 

0.0389535 

0.0441419 

0.0496545 

0.0554915 

0.0616527 

0.0681382 

0.0749479 

0.0820826 

0.0895403 

0.1054305 

0.1138610 

0.1226164 

0.1316967 

0.1508286 

0.1608813 

0.005188 

0.015565 

0.025941 

0.036318 

0.057067 

0.067440 

0.077810 

0.088178 

0.098541 

0.108901 

0.119254 

0.129643 

0.139938 

0.150266 

0.160583 

0.170888 

0.181179 

0.191453 

0.201712 

0.211947 

0.222162 

0.232354 

0.242519 

0.262761 

0.272834 

0.282871 

0.292869 

0.312745 

0.322606 

0.332057 

0.332054 

0.332046 

0.332037 

0.331954 

0.331893 

0.331805 

0.331698 

0.331563 

0.331396 

0.331193 

0.330951 

0.330666 

0.330337 

0.329959 

0.329533 

0.329049 

0.328516 

0.327911 

0.327246 

0.326515 

0.325713 

0.324838 

0.322865 

0.321759 

0.320571 

0.319299 

0.316491 

0.314951 

 
TABLE II 

COMPUTED ''( )f η FOR DIFFERENT VALUES OF 1,1.2,1.5,1.8α =  

η  ''( )

1

f η
α =  

''( )

1.5

f η
α =

 
''( )

1.8

f η
α =  

0.0156 

0.0469 

0.0781 

0.1094 

0.1406 

0.1719 

0.2344 

0.2656 

0.2969 

0.3594 

0.3906 

0.4219 

0.4531 

0.4844 

0.5156 

0.5781 

0.6094 

0.6406 

0.6719 

0.7344 

0.7656 

0.7969 

0.8281 

0.8594 

0.9219 

0.9531 

0.9844 

0.332057 

0.332054 

0.332046 

0.332034 

0.332001 

0.331954 

0.331805 

0.331698 

0.331563 

0.331193 

0.330951 

0.330666 

0.330337 

0.329959 

0.329532 

0.328513 

0.327915 

0.327246 

0.326515 

0.324838 

0.323891 

0.322865 

0.321759 

0.320571 

0.317943 

0.316491 

0.314951 

0.332057 

0.332057 

0.332055 

0.332049 

0.332034 

0.332005 

0.331913 

0.331841 

0.331751 

0.331505 

0.331346 

0.331159 

0.330941 

0.330692 

0.330405 

0.329723 

0.329319 

0.328873 

0.328382 

0.327262 

0.326627 

0.325941 

0.325196 

0.324396 

0.322620 

0.321638 

0.320595 

0.332055 

0.332052 

0.332048 

0.332038 

0.332021 

0.331996 

0.331910 

0.331848 

0.331769 

0.331557 

0.331421 

0.331262 

0.331077 

0.330868 

0.330629 

0.330052 

0.329712 

0.329337 

0.328927 

0.327988 

0.327455 

0.326889 

0.326260 

0.325591 

0.324104 

0.323284 

0.322409 

 

 

 

V. CONCLUSION 

 In this work Haar wavelet method is applied to solve 

nonlinear Blasius equation. To the best of our knowledge, the 

method of quasi-linearization has not been used for above 

nonlinear problem with Haar wavelets. The advantage of 

quasi-linearization is that one does not have to apply iterative 

procedure. The results of the comparison with other method 

indicate that the proposed method is feasible. Also the effect 

of constant parameters on response of system for Haar wavelet 

method is also shown by figures.  It is also shown that the use 

of the quasi-linearization process and proposed transformation 

makes easier by Haar wavelet method to handle nonlinearity in 

a shorter time of computations. We observed that ''( )f η at any 

point near the 0η = decreases whenα increases. 

ACKNOWLEDGMENT 

Author Harpreet Kaur is thankful to Sant Longowal Institute 

of Engineering and Technology (SLIET), Longowal, 

(Established by Govt. of India) for providing financial support 

as a senior research fellowship. 

REFERENCES 

[1] F.K. Tsou, E. M. Sparrow and R. J. Goldstein, “Flow and heat transfer 

in the boundary layer on a continuous moving surface,” Int. J. Heat. 

Mass Trans., vol.10, no. 2, pp. 219-235, February 1967. 

[2] J. P. Boyd, “Pad´e approximant algorithm for solving nonlinear ODE 

boundary value problems on an unbounded domain,” Comput. Phys., 

vol. 11, pp. 299-303, 1997. 

[3] J. P. Boyd, “The Blasius function in the complex plane,” J. Experi. 

Math., vol. 8, pp. 381-394, 1999. 

[4] R. Cortell, “Numerical solution of the classical Blasius flat-plate 

problem,” Appl. Math. Comput. vol 170, pp. 706-10, 2005. 

[5] L. Howarth ,”On the solution of the laminar boundary layer equation,” 

Proc Roy Soc London, vol. 164, pp. 547-79,1938. 

[6] A. Asaithambi, “Solution of the Falkner-Skan equation by recursive 

evaluation of Taylor coefficients,” J. Comput. Appl. Math., vol. 176, pp. 

203-14, 2005. 

[7] T. Fang, F. Guo and C.F. Lee, “A note on the extended Blasius 

Problem,” Appl. Math. Lett. vol. 19, pp. 613-17, 2004. 

[8] J. H. He , “Comparison of homotopy perturbation method and 

homotopy analysis method,” Appl. Math. Comput, vol. 156, pp. 527-39, 

2004. 

[9] F. Ahmad, ”Degeneracy in the Blasius problem,” Electron J Differ 

Equations, vol. 92, pp. 1-8, 1998. 

[10] F. Ahmad, Al-Barakati W.H., “An approximate analytic solution of the 

Blasius problem,” Commun. Nonlinear Sci. Numer. Simul, vol. 14, pp. 

1021-24, 2009. 

[11] S.J. Liao,”An explicit, totally analytic solution of laminar viscous flow 

over a semi-infinite flat plate,” Commun. Nonlinear Sci. Numer. Simul. 

vol. 3 no. 2, pp. 53-57, 1998. 

[12] S. J. Liao, “A an explicit, totally analytical approximate solution for 

blasius viscous flow problem,”   Int. J. Non-Linear Mech., vol. 34, 1999. 

[13] J. He. “Approximate analytical solution of Blasius equation,” Commun 

Nonlinear Sci Numer Simul., vol. 4 no. 1, pp. 75-80, 1999. 

[14] S. Abbasbandy, “A numerical solution of blasius equation by adomians 

decomposition method and comparison with homotopy perturbation 

method,” Chaos, Solitons and Fractals, vol. 31, pp. 257-260, 2007. 

[15] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” 

Comm. Pure Appl. Math. , vol. 41, pp. 909-996, 1998. 

[16] A. Haar, Zur theorie der orthogonalen Funktionsysteme. Math Annal., 

vol. 69, pp. 331-71, 1910. 

[17] C.H. Hsiao, “State analysis of linear time delayed system via Haar 

wavelets,” Math. Comput. Simu. vol. 44, pp. 457-470, 1997. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

1077

 

 

[18] R. E. Bellman and Kalaba, Quasilinearization and nonlinear boundary 

value problems, Elsevier, New York, 1965. 

[19] H. Kaur, R.C. Mittal and V. Mishra,” Haar wavelet quasilinearization 

approach for solving nonlinear boundary value problems,” Amer. J. 

Comput. Math., vol. 1, pp. 176-182, 2011.                

[20]  V. Mishra, H. Kaur and R.C. Mittal, “Haar wavelet algorithm for 

solving certain differential,   integral and integro-differential equations,” 

Int. J. Appl. Math and Mech., vol. 8, pp. 1-15, 2012. 

[21] H. Kaur, R.C. Mittal and V. Mishra, “Haar wavelet approximate 

solutions for the generalized Lane Emden equations arising in 

astrophysics,” Comput. Phys. Commun. (2013). DOI: 

http://dx.doi.org/10.1016/j.cpc.2013.04.013) 

 


