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Numerical Simulation of a Three-Dimensional
Framework under the Action of Two-Dimensional
Moving Loads

Jia-Jang Wu

Abstract—The objective of this research is to develop a general
technique so that one may predict the dynamic behaviour of a
three-dimensional scale crane model subjected to time-dependent
moving point forces by means of conventional finite element computer
packages. To this end, the whole scale crane model is divided into two
parts: the stationary framework and the moving substructure. In such a
case, the dynamic responses of a scale crane model can be predicted
from the forced vibration responses of the stationary framework due to
actions of the four time-dependent moving point forces induced by the
moving substructure. Since the magnitudes and positions of the
moving point forces are dependent on the relative positions between
the trolley, moving substructure and the stationary framework, it can
be found from the numerical results that the time histories for the
moving speeds of the moving substructure and the trolley are the key
factors affecting the dynamic responses of the scale crane model.

Keywords—Moving load, moving substructure, dynamic
responses, forced vibration responses.

1. INTRODUCTION

HE scale crane model investigated herein is a fabricated

structure [1], which consists of several parts: (1) the
stationary framework, (2) the moving rails, (3) the overhead
trolley and (4) the spreader, as shown in Fig. 1. The overhead
trolley runs on the moving rails and the moving rails move
along the two parallel beams (or fixed rails) on the top of the
stationary framework. In order to predict the dynamic
characteristics of the scale crane model due to the movements
of the moving rails and the overhead trolley, it is required to
determine the excitations on the scale crane model induced by
the moving rails and the overhead trolley. Thus, the dynamic
characteristics of a scale crane model can be predicted from the
forced vibration responses of the stationary framework due to
actions of the concentrated forces located at the four contacting
points between the stationary framework and the moving
substructure.

Existing standard finite element computer packages, such as
I-DEAS [2], [3] are not usually set up to easily accommodate
time-dependent, moving, loads. Therefore, by means of a finite
element package for solving the moving-force-induced
vibration problem, it requires the replacement of the moving
force(s) by equivalent nodal force vector(s) at any instant of
time. To this end, the fundamental principle used is to apply
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forces and moments to all the nodes of the finite element model
of the structure, making these forces and moments functions of
time. In order to develop techniques for deriving appropriate
force/time and moment/time functions for all the nodes on a
structure, a beam subjected to a single moving concentrated
force is initially studied [4]-[11]. Then, it is extended to deal
with a pair of beams, each of them subjected to two
time-dependent moving concentrated forces. This approach
may be applied to the dynamic analysis of the scale crane
model.
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Fig. 1 The scale crane model: (a) whole structure, (b) stationary
framework and (c) moving substructure (the rotating motor and
hoisting motor are not shown)

II. DERIVATION OF CONTACT POINT FORCES INDUCED BY THE
MOVING SUBSTRUCTURE AND TROLLEY

According to the substructure theory, the whole scale crane
structure can be divided into two parts: the stationary
framework and the moving substructure. Fig. 1 shows the
moving substructure consisting of two moving rails, a moving
trolley, and a spreader. The whole structure, the stationary
framework, and the moving substructure are shown in Figs. 1
(a)-(c). Fig. 2 (a) shows the concentrated forces ( F, (t) and

F,,(t)) at the four contact points (A, B, C and D) and the
relevant symbols (e.g., 0,X,y,Z ,C,(t), C (1) ... V,(t) and
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V., (1)) for the scale crane model structure [1]. The moving
substructure may move on the two fixed rails Q along the ¥

axis and the trolley may move on the two moving rails P along
the X axis. A, B, C and D are the four points of contact
between the two substructures. Fig. 2 (b) shows the free-body
diagram for each of the two moving rails P. From Fig. 2 (a), it
can be found that the centreline of the moving substructure
parallel to the X axis is a symmetric axis for the whole moving
substructure. Hence, the interactive forces between the two
fixed rails and one of the two moving rails are equal to the
corresponding forces between the two fixed rails and the other
one of the two moving rails. This is the reason why the contact
force at point A is equal to that at point B (i.e,
F,,(t)=F;(t)=F,(t)), and the contact force at point D is

equal to that at point C (i.e., F5(t) = F,. (t) = F,,(t)) as shown
in Fig. 2(a). Each contact force (either F,, (t) or F,,(t)) may be

divided into two components. One of them is due to the weight
of the whole moving substructure (Fig. 1 (c)), excluding the
weight of the moving trolley together with the spreader and the
hoisted container. This component maintains a constant
magnitude but changes its position when the whole
substructure moves in the Y direction along the two fixed rails.

The other component is due to the moving trolley together with
the spreader and the hoisted container. This component changes
its magnitude when the trolley moves in the direction parallel to
the X axis along the two moving rails. The summation of the
two contact force components mentioned above and the
excitations due to the drive motors defines the instantaneous
magnitude of each contact point force. The instantaneous
positions of the four contact point forces are determined by the
relative position between the two moving rails (on the moving
substructure) and the two fixed rails (on the top of the
stationary framework).

According to the principle of moment equilibrium, for point
Z1 as shown in Fig. 2 (b), one has

ZMZ] = _(% mmutg +% Fel Sin(a)elt))(xmot _Xz_a)+(%mpg)(% Xa)
- Zz(t)xa +(%mcg)(cx(t)+%xa) = O

or
Fo(®)=4m,g+4m.g(l+2(%5)

+ %(mmm g+ Fel Sin(welt))(% - XL")

Xa

M

Similarly, for point Z2 as shown in Fig. 2 (b), one has

zMzz =
- (% mmotg +% Fel Sin(a)elt))(xmot + XTE) + FZl (t)xa - (% mp g)(% Xa)
+(Emg)C, (H-3%)=0

or

Fpu(t) =4m, g ++m.g(1-2(%2))

+3 (Mg + Ry sin(@y D)3 +52)

Xa
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Fig. 2 (a) Contact point forces on the moving rails ( F,,(t) and
F,,(t)) and the relevant symbols; (b) Free-body diagram for each of

the two moving rails P

If the excitation due to the motor is negligible, i.e.,F, =0,
then (1) and (2) reduce to

Fo®)=4m,g+img+2(52)+im g -2=)  (3)

Fu®)=4m,g+4m.g(1-2(52) +4m,gG +32)  (4)

where
Cx (t) = Cxo +ch0t + % acxt2 (Sa)
or
C®) =Cp +Voly + 32017 +Vouat—1) (5b)
tx = (chmax _ch() )/acx (6)

where C,, and C,(t) represent the initial and the
instantaneous X co-ordinates for the centre of the trolley,
respectively. V., and V, represent the initial and the

cxmax

maximum speeds of the trolley along the X axis, a,, represents
the acceleration of the trolley, and t, represents the time that
to V, It is noted

the trolley takes to accelerate from V, xmax -

cx0
that all the subscripts X for the foregoing symbols represent

“along the X axis”. Equation (5a) represents the instantaneous
X co-ordinate, C,(t), for the trolley continuously accelerating

along the X axis and (5b) represents that for the trolley
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accelerating to the maximum speed V, and then moving at

cxXmax
this maximum speed along the X axis.

Since the forces given by (3) and (4), F,,(t) and F,,(t),
represent the forces acting on the two moving rails, P, the
forces acting on the two fixed rails, Q, are those of the same
magnitudes but in opposite directions, i.e.,

Fot)=—tm,g—tmg(+2(=2)—4m g -22) (7
Fu®)=—4m,g—img(-2%2) - 4m g3 +22)  (8)

III. CALCULATION OF Y CO-ORDINATES FOR THE NODES AT
WHICH THE CONTACT POINT FORCES ARE LOCATED

As shown in Fig. 2 (a), the moving substructure moves on the
two fixed rails along the y axis, hence the Yy co-ordinates of
the four contact points, A, B, C and D, vary with time. In order
to define the instantaneous y co-ordinates of the four contact
points it is necessary to calculate the position of the centreline
of the moving substructure (or the centre of the trolley) at
timet, C (1).

If the moving substructure (or the trolley) moves along the
Y axis with a constant acceleration a,, , then

C,(H)=C,, +V,

cy0

t+ia, t? 9)

where C, and V,, are the initial displacement and velocity of

the moving substructure (or the trolley), respectively. If the
moving substructure accelerates along the Yy axis to the

maximum speed V, and then moves with that speed, then

ymax

C,(1)=C +V,,t,+1a, t +V, . (t-t) (10)
. _ Vorma =V (11)
a,

oy

After the instantaneous position, Cy(t) , for the centreline of

the moving substructure (or the centre of the trolley) is
determined, the Y co-ordinates for the four contact points, A,

B, C and D, y,(t), Vs(t), Vc(t) and Yy (1), are easily
calculated:

Ya=C,-% (12)
Ye=C,)+% (13)
Ve®=C,)+% (14)
Yo®=C, -3 (15)

where Y, is the spacing of the two moving rails P, as shown in
Fig. 2 (a).

IV. FORCED VIBRATION OF A BEAM SUBJECTED TO A SINGLE
MOVING POINT FORCE

A. The Overall Equivalent Nodal Force Vector
y
A

f,‘“(t))[ P(t)

.

N\ clement s

14
£ X ', £

20

Fig. 3 Equivalent nodal forces f,*’(t) (i = 1 to 4) for the beam
element, S, on which a concentrated force P(t) applies

The equation of motion for a multiple degree-of-freedom
linear structural system is given by

MG} +[CHAM} +[KI{a®)} = {F O} (16)

where [M], [C] and [K] are the overall mass, damping and
stiffness matrices, respectively, and {((t)}, {q(t)} and {q(t)}

are the overall acceleration, velocity and displacement vectors,
respectively, while {F(t)} is the overall external force vector.

When a beam is subjected to a concentrated force, P(t), all
the nodal forces of the beam are equal to zero except those for
the beam element, S, on which the concentrated force P(t)
applies (Fig. 3) [4]-[11]. Hence, the overall external force
vector {F(t)} in (16) takes the form

{FO}=[000--- 1) £;7®) ;1) £,7®)--000]" (17)

where fi(s)(t) (i = 1 to 4) are the equivalent nodal forces for

the beam element, S, and are given by

£ N, (&)
£, —P(t) N,(£) (18)
1A (9] N;($)
£Ot) N, (&

where N,({) (i =1 to 4) represent the shape functions given
by [12]

N,($)=1-3¢%+2¢° (192)
N,(§)=(£-2¢7+¢7) ¢ (19b)
N;(§) =3¢ -2¢° (19¢)
N, (&) =(=¢"+¢7)¢ (19d)
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§=— (19¢)

B. Equivalent Nodal Forces Due to a Moving Point Force
P(t)

i Yy z
@ clement1 () [©) @ [6) O @) eclementn-1 (1)

Fig. 4 Beam subjected to a concentrated force P(t) moving with a
constant speed V

Fig. 4 shows a beam composed of n nodes and n-1 beam
elements. If a concentrated force P(t) moves from node 1 to
node n of the beam with a constant speed V, then the
relationship between the time interval, At, total time steps, (,
and the time duration required for the force to run over the
beam, t,, , is given by

Loax =G At (20)

The force and moment vectors contain the force and moment
information for all nodes on the beam at all time steps:

{Fti}q+1 :[Ftizo Fti:m Ftizzm Fti:th]T si=lton (21)

{Mti}q+1 :[Mti:o Mti:m Mtizzm Mti:th]T ,i=1ton(22)

where i represents the node number.
At time t = 0, the concentrated force is at node 1, as shown in
Fig. 4,

Fl,=Pt), F,,=0 (i=2ton)and M/, =0 (i=1 to n) (23)

Atany time t=r At (r =1 to q), the position of the moving
concentrated force, relative to the left end of the beam, is given
by

X, () =V r At (24)

The numerical identification of the beam element, S, on
which the moving concentrated force, P(t), is applied, at any
time t, is determined by

X, (t
s =(The integer part of #)+1 (25)

where / is the length of each beam element (Fig. 4).

The two nodes of the s (s = 1 to n-1) beam element are s and
s+1. Therefore, the nodal forces and moments when the moving
concentrated force, P(t), is on the s beam element at any time
t=rAt (r =1 to q) are given by

FtirAt =P() N](gp) (26)

R = PO N;(Sp) 27
Fl.=0(=1ton;i=sands+1) (28)
M =P® N, (&) (29)

M =P N, (&) (30)

M., =0 (i=1ton; i#sands+1) (31)
¢, = %O (32)

!

and N;(£,)=w(¢), (i = 1 to 4), are the shape functions
defined by (19).

V.NUMERICAL EXAMPLES

A. Validation

To confirm the technique that has been developed, a uniform
undamped simply supported beam of length L = 1 m and cross
section A=2 cm X1 cm with 10 beam elements (i.e., N =11) is
investigated using I-DEAS. The beam is made of steel with
density p = 7820 kg/m? and modulus of elasticity E = 206.8

GN/m?. At the instant of time t = 0, a vertical point force P (t) =
sin (10 t) N starts to move from the left end to the right end with
a constant speed V = 1 m/s. In order to perform the forced
vibration analysis of the simply supported beam subjected to a
moving harmonic force, a finite element model of the simply
supported beam is established, as shown in Fig 5. The
time-dependent nodal forces and moments for all the nodes of
the finite element model are obtained by means of the
self-developed FORTRAN program, as shown in Fig. 6. The
time histories of the vertical central displacements (at x=L/2)

of the simply supported beam obtained from the foregoing
dynamic-analysis methods are shown in Fig. 7. It is seen that
the results determined by I-DEAS are in good agreement with
those obtained from the two analytical closed-form solutions.
So, the Finite Element method has been shown to be
appropriate in this research.

Y

L,

Fig. 5 Finite element model of a simply supported beam for [-DEAS
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Declaring global variables: Dataset, Forceset, iFno, iResno, iResdir,iDatano, Tmax, Time, Cx0, Acx, Vexmax, DL,
( ), iDir(l ). inoData(Forset), rTime( Dataset), r  Dataset), elemF(4)

‘ Defining the information for response nodes : iNodena(),iDir().inoData() ‘

v

Defining the basic properties of the beam and the initial conditions of the
moving force : Tmax, Cx0, Vex0, Acx, Vexmax, g, DL

dt = Tmax/(Dataset-1)
rTime(*,*)=0 and rForce(*,")=0, Time = -dt, i = 0

»( 1

‘ Time=Time+dt, rTime(*,)=Time ‘

Calculating the magnitude of the moving force, sin(10t), and the element number
on which the force applies (see Equation (5.29)).

‘ Calculating force and moment for each node at time t using a shape function. ‘

e < T

Storing force/time and moment/time functions as an ASCII universal file.

Fig. 6 Flowchart of the computer program for calculating the
time-dependent nodal forces and moments, and storing the related
information as an ASCII universal file to be read by I-DEAS
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Fig. 7 Time histories for the vertical central displacements (at X = L/2)
of the simply supported beam obtained from the I-DEAS (---+---),

classical method (—A —) and Rogers’ method (—O—)

B. Dynamic Analysis of the Scale Crane Model

Fig. 8 shows the scale model for a mobile crane, where the
whole system is divided into two parts: the stationary
framework and the moving substructure. The dynamic
behaviour of the whole system is determined by the forced
vibration responses of the stationary framework subjected to
four concentrated time-dependent moving forces induced by
the substructure moving in the Y direction, and the trolley

moving in the X direction.
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- - :
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s ol N Va(t) :
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7 Nmm/ X
A
P2
4 Q Q

Two parallel beams

Fig. 8 Sketch of the scale model of a mobile crane studied
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* > denotes moving and = denotes stationary.
** + denotes acceleration and - denotes deceleration.

Fig. 9 Time histories for the moving speeds of the moving substructure
(V¢ (1) ) and the trolley (V, (1) )
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Fig. 10 Time histories of the vertical displacements of node 60, Z,(t)

In the present example, the initial position and the final
position, and the accelerating and decelerating conditions of the
trolley, are all listed in Fig. 9. It is noted that the positive sign
(+) denotes acceleration and the negative sign (—) denotes
deceleration. The magnitudes of the accelerations, or
decelerations, in a specified period are constant. For example,
during the interval 0 <t <1.0 s, the acceleration of the moving
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substructure is @, = +0.5236 m/s’, and is a constant. For the

example under discussion, the accelerations, or decelerations,
in different intervals of time are equal to each other, i.e.,

a,,|=|+0.5236/=|-0.523¢ m/s’. Unless specifically stated the

damping ratio (for each mode) is & =0.003 in this work.

For the finite element model of the scale crane rig when it is
subjected to time-dependent contacting forces induced by the
moving substructure and the trolley moving generally, as
shown in Fig. 9, the time histories of the displacements of node
60 on the fixed railway of the stationary framework (Fig. 8),

Z,, (1) (m), are shown in Fig. 10. The curve with + is for the
case for damping ratio £= 0.003, and the curve with O is for
&= 0.01. Because these two curves are coincident with each

other the damping effect appears to be negligible in this
example in the non-resonant condition. The dashed curve
(without any symbol) is obtained under the condition when the
velocities of the moving substructure are equal to half of the
corresponding values wused for the other two curves,
respectively. It is evident that the time taken for the former two
curves is twice that which is required for the dashed curve to
reach its maximum.

In the special case where the trolley is stationary (i.e.,
V., (t) = 0), and the moving substructure moves with velocities

V(1) according to the data given in Fig. 9, the time history of
Z,, (1) is shown in Fig. 10 by the curve with *. It is seen that

this curve is very close to the two former curves with symbols +
and O. This means that the influence of trolley motion is not
really significant in this example. Another special case is when
the substructure is stationary (i.e.,V,, (t) = 0), but the trolley is

moving with velocities V,,(t) , according to the conditions
given in Fig. 9. For this case the time history of Z,(t) is shown

in Fig. 10 by the curve with X . From Fig. 10 one sees that the
curve looks like a horizontal line, which agrees with the last
conclusion that the influence of trolley motion is not significant
in this particular example. It should be noted that the
superposition of the last two curves (with symbols * and X)) is
coincident with the former two curves (with symbols + and O)
as one would expect.

VI. CONCLUSIONS

A technique has been developed for using standard finite
element packages to analyse the dynamic response of structures
subjected to time-dependent moving forces. A computer
program has been designed to calculate the time-dependent
external nodal forces on the whole structure, and which
provides the equivalent nodal forces induced by point forces
moving around the structure.
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