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Abstract—This study presents the numerical simulation of
three-dimensional incompressible steady and laminar fluid flow and
conjugate heat transfer of a trapezoidal microchannel heat sink using
water as a cooling fluid in a silicon substrate. Navier-Stokes equations
with conjugate energy equation are discretized by finite-volume
method. We perform numerical computations for a range of 50 = Re =
600, 0.05W = P = 0.8W, 20W/cm® = q" = 40W/cm? The present
study demonstrates the numerical optimization of a trapezoidal
microchannel heat sink design using the response surface
methodology (RSM) and the genetic algorithm method (GA). The
results show that the average Nusselt number increases with an
increase in the Reynolds number or pumping power, and the thermal
resistance decreases as the pumping power increases. The thermal
resistance of a trapezoidal microchannel is minimized for a constant
heat flux and constant pumping power.

Keywords—Microchannel heat sinks, Conjugate heat transfer,
Optimization, Genetic algorithm method.

|. INTRODUCTION

ICROCHANNEL heat sink provides efficient cooling for

the high power density applications. In practice, the
cross-section  of  microchannels made by modern
micromachining technology in silicon substrates is essentially
trapezoidal. An experimental investigation has been performed
on the laminar convective heat transfer and pressure drop of
water in different trapezoidal silicon microchannels [1], [2]. It
was found that the values of the Nusselt number and the
apparent friction constant dependent greatly on different
parameters. Koo and Kleinstreuer [3] found that the viscous
dissipation was strongly dependent upon the hydraulic diameter
and the aspect ratio of the channel. Herwig and Mahulikar [4]
investigated that the temperature dependence of the properties
of the fluid. Li et al. [5] found that compared with the inlet
property method, both average and variable property methods
have significantly lower apparent friction coefficients, but
higher Nusselt numbers in the longitudinal direction.
Optimization methods with numerical analyses are regarded as
general design tools and offer a number of advantages,
including automated design capability, varieties of constraints,
and multi-objective applications. Liu and Garimella [6]
presented analytical models and compared these models with
the more robust three-dimensional numerical model and
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optimized the microchannel geometry. Husain and Kim [7], [8]
presented a single objective optimization of microchannel heat
sink based on the surrogate methods. These studies revealed
that pressure and pumping power constrained optimization
limits the applicability of pumping source used at the
micro-level. Husain and Kim [9], [10] performed shape
optimization of micro heat exchanger and microchannel heat
sink respectively and obtained Pareto-optimal solutions.
Husain and Kim [11] demonstrated the numerical
multi-objective optimization of a microchannel heat sink
design. The steady and laminar fluid flow and conjugate heat
transfer were studied by a three-dimensional numerical
analysis.

The objective of this work is to numerically investigate the
fluid flow and the heat transfer characteristics of water in
trapezoidal microchannels made of silicon plates and attempt to
explain the optimum results.

11.PROBLEM DESCRIPTION AND NUMERICAL SCHEME

A silicon-based microchannel heat sink model as shown in
Fig. 1 has been taken to analyze and optimize based on genetic
algorithm. The flow is assumed to be steady and laminar, and a
uniform heat flux is applied at the bottom of the heat sink. The
governing equations for the 3-D incompressible flow can be
written as follows,
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Under hydraulic boundary conditions, uniform velocities are
applied at the channel inlet. Exposed to the atmosphere, the
outlet pressure is the static pressure. The no-slip boundary
condition is applied at all solid walls. The thermal boundary
condition at the bottom wall is a constant wall heat flux, while
an adiabatic boundary condition is imposed on the top wall and
T =T, at the microchannel inlet. The governing equations are

discretized by using a control-volume-based finite-difference
method with a power-law scheme on an orthogonal
non-uniform staggered grid. The coupling of velocity and
pressure terms of momentum equation are solved by SIMPLE
(Semi-Implicit Method for Pressure-Linked Equation)
algorithm [12]. The solution is considered convergent when the
normalized residual of the algebraic equation is less than a
prescribed value of 10,
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Fig. 1 Schematic of microchannel heat sink

Multi-objective  optimization based on evolutionary
algorithms requires many evaluations of objective functions to
search for the optimal solutions. These evaluations of objective
functions become very expensive and time consuming in the
absence of a representative response function. Therefore,
surrogate-based approximation is used to save time and to
avoid the numerical cost. The genetic algorithms (GA) use a
population of several individuals to perform the optimization
by simulating the benefit and evolution mechanism of biology
[13]. It was suggested to apply various surrogate models. In this
study, the response surface methodology (RSM) [14] and
genetic algorithms (GA) are used to carry out the optimal
process. The response surface methodology is a parameter
design for efficient experiment. It can find out the mix effect of
parameters by fewer experiments, and create an objective
function. After creating an objective function, we use the
genetic algorithms (GA) to find out the optimal geometries. GA
solves optimization problem iteratively based on biological
evolution process in nature.

In the solution procedure, a set of parameter values is
randomly selected. Set is ranked based on fitness values (i.e.
performance factor in this study). The best combination of
parameters leading to minimum fitness values is determined. A
new combination of parameters is generated from the best
combination by simulating biological mechanisms of offspring,
crossover and mutation. This process is repeated until the
fitness value with a new combination of parameters cannot be
further reduced anymore. The final combination of parameters
is considered as the optimum solution. It is convenient to adopt
GA to resolve the heat sink optimization.
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Fig. 2 Grid independent test of case 2
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Fig. 3 Friction constant distribution

I1l.  RESULTS AND DISCUSSION

The geometric parameters of the case studied are shown in
Table I. For the validation of the theoretical model and the
choice of appropriate boundary conditions, the numerical
results are compared to the available experimental results in the
literature for case 2, which is shown in Fig. 2. It indicates that
the Reynolds number dependence of the Nusselt number is
obvious. A comparison of theoretical predictions with the
experimental data in the literature is used to assess the grid
independence of the results. Different size meshes, 22x24x50,
26x28x60 and 30x32x70 are employed in testing the numerical
model. It has been validated using experimental data reported
in Wu and Cheng [1]. Certain discrepancies between
calculations and the available data of Wu and Cheng [1] may be
caused by the roundoff and discretization or measurement
errors. Considering these factors, the overall comparisons with
test data are satisfactory. Fig. 3 shows the distribution of
friction constant for laminar flow. It can be seen from the figure
that the laminar friction constant fRe of the trapezoidal
channels increases with the increase in Re, having a trapezoidal
cross-section, deviate greatly from the classical value of fRe
=16.

From Fig. 4, it can be seen that the Nusselt number increases
with the increase of Re, especially for the optimum case. The
change in the Nusselt number due to different geometric
parameters are more obvious at large Reynolds numbers than at
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low Reynolds numbers. For the trapezoidal channels, there are
three geometric parameters including « ("‘%/ w) o B

Co,+m) and y ( ) which affect the friction and heat
transfer. Fig. 5 shows that the change of the total thermal
resistance is not obvious at # >0.2. Fig. 6 presents that total

thermal resistance decreases while S and y increase at
a =0.65 and P=0.3W. Therefore design variables g and y

can be suitably utilized to economize the optimization
procedure in view of multi-variable, multi-objective and
multi-disciplinary design optimizations. From Figs. 7 and 8, the
results show that a lower thermal resistance can be obtained at
the cost of a higher pumping power, whereas low pumping
power are associated with high thermal resistances. It provides
a designer to pick up the optimal solution in accordance with
the available pumping power to drive the coolant.

TABLE |
GEOMETRIC PARAMETERS
WC Wb Hc Hb Wb/Wc
Casel 423.2um 327.4um  56.13um 193.87um 0.774
Case2 157.99um 61.62um 56.28um 193.72um 0.390
Case3 437.21pm  270.19pum  110.7um 139.9um 0.618
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Fig. 4 Averaged Nusselt number distribution
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Fig. 5 Effects of the depth of the microchannel tothewhole depth ( )
on the total thermal resistance

Fig. 6 Effects of the ratio of upper width and lower width () on the
total thermal resistance
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Fig. 7 Distribution of inlet thermal resistance at different pumping
power
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Fig. 8 Distribution of outlet thermal resistance at different pumping
power

IV. CONCLUSION

Numerical simulations of Nusselt number Nu, friction
constant fRe, and thermal resistance R,, for the laminar flow of

water through the trapezoidal microchannels with different
geometric parameters have been obtained. The laminar Nusselt
number and friction constant of the trapezoidal microchannels
increase with Re. This increase is more obvious at large
Reynolds numbers than that at low Reynolds numbers. The
enhancement in heat transfer is more significant at large
Reynolds numbers. A comparison of results shows that
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geometric parameters have more significant effects on the
performance. The present study demonstrates the numerical
optimization of a trapezoidal microchannel heat sink design
using the response surface methodology (RSM) and the genetic
algorithm method (GA). Three design variables are selected
from the geometric variables, the ratio of the upper width of the
microchannel to the whole width « , the depth of the
microchannel to the whole depth £ and the ratio of upper width

and lower width of the microchannel y . The thermal resistance

of a trapezoidal microchannel is minimized for constant heat
flux and constant pumping power. Based on the optimal results,
the optimum condition is ¢« =0.8, #=0.586 and y=0.79.
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