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Numerical Simulation of Inviscid Transient Flows

in Shock Tube and its Validations 

Al-Falahi Amir, Yusoff M. Z, & Yusaf T 

Abstract—The aim of this paper is to develop a new two 

dimensional time accurate Euler solver for shock tube applications. 

The solver was developed to study the performance of a newly built 

short-duration hypersonic test facility at Universiti Tenaga Nasional 

“UNITEN” in Malaysia. The facility has been designed, built, and 

commissioned for different values of diaphragm pressure ratios in 

order to get wide range of Mach number. The developed solver uses 

second order accurate cell-vertex finite volume spatial discretization 

and forth order accurate Runge-Kutta temporal integration and it is 

designed to simulate the flow process for similar driver/driven gases 

(e.g. air-air as working fluids). The solver is validated against 

analytical solution and experimental measurements in the high speed 

flow test facility. Further investigations were made on the flow 

process inside the shock tube by using the solver. The shock wave 

motion, reflection and interaction were investigated and their 

influence on the performance of the shock tube was determined. The 

results provide very good estimates for both shock speed and shock 

pressure obtained after diaphragm rupture. Also detailed information 

on the gasdynamic processes over the full length of the facility is 

available. The agreements obtained have been reasonable.  

Keywords—shock tunnel, shock tube, shock wave, CFD. 

I. INTRODUCTION  

HIS paper describes the procedure for performance 

evaluation of a short-duration hypersonic test facility that 

build at the College of Engineering, Universiti Tenaga 

Nasional “UNITEN” in Malaysia.  The facility is designed so 

that it can be used as a shock tube, free piston compressor, 

shock tunnel and gun tunnel. The facility has been designed, 

constructed and commisioned for a wide range of diaphragm 

pressure ratios and different driver/driven working gases to 

get Mach number up to 6. The facility will allow various 

researches to be done in the field of high speed supersonic 

and hypersonic flows. The important application would be in 

power plants where the working fluid is always in a very high 

speed with high gas effects. 

 To verify and supplement some of the theoretical results, a 

hypersonic test facility of a somewhat unconventional design 

has been built. The bulk of the experimental investigations 

undertaken to date have dealt with pressure studies using high 

precision pressure transducers and an in house made fast 

response thermocouple were used to predict the pressure 

history and subsequently the shock wave strength P2/P1 and 

the surface temperature change profile during the facility 

operation. Using two pressure transducers the shock wave 

speed is measured experimentally for different driver/driven 

gas combinations.  
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A two-dimensional time-accurate time-marching Navier-

Stokes solver for shock wave applications is described. It uses 

the second-order accurate cell-vertex finite-volume spatial 

discretization and fourth order accurate Runge-Kutta temporal 

integration. Three simulations of particular conditions for a 

short duration high speed flow test facility are then presented 

and compared with experimental measurements. The 

simulations provide very good estimates for both the shock 

speed and shock strength obtained after diaphragm rapture 

and also provides detailed information on the gas dynamic 

processes over the full length of the facility. This detailed 

information may be used to identify some of the causes for 

observed variations in pressure and temperature. The 

agreements obtained have been reasonable.  

Construction of this facility is fundamentally important for 

the development of advanced instrumentation (in this case, 

fiber optic pressure sensors and fast response thermocouples), 

and heat transfer/fluid mechanics studies that are relevant to 

turbine investigations. The wind tunnel provides a convenient 

and low cost experimental facility that can produce the flow 

conditions (matched Mach and Reynolds numbers, 

temperature ratios etc) necessary for experimental simulation 

of turbulent flows. The advantage of developing 

instrumentation and investigating relevant flow fields in the 

wind tunnel environment is derived from the fact that the flow 

duration is very short (less than 1 second). This is sufficient 

time to establish the required flow fields and obtain the 

required measurements, but the energy requirements 

associated with operating the facility are relatively low. 

Hence, the facility is a very cost effective way to 

experimentally investigate critical heat and fluid flow 

processes associated with turbine power plants. 

II. PHYSICAL DESCRIPTION OF THE FACILTY 

The detail components of the facility are described briefly and 

shown in Figure 1. This project is a collaboration project 

between the University of Southern Queensland (USQ) in 

Australia and Universiti Tenaga Nasional (UNITEN) in 

Malaysia to design and construct a 10 m short duration 

hypersonic test facility. The facility consists of the following 

significant items:  

1. Driver section: a high-pressure section (driver), which will 

contain the high pressure driver gas.  

2. Discharge valve: to discharge the driver section after each 

run.  

3. Pressure gauge: to read the pressure inside the driver 

section, this section is also provided with a static pressure 

transducer to record the exact value of the driver pressure P4

at which the diaphragm ruptures.  

T
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Fig. 1 schematic diagram of UNITEN’s test facility 

4. Vacuum pump: when the driver gas is not air (eg. Helium 

or Hydrogen) then the driver section should be evacuated and 

filled with the required driver gas. 

5. The primary diaphragm: this is a thin aluminum membrane 

to isolate the low-pressure test gas from the high-pressure 

driver gas until the compression process is initiated.  

6. Piston compression section: A piston is placed in the barrel 

(driven tube) adjacent to the primary diaphragm so that when 

the diaphragm ruptures, the piston is propelled through the 

driven tube, compressing the gas ahead of it. This piston used 

with gun tunnel tests only.  

7. Discharge valve: to discharge the driven section after each 

run. 

8. Vacuum gauge: to set the pressure inside the barrel section 

to low values (vacuum values) less than atmospheric value. 

9. Barrel section: a shock tube section (smooth bore), to be 

filled with the required test gas (air, nitrogen or carbon 

dioxide). 

10. Barrel extension: the last half meter of the barrel on which 

the pressure transducers and thermocouples are to be attached 

(see details “A”). 

11. The secondary diaphragm: it is a light plastic diaphragm 

to separate the low pressure test gas inside the barrel from the 

test section and dump tank which are initially at a vacuum 

prior to the run. 

12. Test section: this section will expands the high 

temperature test gas through a nozzle to the correct high 

enthalpy conditions needed to simulate hypersonic flow. A 

range of Mach numbers is available by changing the diameter 

of the throat insert. 

13. Vacuum vessel (dump tank): to be evacuated to about 0.1 

mm Hg pressure before running. Prior to a run, the barrel, test 

section, and dump tank are to be evacuated to a low-pressure 

value.  

It is intended that this CFD solver be a useful tool in the 

design process of the test facility. The simulation will 

complement the experimental data. That is any experimental 

data which could be achieved from the facility need to be 

verified using a numerical tool.  

III. MATHEMATICAL MODEL 

In this Section, the fluid flow governing equations are 

presented in concert with the numerical scheme used to 

compute the compressible flow within the shock tube. 

A.  Euler Equation 

The two-dimensional continuity, x- and y-momentum and 

energy equations describing the turbulent flow of a 

compressible fluid expressed in strong conservation form in 

the x-, y-Cartesian co-ordinate system may be written as 

J
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w
    (1) 

where w represents the conserved variables and F  and G

are the overall fluxes in x-, y-directions respectively.  

w can be expressed as:  
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The body force J is zero vector since effect of gravity is 

negligible for high speed flow. 

0

0

0

0
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IV. NUMERICAL SCHEMES 

The numerical scheme was based on an earlier work by 

Zamri [21], [22]. The earlier solver was developed for two-

dimensional transient flow of two-phase condensing steam in 

low pressure turbine. Viscous effect was not taken into 

account in the earlier program. In the current work 

modifications were made so that the program can be applied 
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for high speed flow in shock tube. The following sections will 

discuss the numerical formulation of the modified flow 

solver.   

A.    Cell-Vertex Finite-Volume Spatial Discretization 

The flow domain is replaced by a finite number of control 

volumes, which are generated algebraically by the current 

solver.  The mesh system is commonly known as H-mesh and 

divides the physical domain into a set of discrete rectangular 

control volumes. An example of H-mesh is shown in Figure 2. 

A cell-vertex formulation is used in which the flow 

variables are stored at cell vertices A, B, C and D as has been 

shown in Figure 2. Cell-vertex formulation offers some 

advantages over the cell-centered one in which cell-vertex 

method offers higher accuracy on irregular grid. 

(i+1, j)

(i+1, j+1)

(i, j+1)(i, j)

Cell (i, j)

Boundary S

Fixed Area

D C

B
A

Fig. 2 An illustration of a typical 2D H-mesh. 

For a uniform mesh, there would be no difference between the 

cell-centered and cell-vertex schemes; however, cell-vertex 

scheme does not require extrapolation to the solid boundary to 

obtain the wall static pressure, which is necessary in solving 

the momentum equations for cells adjacent to the solid 

boundary. 

Starting from known values of primitive variables from the 

previous time-step, the values of F  and G  are determined at 

each node. Then the line integration is performed for each 

control volume in turn for the four conserved variables. 

Integrating Equation (1) with respect to volume 

0)()( dVGdVFdV
t

w
CC  (8) 

Using Gauss divergence theorem the whole equation can be 

reduced to  

dxGdyF
t

w
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1
  (9) 

Applying the above equation to a typical control volume and 

defining Ri, j as the residual for the cell, the same discritized 

equation for the cell is: 

xGyF
t

w
jiCjiC

ji
,,,,

,

1
 (10) 

jiC
jiji

ji R
t

w
wR ,,

,,

,

1
)(

 (11) 

where wRij  represents the residual for each cell and 

)( ,,,,,, xGyFR jiCjiCjiC

.

The calculated residuals apply to the values of properties 

within the cell, whereas, the variables are actually stored at 

the nodes. Consequently, they have to be redistributed to the 

four surrounding nodes. This is done by sharing the changes 

equally between the four nodes as shown in Figure 3, as 

suggested in the second-order central differencing scheme. 

Thus:

)(25.0 ,11,1,1, jijijijiA RRRRwR  (12) 

(i, j)
A

- - - - - effective control volume for node A

0.25R(i-1, j)
0.25R(i-1, j-1)

0.25R(i, j-1) 0.25R(i, j)

Fig. 3 Distribution of cell residual to nodes. 

For nodes at the wall, since two cells share a single node, the 

residual obtained from Equation (12) is doubled. For the 

nodes at the corners, since only one cell share the node, the 

residual obtained is quadrupled. Thus, the equivalent 

discretized equation for node (i, j) will be:  

wR
t

w
A

A
    (13) 

B. Treatment of the Inviscid Fluxes 

All the inviscid fluxes are calculated by using central 

differencing scheme, therefore the differencing scheme is 

second order accurate, from equation (11); 

)( ,,,,,, xGyFR jiCjiCjiC

Applying to control volume shown in Figure 1 
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C.    Artificial Dissipations 

All second-order central-differencing schemes, even with a 

stable time-step, suffer from certain tendencies to instability 

due to the odd-even decoupling near a discontinuity. The 

scheme can be stabilized by introducing a small amount of 

artificial viscosity is suggested by Jameson et al. [11].  

This artificial viscosity formulation is a blend of second and 

fourth-order terms with a pressure switch to detect changes in 

pressure gradient. The fourth-order terms, for any conserved 

variables, w  is: 
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444
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The second-order dissipation terms are defined as:  
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,   ,   and   in the above equations are 

coefficients, which are functions of the local pressure gradient 

to be defined later. 

The fourth-order terms will not affect the global accuracy 

of the second-order scheme, but they eliminate the 

background oscillations caused by the central-differencing 

scheme, which is second-order accurate. However, near a 

discontinuity, e.g. around a shockwave, they lead to 

occurrence of oscillations and appearance of overshoots. On 

the other hand, second-order terms are very dissipative and 

can eliminate high oscillations near a discontinuity but 

produce too much background oscillations. Following 

Jameson et al. [11], the fourth-order terms are turned off near 

discontinuities, by means of a pressure sensor, and only 

second-order terms will be in operation in these regions. A 

pressure sensor introduced to detect the steepness of the 

pressure gradient and has the form: 

11

11

2

2
2

ijijij

ijijij

xij
PPP

PPP
XSFq   (17) 

jiijji

jiijji

yij
PPP

PPP
YSFq

11

11

2

2
2   (18) 

SF2X and SF2Y are second-order dissipation coefficients with 

typical values of 0.10-0.50. 

The pressure switch defined to turn off the fourth-order 

and turn on the second-order terms near a discontinuity takes 

the forms:  

xij

4 = max (0, SF4X-
xij

2 )    (19) 

yij
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2 )    (20) 

where: 
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, q
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)    

SF4X and SF4Y are fourth-order dissipation coefficients with 

typical values of 0.005-0.01.  

It can be seen that near a discontinuity, q and 2 are of 

order 1 and the second-order becomes the dominant 

dissipative term. In the remainder of the domain the 

background dissipation is provided by the fourth-order terms. 

SF4X and SF4Y must not be too large since they will create 

too much numerical viscosity in the flow domain and thereby 

mask the physics of the flow. 

The total dissipation will be:  

wDwDwD yijxijij    (21) 

where: 
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After the addition of the dissipation terms the descritized 

equation for node A becomes:  

wDwR
t

w
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A

   (22) 

The dissipation term D wA , is only evaluated in the first 

stage and frozen for the next three stages of the Runge-Kutta 

time stepping scheme, as follows. 

D. The Multi-stage Runge-Kutta Time Stepping Scheme 

Equation (22) is integrated with respect to time by means 

of a four-stage Runge-Kutta time stepping scheme, as 

proposed by Jameson et al. [11]: 
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where the superscripts, n and n+1 refer to the time intervals in 

the main integration sequence, 1, 2, 3, 4 refer to the 

intermediate time-steps in the Runge-Kutta scheme. The 

coefficients 1 2 3 4, , , are 0.250, 0.333, 0.500 and 

1.000 respectively.

V.   BOUNDARY CONDITIONS 

A. Solid Boundary 

Only the solid boundary condition is considered in the 

current work since the flow is confined within the tube. At the 

wall, no-slip boundary condition is imposed for the 

momentum equations to enforce no mass fluxes can penetrate 

through the solid boundary. For the energy equation, adiabatic 

condition is assumed. Solid boundary nodes only have 

contributions from two cells. However, the control volumes 

associated with the solid boundary nodes are only half of that 

for the internal nodes. So, prior to the temporal integration the 

residuals are doubled. 

At the solid boundary, it has been shown by Hirsch [23],

that for Euler equations only one characteristic enters the flow 

domain and only a single physical boundary condition is to be 

imposed. This condition is expressed by the vanishing normal 

velocity:- 

Vnormal = 0

As a consequence, all convective flux components through 

the solid boundary will vanish. This means that in the 

expression for the flux through a cell face on a solid 

boundary, only the pressure remains, i.e.:- 

F dy G dx P
dy

dx
C C

0

0

      (24) 

The pressure on the solid boundary face can be calculated 

directly by taking the average values of the nodes at both ends 

of the cell face. When the flow is assumed to be inviscid, the 

velocity at the solid boundary is non-zero. 

B.  Treatment of Dissipation Terms near the Boundaries 

To evaluate the dissipation terms, variables at two 

neighbouring nodes on either side of the calculating points are 

required. At the boundary, only variables on one side of the 

node are known. The other two variables need to be 

determined by extrapolation. Consistent with Gustafsson and 

Sundstrom’s [24] recommendations, at the inlet and exit 

boundaries, the extra variables are calculated by first-order 

extrapolation. Only one extra variable is required as the 

variables at the inlet and exit boundaries are fixed by the inlet 

and exit boundary conditions respectively. For example, the 

extra variable required to calculate the dissipative term at j =
2 is calculated by:- 

w w wi i i0 1 22     (25) 

It has been observed by Pulliam [25], Swanson and Turkel 

[26] and Caughey and Turkel [27] that the treatment of 

dissipation terms, especially at the solid boundaries, can have 

a strong effect on the accuracy and convergence rate of a 

viscous or even inviscid flow computation. An important 

conclusion that can be drawn from these studies is the 

necessity to reduce the second-order dissipation terms at the 

solid boundaries. The treatment used is that recommended by 

Pulliam [25] and used by Bamkole [28] and Zamri [21,22].  

Modifications are only needed for the pitchwise 

components, D wyij . At i = 1, the fourth-order components 

are replaced by the second-order one by using one-sided 

difference, while the second-order terms are set to zero. So,  

       

D w w w wy j y j j j j1

4

1

4

1 2 32( )   (26) 

At i = 2, the extra variable needed for the fourth-order 

terms is calculated by means of a first-order extrapolation. 

With reference to Figure (2), the resultant term will become: - 

          

D w w w w wy j y j j j j j2

4

2

4

1 2 3 42 5 4( )   (27) 

VI. INITIAL CONDITIONS 

To start the iterations, initial flow field variables must be 

specified at all calculating points. In the current work, the 

pressure values are specified at both the driver and driven 

sections, in accordance with the desired pressure ratio. The 

flow is assumed to be in stagnant condition initially.  

VII. STABILITY CRITERIA 

Generally, explicit time-marching schemes suffer from 

instability problem, particularly when the time step is larger 

than that from the Courant Friedrichs Lewy (CFL) criterion. 

In order to ensure numerical stability, the maximum allowable 

time-step which can be used in the calculation is limited by:  

aV

x
CFLt .     (28) 

where    

CFL  =  CFL number, 

x = incremental distance, 

V  = speed, 

a = speed of sound =( RT)0.5  . 

For the four-stage Runge-Kutta scheme applied in a 1D 

problem to be specific, CFL = 2 2 . However, this number 

may be lower due to the non-linearity and multi-

dimensionality of the flow problem considered in the current 

work. In most cases, strict convergence cannot be obtained 

unless the time step is sufficiently small. Here, a time step 

size ranging from 1.0 to 5.0 s is used, without any stability 

problem. 
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VIII SOLUTION PROCEDURE 

The solution procedure of the solver can be summarized as 

follows:- 

Step 1: Generate the structured H-mesh. The details of the 

mesh system will be explained in the following 

sections. 

Step 2:  Initialise the flow variables at time = 0s.  

Step 3: Initiate the 4-stage Runge-Kutta (RK) time integration 

scheme. Here, the spatial integration of the governing 

equations to determine the residual in Equation 11 is 

calculated for the first RK stage. The cell residuals are 

then redistributed back to the neighbouring vertices 

using Equation 12. The solution vector is then time 

marched (see Equation  23) using the residuals for 

each vertex and the corresponding stage coefficient 

( ).The flow variables are then updated accordingly. 

Step 4: Step 3 is repeated until the maximum Runge-Kutta 

stage (in this case is 4) is reached.  

Step 5: Save the pressure value at the first station (refer to 

Figure 4). Update the time level (tn+1=tn+ t). Go to 

Step 3 until the desired time level is reached. 

Fig. 4 Location of station 1 and 2 

IX. VALIDATION OF THE CFD CODE 

To ensure the validity of the CFD code, in terms of the 

ability to capture shocks and contact discontinuity and to 

produce the correct pressure, density and speed profiles, the 

code has been validated against an exact solution for Inviscid 

Flow in Shock Tube. The situation considered is basically that 

in a shock tube with a pressure difference applied across the 

diaphragm. The initial conditions are shown in Figure 5. 

100 kPa1000 kPa

0.5 m0.5 m

Solution domain

Diaphragm
x

Fig. 5 Solution domain 

The direction x is chosen in the direction shown in Figure  

6 because the air flow that develops after the diaphragm 

ruptures will be from the high pressure section towards the 

low pressure section, i.e. x is chosen to be in the direction of 

the induced flow. 

The Sod problem [29] is an essentially one-dimensional 

flow discontinuity problem which provides a good test of a 

compressible code's ability to capture shocks and contact 

discontinuities with a small number of zones and to produce 

the correct density profile in a rarefaction.  

The problem spatial domain is 0 x  1. The initial 

solution of the problem consists of two uniform states, termed 

as left and right states, separated by a discontinuity at the 

origin, xo = 0.5. The fluid is initially at rest on either side of 

the interface, and the density and pressure jumps are chosen 

so that all three types of flow discontinuity (shock, contact, 

and rarefaction) develop. To the ``left'' and ``right'' of the 

interface we have,  

L = 1     R = 0.125 

PL = 1     PR = 0.1 

uL = 0    uR = 0 

The ratio of specific heats  is chosen to be 1.4 on both sides 

of the interface. 

A uniform grid spacing with the number N = 356 is used. 

The boundary conditions of the problem are held fixed as a 

short time span of the unsteady flow is considered. The wave 

pattern of this problem consists of a rightward moving shock 

wave, a leftward moving rarefaction wave and a contact 

discontinuity separating the shock and rarefaction waves and 

moving right rightward. Figure 6 shows comparisons between 

the present results for the pressure, density and Mach number 

at a time t = 0.2 ms and the exact solutions. It can be observed 

that the present work is capable of capturing the different 

types of discontinuities quite accurately. 
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Fig. 6 Results for the Sod’s shock tube problem at t = 0.2 
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The mesh size plays important role in determining the 

accuracy of the numerical solution. In order to understand this 

role the mesh size in x-direction has been investigated. Three 

different cases with different mesh size (N = 256, N = 356, 

and N = 456) and a diaphragm pressure ratio P4/P1 =10 have 

been used. Figure 7 shows the effect of using larger number 

of grid points in x-direction and how the solution is affected 

accordingly. From the Figure 8 it will be seen that the details 

of the shock wave are well captured when a larger number of 

grid points are used and the program becomes more stable and 

less oscillation is produced. Also the numerical and exact 

solutions are now very comparable when number of grid 

points N = 456 is used. Consequently, N = 456 have been 

used in all of the following runs.  
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Fig. 7 Pressure History at Different Mesh size in X-Direction at t = 

0.2 ms 

The x-t diagram is one of the important tools which 

give a good estimation for the maximum useful test time that 

can be obtained after removal of the diaphragm. Figures 8 and 

9 show the predicted x-t diagram for pressure and density 

profiles obtained for an air-air gas combination run. The 

diaphragm pressure ratio used for this simulation is (P4/P1)

=10. Figure 8 represents the x-t diagram for the pressure 

history; the contact surface does not appear in this figure as it 

follows the shock wave continuously as it apparent in Figure 

6, however it is very clear in Figure 9 which shows the x-t 

history for the density profile.  
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Figure 9 represents the density history along the 

whole length of the test facility. Both of the shock wave and 

the contact surface are displayed in this figure. The shock 

wave is followed by the contact surface until the reflected 

shock wave interact with the contact surface and then the 

wave is further reflects. The expansion waves are displayed in 

the two figures and due to the sufficient length of the driver 

section the shock wave and contact surface are intersected 

before the reflected expansion waves reach the end of the 

driven section.  
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X. INVISCID TRANSIENT FLOW IN SHOCK TUBE 

In this study, a sensitivity study on the flow model used 

has been performed as well as the time-step size, towards the 

accuracy of the flow solution applied for a shot with similar 

gases allocated in both the driver and driven sections (air-air). 

CFD solution for inviscid simulation for a diaphragm pressure 

ratio P4/P1 of 10 will be discussed. The simulation has been 

conducted using the actual dimensions of the test facility 

shown in Figure 10.  

In order to validate the numerical formulation for the 

inviscid terms, solver was applied to transient shock wave 

motion in real shock tube.  In the actual shock tube, a bush 

was used at the primary diaphragm section adjacent to the 

diaphragm to facilitate rapture process. In order to represent 

the bush, in the solver, an artificial wedge was included as 

shown in Figure 10. The exact shape of the bush cannot be 

used in the solver since it can only handle H-type mesh and 

therefore could not handle abrupt change in geometry.  
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Fig. 10 Mesh spacing allocated for each section 

The pressure, temperature, density and Mach number of 

the flow were stored in two stations, the first station is at the x
= 6183 mm from the left hand side end of the driver section, 

the second station is with an axial separation of 342 mm from 

the first station as shown in Figure 11.  

Station 2Station 1

wall

endFlow direction

Barrel

40342

Fig. 11 The two stations at the end of shock tube 

The pressure history for the above mentioned shot is 

depicted in Figure 12 from which one can follow the physics 

of the flow inside the shock tube. The first jump represents 

the shock wave, for which the pressure inside the barrel 

increases from 100 kPa to around 220 kPa. As the shock wave 

proceeds to the end of the tube it will hits the wall and reflects 

moving in the opposite direction increasing the pressure to 

about 450 kPa. The shock wave will then interact with the 

contact surface which is following the shock wave, and due to 

this interaction between the shock wave and the contact 

surface the pressure will be increased until it reaches its peak 

pressure value of 530 kPa. 
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Fig. 12 Pressure history for inviscid flow (air-air, P4/P1=10)

The shock wave speed can be determined from the CFD data 

obtained from this simulation. As the distance between the 

two stations is known (0.342 m) and the time of shock travels 

from station 1 to station 2 can be obtained from the pressure 

history graph, as show in Figure 13, the shock wave speed is 

determined for this shot is 518 m/s. comparing to the 

theoretical value for this pressure ratio (550 m/s) the 

percentage error is around 6% which is reasonable 
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Fig. 13 Shock wave speed (inviscid flow) 

Using the same procedure, the reflected shock wave speed can 

be determined as the wave reflects from the tube end and 

moves in the opposite direction (left direction), due to impact 

with the end wall the wave will lose some of its kinetic energy 

and consequently its speed decreases to about 342 m/s, as 

shown in Figure 14 which represents a close view for the 

reflection region in the pressure history graph. The time 

period from station 2 to station when is around 0.001 sec 

which is longer than the time period when the shock travels 

from station 1 to station 2 due to the energy lost after 

reflection.  
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Fig. 14 Reflected sock wave speed 

The same trend can be noted when the temperature 

history is investigated as shown in Figure 15. The first jump 

in the temperature profile represents the shock wave and the 

second jump is due to the reflected shock wave. The 

temperature is increased from the initial value 300 K to about 

380 K due to shock wave affect and when the shock reflects 

from the tube end the temperature rises to 475 and after 

interaction between reflected shock wave and the contact 

surface the flow temperature becomes about 490 K. 
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Fig. 15 Temperature history inside the shock tube (inviscid flow) 
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The x-t diagram is one of the important tools which 

give a good estimation for the maximum useful test time that 

can be obtained after removal of the diaphragm. Figures 16 

and 17 show the predicted x-t diagram for pressure and 

density profiles obtained for an air-air gas combination run. 

The diaphragm pressure ratio used for this simulation is 

(P4/P1) =10.  
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Fig. 17 x-t diagram for the pressure profile (inviscid flow) 

Figure 18 represents the density history along the 

whole length of the test facility. Both of the shock wave and 

the contact surface are displayed in this figure. The shock 

wave is followed by the contact surface until the reflected 

shock wave interact with the contact surface and then the 

wave is further reflects. The expansion waves are displayed in 

the two figures and due to the sufficient length of the driver 

section the shock wave and contact surface are intersected 

before the reflected expansion waves reach the end of the 

driven section.  
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Fig. 18 x-t diagram for the density profile (inviscid flow) 

Finally, to investigate the flow properties in 2D scheme, 

the results of the numerical simulations have been displayed 

in contour plots. The contour plot of the pressure history 

along the facility is shown in Figure 19. Time step used in this 

simulation is 0.000005 sec and the total number of iterations 

is 6000. The solver is programmed so that it stores the output 

data after each one hundred iterations, subsequently there will 

be 60 output files. Each file represents the data after 0.0005 

sec. As shown in this Figure, driver pressure P4=100 kPa and 

pressure in the driven section P1 is 10 kPa. 

Fig. 19 Contour plot for pressure history at t = 0 

After diaphragm rupture, shock wave travels right through the 

barrel while the expansion wave travels left through the driver 

section. These two waves are captured after 0.005 sec and 

shown in Figure 20. 

Fig. 20 Shock and expansion waves 

These two waves continue their journey towards the tube 

ends, at time 0.0081 s the shock wave hits the barrel end on 

the right hand side while the expansion wave reaches the left 

hand side of the facility as shown in Figure 21. 

Fig. 21Shock and expansion waves at the facility ends 

The two waves then will reflect from the end of the tube as 

shown in Figure 23. 

Fig. 22 Shock and Expansion wave reflection 

The reflected shock wave now moves to the left towards the 

contact surface while the reflected expansion wave moves to 

the right towards the contact surface and shock wave as 

shown in Figure 23. 

Fig. 23 Reflected waves move towards the contact surface 
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The shock wave interacts with the discontinuity surface and 

reflects again. This process continues for several times until 

getting pressure balance along the whole facility as shown in 

Figure 24. 

Fig. 24 Interaction between shock wave and contact surface 

Figure 25 shows velocity contour at t= 0.0029 sec after 

diaphragm rapture, at this ime the shock did not reflects yet, 

consequently the flow is symmetry and uniform in y-

direction. 

Fig. 25 Velocity contour before shock reflection 

As the shock wave reflects from the tube end it will move to 

the left and interact with the discontinuity surface and the 

flow no longer symmetry as shown in Figure 26. 

Fig. 26 Velocity contour after shock reflection 

XI. CONCLUSIONS 

The paper described the formulation of the 2D-CFD solver 

designed for simulation of flow in shock tube. The program 

has been applied to a standard case of inviscid flow in shock 

tube. The agreement with the analyzed solution is very good 

which proved the validity of the basic numerical scheme 

developed.  

The present code showed good capability to provide the x-t 

diagram successfully. From this diagram one can determine 

the useful duration (for this case it is about 10 ms), which is 

quite comparable compared to other facilities. It can be 

concluded, based on the agreement with the analytical results, 

that the numerical formulation for the inviscid part of the 

solver is valid. 

The results presented in this paper show that two-

dimensional modeling of the hypersonic test facility is an 

effective way to obtain facility performance data. Although 

this paper focused on the HTF facility, the CFD code is 

generic and may be applied to other facilities. 

The code could be further improved if a cylindrical 

coordinate system is used for mesh generation instead of the 

Cartesian coordinate system currently used. The simulations 

had successfully indicated that the flow is symmetry before 

shock wave reflection off the tube end and the flow is 

disturbed after shock reflection and interaction with contact 

discontinuity.  
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NOMENCLATURE 

a  Speed of sound 

D  Artificial dissipation component 

e  Specific internal energy 

eo  Total internal energy 

F   Axial component of the inviscid flux vector 

FT  Time step factor 

G  Tangential component of the inviscid flux 

vector

ho  Stagnation enthalpy 

h  Specific enthalpy 

P  Static pressure 

Po  Stagnation pressure 

Pb  Downstream static pressure 

R  Flux residual 

SF2X  Second order smoothing factor in axial 

direction 

SF2Y  Second order smoothing factor in tangential 

direction 

SF4X  Fourth order smoothing factor in axial 

direction 

SF24Y  Fourth order smoothing factor in tangential 

direction 

T  Temperature 

t  Time 

t  Time step for main calculation 

V  Overall velocity 

Vx  Velocity component in axial direction 

Vy  Velocity component in tangential direction 

w   Conserved variable vector 

x  Axial distance 

y  Tangential distance 

Greek Symbols 

Integration constant in Runge-Kutta time 

stepping 

 Enthalpy damping coefficient or coefficient 

in scaling factor equation 

Pressure gradient sensor 

Density 

  Implicit residual averaging coefficient 

  Volume of element 

  Artificial dissipation coefficient component 

Subscript 

o  Stagnation condition 

x  Cartesian co-ordinates 

y  Cartesian co-ordinates 

1  Initial state in driven section 

2 Flow conditions between shock wave and 

contact surface 

3 Flow conditions between rarefaction wave 

and contact surface 

4  Initial state in driver section  


