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Model Predictive Control for Linear Discrete-Time

Systems with Random Dither Quantization
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Abstract—The random dither quantization method enables us
to achieve much better performance than the simple uniform
quantization method for the design of quantized control systems.
Motivated by this fact, the stochastic model predictive control
method in which a performance index is minimized subject to
probabilistic constraints imposed on the state variables of systems
has been proposed for linear feedback control systems with random
dither quantization. In other words, a method for solving optimal
control problems subject to probabilistic state constraints for linear
discrete-time control systems with random dither quantization has
been already established. To our best knowledge, however, the
feasibility of such a kind of optimal control problems has not
yet been studied. Our objective in this paper is to investigate the
feasibility of stochastic model predictive control problems for linear
discrete-time control systems with random dither quantization. To
this end, we provide the results of numerical simulations that verify
the feasibility of stochastic model predictive control problems for
linear discrete-time control systems with random dither quantization.

Keywords—Model predictive control, stochastic systems,

probabilistic constraints, random dither quantization.

I. INTRODUCTION

THE quantization of control signals occurs in many

systems equipped with discrete-level actuators/sensors.

The control signals are also quantized in communication

networks. Thus, the quantized control of systems is one of

the most important research topics in recent years.
Recently, the random dither quantization method

that transforms a given continuous-valued signal to a

discrete-valued signal by adding artificial random noise

to the continuous-valued signal before quantization has

been proposed in [1]. It has been shown that the random

dither quantization method exhibits much better performance

than the simple uniform quantization method for linear

discrete-time systems with quantized control inputs. Hence,

this paper focuses on feedback control systems with random

dither quantizers. Although the effectiveness of random

dither quantization method has been verified, the constraints

imposed on the state variables of systems have not been taken

into consideration in [1] for the design of feedback control

systems with random dither quantization.
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Model predictive control (MPC), also known as receding

horizon control [2]-[4], is a well-established control method in

which a performance index is minimized subject to constraints

imposed on the state variables of systems. An important

advantage of MPC is its ability to deal with constraints on

the state and control variables of systems [5]-[7]. Although

several MPC methods [8]-[11] do not take account of

uncertain disturbances, another MPC methods [12]-[15] enable

us to fulfill constraints imposed on control systems against

uncertain disturbances. It is well known that the methods

of MPC against uncertain disturbances can be classified

into deterministic and stochastic approaches. The uncertain

disturbances that occur in control systems with random dither

quantization can be considered as the random quantization

errors. Thus, we address the stochastic MPC (SMPC) approach

where the expected values of the performance indices and

probabilistic constraints are considered by exploiting the

statistical information of uncertain disturbances.

Recently, several methods for solving optimal control

problems subject to probabilistic constraints imposed on the

state variables of systems for linear discrete-time control

systems have been proposed in [16]-[18]. In particular, a

method for solving optimal control problems subject to

probabilistic state constraints for linear discrete-time control

systems with random dither quantization has been proposed

in [19]. However, the feasibility of optimal control problems

subject to probabilistic constraints for linear control systems

with random dither quantization has not yet been studied.

Therefore, the objective of this paper is to examine the

feasibility of stochastic model predictive control problems

for linear discrete-time control systems with random dither

quantization. For this purpose, we conduct on numerical

simulations to verify the feasibility of stochastic model

predictive control problems for linear discrete-time control

systems with random dither quantization. In other words, the

obtained results of numerical simulations enable us to verify

the effectiveness of the SMPC method for linear discrete-time

control systems with random dither quantization subject to

state constraints.

This paper is organized as follows: In Section II, we

introduce some notations. In Section III, the system model

and random dither quantizer are formulated. In Section IV,

some preliminary results are provided. The main results are

provided in Section V. Finally, some concluding remarks are

given in Section VI.
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II. NOTATION

Throughout this paper, we adopt some notations introduced

in this section. Let R and N denote the sets of real and natural

numbers, respectively. Let R+ denote the set of non-negative

real numbers.

For matrix A, let A′ denote the transpose of A. For matrices

F = {fi,j} and G = {gi,j}, let the inequalities between F
and G, such as F > G and F ≥ G, indicate that they are

component-wise satisfied, i.e., fi,j > gi,j and fi,j ≥ gi,j hold

true for all i and j, respectively. Similarly, let multiplication

F ◦G indicate that it is applied component-wise, i.e., F ◦G =
{fi,j × gi,j} for all i and j.

Let P(S) denote the probability that event S occurs. If

P(S) = 1 holds true, S almost surely occurs. For a random

variable z, let the expected value and variance of z be

denoted by E(z) and V(z), respectively. For a random vector

x = [x1, · · · , xn]
′ whose components are random variables,

let E(x) and V(x) denote E(x) = [E(x1), · · · , E(xn)]
′ and

V(x) = [V(x1), · · · ,V(xn)]
′,respectively.

Let q denote the static nearest-neighbor quantizer toward

−∞ with the quantization interval d as shown in Fig. 1 of

[19].

III. SYSTEM MODEL

In this section, we introduce the system model for linear

discrete-time control systems with random dither quantization.

Here, we consider the following linear discrete-time system:

x(t+ 1) = Ax(t) +Bv(t), (1)

v(t) = q (u(t) + η(t)) , (2)

where t ∈ N is the time step, x(t) : N → R
n is the state,

u(t) : N → R
m is the control input. Moreover, q is the

quantizer defined in Section II and η(t) : N → R
m is an

independent and identically distributed random variable with

the uniform probability distribution on [−d/2, d/2). From (2),

we can see that the random dither quantization transforms a

given continuous-valued signal to a discrete-valued signal by

adding artificial random noise to the continuous-valued signal

before quantization.

Throughout this paper, the system coefficients A and B are

assumed to be known constant matrices. Also, we suppose that

the pair (A,B) is controllable. All components of state x(t)
are observable, that is, they are exactly known at present time

t. Thus, we suppose that E(x(t)) = x(t) and V(x(t)) = 0.

It has been shown in [19] that the above system is

equivalently transformed into the following system:

x(t+ 1) = Ax(t) +B(u(t) + w(t)), (3)

w(t) = v(t)− u(t), (4)

where w denotes the quantization error. From the definition

of the random dither quantizer, we note that the quantization

error is also a random variable.

The following properties of the expectation and variance of

the quantization error w have been shown in [1].

Lemma 1 ([1]): For the fixed quantization interval d, the

expectation and variance of the quantization error w are given

by

E(w(t)) = 0, (5)

V(w(t)) ≤ d2

4
. (6)

IV. PRELIMINARIES

The SMPC problem of system (3) has been already

formulated in [19]. The control input at each time t is

determined so as to minimize the performance index given

by

J := φ[x(t+N)] +

t+N−1∑
k=t

L[x(k), u(k)], (7a)

where N ∈ N denotes the length of the evaluation interval.

Moreover, let φ and L be defined by

φ := E [x(t+N)′Px(t+N)], (7b)

L := E [x(k)′Qx(k)] + u(k)′Ru(k), (7c)

where let P , Q, and R be weighting coefficients that are

positive definite constant matrices. Note that φ ∈ R+ is the

terminal cost function and L ∈ R+ is the stage cost function

over the evaluation interval.

For notational convenience, we introduce the so-called

expanded vectors as follows: Let X ∈ R
nN , U ∈ R

mN and

W ∈ R
�N be defined by

X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ ,

U(t) :=

⎡
⎢⎣

u(t)
...

u(t+N − 1)

⎤
⎥⎦ ,

W(t) :=

⎡
⎢⎣

w(t)
...

w(t+N − 1)

⎤
⎥⎦ .

We can see that X, U and W consist of the system

state, control input and quantization error, respectively, over

the evaluation interval. Next, we introduce the following

assumption.

Assumption 1: We assume that each element of x(t), U(t)
and W(t) are independent for each time t.

Under the above assumption, it has been shown in [19]

that the minimization problem of J in (7) subject to system

equation (3) has been reduced to the following quadratic

programming problem with respect to U:

min
U(t)

J [x(t),X(t),U(t)] = (8)

min
U(t)

{
U′(t) (B′QB+R)U(t)

+2 (Ax(t) +BE(W(t)))
′
QBU(t)

}
,
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where A ∈ R
nN×n, B ∈ R

nN×mN , Q ∈ R
nN×nN , and

R ∈ R
mN×mN are the so-called expanded matrices defined

in [19]

A :=

⎡
⎢⎢⎢⎣

A
A2

...

AN

⎤
⎥⎥⎥⎦ .

B :=

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B
. . .

...
...

. . .
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ ,

Q :=

⎡
⎢⎢⎢⎢⎣

Q 0 · · · 0

0
. . .

. . .
...

...
. . . Q 0

0 · · · 0 P

⎤
⎥⎥⎥⎥⎦ ,

R :=

⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦ .

Here, we introduce a variable pi that denotes the probability.

Let the probability in vector form be denoted by

p(t) =

⎡
⎢⎣

p1(t)
...

p2(t)

⎤
⎥⎦ : N → [0 1]n,

which means that each component pi(t) belongs to [0 1] for

each time t. Let p ∈ R
nN be defined by

p(t) =

⎡
⎢⎣

p(t+ 1)
...

p(t+N)

⎤
⎥⎦ .

Here, we impose the following probabilistic constraint on

the optimization problem: for k = t + 1, · · · , t +N and i =
1, · · · , n,

P (xi(k) < xi(k) < xi(k)) ≥ pi(k), (9)

where xi(k), xi(k) ∈ R, and pi(k) ∈ [0 1] for k = t +
1, · · · , t+N are given constant sequences and their subscript

indicates the ith element of the vector. Condition (9) indicates

that state xi over the prediction horizon must remain within

the bound [xi xi] at least with probability pi.
Let X ∈ R

nN and X ∈ R
nN be defined by:

X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ , X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ .

Using the above notation, probabilistic constraint (9) is

rewritten in vector form as

P (
X(t) < X(t) < X(t)

) ≥ p(t). (10)

In general, to solve the quadratic programming problem

with probabilistic constraints is not straightforward. In [17],

it has been shown that the probabilistic constraints (10)

can be converted into deterministic constraints using the

concentration inequalities.

Using Proposition 1 shown in [17], it is straightforward to

prove the following lemma.

Lemma 2: Suppose that the following condition holds:

Umin(t) ≤ BU(t) ≤ Umax(t), (11)

where Umin and Umax are defined by:

Umin(t) := X(t) + κ(t) ◦
√

(B ◦B)V(W(t)) (12a)

−Ax(t)−BE(W(t)),

Umax(t) := X(t)− κ(t) ◦
√
(B ◦B)V(W(t)) (12b)

−Ax(t)−BE(W(t)).

κ(t) :=

[
1√

1− p1(t)
, · · · , 1√

1− pnN (t)

]′
. (12c)

Then, the probabilistic condition (10) is fulfilled.

Proof: Substituting B into C in Proposition 1 of [17], we

can complete the proof.

Remark 1: From Lemma 2, the minimization problem of

(7) with probabilistic constraint (10) is reduced to the quadratic

programming problem (8) with deterministic constraint (11),

which can be solved using a conventional algorithm.

V. MAIN RESULTS

In this section, we examine the feasibility of stochastic

model predictive control problem (7) subject to probabilistic

constraint (10) by conducting on numerical simulations.

Here, we consider the following system model that is used

in [1] as an illustrative example.

ẋ(t) =

[
0 4
−3 2

]
x(t) +

[
0
1

]
u(t) (13)

The given linear continuous-time control system can be

transformed into the following linear discrete-time control

system using the zero-order hold method with sampling time

Δt = 0.01.

x(τ + 1) =

[
0.994 0.0404

−0.0303 1.0196

]
x(τ) +

[
0.0002
0.0101

]
u(τ)

(14)

The state of the closed-loop systems with the state feedback

controller u = −[0.2 2.9]x(t) used in [1] is denoted by xrdq .

On the other hand, the state of the closed-loop systems with the

stochastic model predictive controller proposed here is denoted

by xsmp.

In the following, we provide the simulation results to verify

the effectiveness of the proposed method. The parameters

employed in the numerical simulations are as follows: N = 5,

P = Q = 100, R = 1, d = 2, and xi = −1, xi = 1, pi = 0.8
for all i. We perform 100 trials for numerical simulations.

Time responses of both expectations of xrdq
1 and xsmp

1 are

shown in Fig. 1. We can see from Fig. 1 that xrdq
1 breaks the

constraint on the state but xsmp
1 fulfills it. Time responses of

both expectations of xrdq
2 and xsmp

2 are shown in Fig. 2. Fig. 2

reveal that xrdq
2 breaks the constraint on the state but xsmp

2
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fulfills it. Time responses of both variances of xrdq
1 and xsmp

1

are shown in Fig. 3. Comparing V(xrdq
1 ) with V(xsmp

1 ), note

that the dispersion of time response of the states is reduced

by taking constraint (10) into account. Time responses of both

variances of xrdq
2 and xsmp

2 are shown in Fig. 4. It can be

observed from Fig. 4 that the variance of xsmp
2 is reduced

to a greater extent than the one of xrdq
2 . Time responses of

both norms of ||E(xrdq)|| and ||E(xsmp)|| are shown in Fig. 5.

We can see from Fig. 5 that ||E(xsmp)|| converges to zero

much faster than ||E(xrdq)||. Time responses of both norms

of ||V(xrdq)|| and ||V(xsmp)|| are shown in Fig. 6. It can be

observed from Fig. 6 that ||V(xsmp)|| is reduced to a greater

extent than ||V(xrdq)||.
All Figs. 1-6 reveal that the stochastic model predictive

control method is useful for linear discrete-time control

systems with random dither quantization subject to state

constraints. Consequently, we are able to verify the feasibility

and effectiveness of the stochastic model predictive control

method by numerical simulations.

VI. CONCLUSION

In this study, we have examined the effectiveness

of stochastic model predictive control method for linear

discrete-time systems with the random dither quantization.

Thus, the feasibility of optimal control problems subject to

probabilistic state constraints was investigated by numerical

simulations. It was shown that the optimal control problems

subject to probabilistic constraints can be reduced to quadratic

programming problems with deterministic constraints that are

solvable using a conventional algorithm. The obtained results

on numerical simulations reveal that the stochastic model

predictive control method proposed here exhibits much better

performance than the nominal random dither quantization

control method.

It is known that not only uncertain disturbances but also

time delays may cause instabilities and lead to more complex

analysis [20]-[25]. The control problem of random dither

systems with time delays is also a possible future work.

Fig. 1 Time responses of E(xrdq
1 ) and E(xsmp

1 ).

Fig. 2 Time responses of E(xrdq
2 ) and E(xsmp

2 ).

Fig. 3 Time responses of V(xrdq
1 ) and V(xsmp

1 ).

Fig. 4 Time responses of V(xrdq
2 ) and V(xsmp

2 ).
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Fig. 5 Time responses of ||E(xrdq)|| and ||E(xsmp)||.

Fig. 6 Time responses of ||V(xrdq)|| and ||V(xsmp)||.
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