
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:10, 2017

1757

Numerical Modeling of Wave Run-Up in Shallow
Water Flows Using Moving Wet/Dry Interfaces
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Abstract—We present a new class of numerical techniques to
solve shallow water flows over dry areas including run-up. Many
recent investigations on wave run-up in coastal areas are based on
the well-known shallow water equations. Numerical simulations have
also performed to understand the effects of several factors on tsunami
wave impact and run-up in the presence of coastal areas. In all these
simulations the shallow water equations are solved in entire domain
including dry areas and special treatments are used for numerical
solution of singularities at these dry regions. In the present study we
propose a new method to deal with these difficulties by reformulating
the shallow water equations into a new system to be solved only in the
wetted domain. The system is obtained by a change in the coordinates
leading to a set of equations in a moving domain for which the
wet/dry interface is the reconstructed using the wave speed. To solve
the new system we present a finite volume method of Lax-Friedrich
type along with a modified method of characteristics. The method is
well-balanced and accurately resolves dam-break problems over dry
areas.

Keywords—Run-up waves, Shallow water equations, finite volume
method, wet/dry interface, dam-break problem.

I. INTRODUCTION

SHALLOW water equations have a very wide range

of applications in coastal, environmental engineering

and hydraulics. These equations have also been used to

model complex flows including shocks and discontinuity.

Development of numerical method to solve shallow water

equations has been a very active field of research for the

last decade. However, the most challenging problem remain

the solution of the wave run-up and treatment of wet/dry

interfaces in the shallow water flows. Many problems of

interest involve wetting and drying zones occur for example, in

the inter-tidal flats and/or coastal flood pains [1]. The difficulty

is in numerically model the dry area where no water exists in

these area, and the depth- averaged velocity components are

normally determined by dividing the discharge per unit width,

which can leads to predictions of unacceptable negative water

depth and numerical instability [2].

In recent years, attention is widely given to the solution of

the wet/dry interface problem in shallow water flows using

approximate Riemann solver including HLL scheme [3], Roe

scheme [4], Osher scheme [5] and a weighted average schemes

[6]-[8]. Numerical simulations have also been performed to

A. Alghosoun is with School of Engineering and Computing Sciences,
University of Durham, South Road, Durham DH1 3LE, UK (e-mail:
alia.r.al-ghosoun@durham.ac.uk).

M. Herty is with RWTH Aachen University, IGPM, Templergraben 55,
D-52056 Aachen, Germany (e-mail:herty@igpm.rwth-aachen.de).

M. Seaid is with School of Engineering and Computing Sciences,
University of Durham, South Road, Durham DH1 3LE, UK (e-mail:
m.seaid@durham.ac.uk).

understand the effect of tsunami waves impact run-up in the

presence of coastal slopes [9]. However, when these methods

are employed to solve shallow water flows over wetting and

drying areas, numerical inaccuracies usually occur at the

wet/dry interfaces due to the loss of entropy property in the

discretization. To overcome this difficulty, many techniques

and methods have been developed but some of the resultant

methods may not maintain the conservation property in the

process of enforcing states at the moving wet/dry interface

so as to suppress any undesired numerical oscillations. The

objective of this study is to develop a stable, monotone and

accurate numerical method able to approximate solutions to

shallow water flows over wetting and drying areas.

In the current work, we propose a method for solving

moving wet/dry interfaces in shallow water equations using

a new system coordinates and the point-wise Riemann solver.

Here, we reformulate the shallow water equations in a new set

of moving coordinates and treat them as the model variables to

be predicted at every time step. To solve the new shallow water

system we consider a well-balanced finite volume method. The

object of this study is to develop a numerical approach able to

accurately approximate solutions to moving wet/dry fronts in

shallow water flows. Our aim is to develop a class of numerical

methods that are simple, easy to implement, and accurately

solve the moving wet/dry fronts in shallow water flows without

relying on complicated techniques. The proposed finite volume

method can be interpreted as a fractional-stage scheme. In

the first stage, the transport terms are solved by integrating

the system along the characteristics defined by the interface

velocity, while the numerical solutions are computed through

a finite volume formulation of flux form in the second stage.

Numerical results are presented for dam-break problems over

dry areas using both flat and non-flat bed topography.

II. A NEW SYSTEM OF SHALLOW WATER EQUATIONS

In this study we consider shallow water flows over dry areas

as illustrated in Fig. 1. The conventional governing equations

for this class of flows consist of

∂h

∂t
+

∂q

∂x
= 0, x ∈ [0, a],

(1)
∂q

∂t
+

∂

∂x

(
q2

h
+

1

2
gh2

)
= −gh

∂z

∂x
, x ∈ [0, a],

where [0, a] is the flow domain, z(x) is the bottom topography,

h(t, x) is the water height above the bottom, g is the

acceleration due to gravity and q(t, x) is the flow discharge,

see Fig. 1. Equation (1) have been widely used to model

water flows, flood waves and dam-break problems over wetted
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Fig. 1 Illustration of a shallow water system over dry area

domains. In the present work we are interested in solving

shallow water flows over dry areas and therefore (1) are solved

subject to the following initial condition

h(0, x) =

⎧⎨
⎩
h0, if x ≤ x0,

0, if x > x0,

(2)

where x0 ∈ [0, a] is the initial location of the wet/dry interface

and h0 is a given water height. It should be stressed that most

of numerical methods for solving (1), (2) perturb the dry state

using a wetted threshold above which the solution state is

considered to be dry. This is mainly used to avoid division by

zero for updating the water velocity u during the simulation

process. However, perturbing the water height may result in

inaccuracy in the computed solutions and may lead to false

location of the wet/dry fronts on the coastal zones. In the

current study we reformulate (1), (2) in a moving domain and

solve the obtained model only for the wetted area and the

advection of the wet/dry interface is obtained using the speed

of the water. Thus, we solve the following system

∂h

∂t
+

∂q

∂x
= 0, x ∈

[
0, χ(t)

]
,

(3)
∂q

∂t
+

∂

∂x

(
q2

h
+

1

2
gh2

)
= −gh

∂z

∂x
, x ∈

[
0, χ(t)

]
,

where the interface χ(t) is defined by the ordinary differential

equation

χ̇(t) = |u|+
√

g h, χ(0) = x0. (4)

Next we introduce the new coordinate

y =
x

χ(t)
,

and the shallow water equations (3) are rewritten in the new

coordinates as

χ
DH

Dt
+

∂Q

∂y
= 0, y ∈ [0, 1],

(5)

χ
DQ

Dt
+

∂

∂y

(
Q2

H
+

1

2
gH2

)
= −gH

∂Z

∂y
, y ∈ [0, 1],

where H(t, y) = h (t, y (χ(t))), U(t, y) = u (t, y (χ(t))),

Z(t, y) = z (t, y (χ(t))) and the advective derivative

D

Dt
=

∂

∂t
− χ̇ y

χ

∂

∂y
. (6)

For simplicity in the presentation we rewrite (5) in a

conservative form as

χ
DW

Dt
+

∂F(W)

∂y
= S(W), (7)

where W = (H,Q)
T
,

F(W) =

⎛
⎝ HU

Q2

H
+

1

2
gH2

⎞
⎠ , S(W) =

⎛
⎝ 0

−gH
∂Z

∂x

⎞
⎠ .

It is clear that the shallow water equations (5) are now

solved for (H,HU) in the fixed domain y ∈ [0, 1].

III. NUMERICAL PROCEDURES

We solve (7) we consider a fractional step procedure for

which the advective part is decoupled from the conservative

part in the temporal discretization. Thus, at each time step the

new water height and discharge are updated by solving first

the advective equation

χ
DW

Dt
= 0, y ∈ [0, 1], (8)

followed by solving the conservation system

∂W

∂t
+

∂F(W)

∂y
= S(W), y ∈ [0, 1]. (9)

Hence, we discretize the space domain in cells

[yi−1/2, yi+1/2] with same length Δy and we divide

the time interval into subintervals [tn, tn+1] with uniform size

Δt. Here, tn = nΔt, yi−1/2 = iΔy and yi = (i+ 1/2)Δy is

the center of the control volume. We use the notation wi(t)
to denote the space average of a function W(t, x) in the cell

[yi−1/2, yi+1/2] at time t, by Wn
i = wi(t

n), and by Wi+1/2

to denote the numerical flux at y = yi+1/2 and time t,

wi(t) =
1

Δy

∫ yi+1/2

yi−1/2

W(y, t)dy, Wi+1/2 = W(yi+1/2, t).

To solve the advection equation (8) we used the

well-established method of characteristics. Thus, for each

mesh point yi+1/2 the characteristic curves Yi+1/2 associated

with (6) are the solutions of the initial-value problem

dYi+1/2(τ)

dτ
= vi+1/2

(
τ, Yi+1/2(τ)

)
, τ ∈ [tn, tn+1] ,

(10)
Yi+1/2(tn+1) = yi+1/2,

where v(τ, y) = − χ̇(τ)y

χ(τ)
. To solve the ordinary differential

equations (10) we use the standard second-order Runge-Kutta

scheme. Once the characteristics curves Yi+1/2(tn) are known,

the method of characteristics advects the solution of (8) at

instant tn+1 as

W̃
(
tn+1, yi+1/2

)
= W

(
tn, Yi+1/2(tn)

)
. (11)
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TABLE I
RELATIVE L1-ERROR, MINIMUM TIME STEP Δt AND CPU TIMES (IN SECONDS) OBTAINED FOR THE DAM-BREAK PROBLEM OVER FALT BED AT TIME

t = 1 USING THE CONVENTIONAL AND THE PROPOSED APPROACHES

Conventional approach Proposed approach

Gridpoints L1-error min Δt CPU L1-error min Δt CPU

100 0.0019 0.0443 0.053851 0.0017 0.0543 0.307248
200 8.5455E-4 0.02078 0.098860 7.612E-4 0.0257 0.438689
400 4.2419E-4 0.0098 0.179201 3.2288E-4 0.0123 0.836681
800 1.7346E-4 0.0047 0.245428 1.2956E-4 0.0060 1.915621

1600 7.0205E-5 0.0023 0.610092 4.6372E-5 0.0029 5.10189

(a) (b)

Fig. 2 Water free-surface using the conventional approach (a) and the proposed approach (b) at time t = 2 using different gridpoints

Note that the departure points Yi+1/2(tn) do not coincide

with the spatial position of a gridpoint and a cubic spline

interpolation is used in this study.

Next we integrate (9) along the characteristics with respect

to time and space over the time-space control domain

[tn, tn+1]× [yi−1/2, yi+1/2] as

Wn+1
i = W̃n

i −
Δt

Δy

(
F̃n

i+1/2 − F̃n
i−1/2

)
+

Δt

Δy

∫ yi+1/2

yi−1/2

S̃ dy,

where F̃n
i± 1

2

= F
(
W̃n

i± 1
2

)
are the numerical fluxes at y =

yi± 1
2

and time t = tn. The numerical construction of the

fluxes can be carried out using any already existing procedure

for conventional shallow water equations. Here we use the

well-established Lax-Friedrichs method

F̃i+1/2 =
Δy

2Δt

(
W̃i −W̃i+1

)
+

1

2

(
F
(
W̃i+1

)
+F

(
W̃i

))
.

The discretization of the source term S(W) is reconstructed

such that the discretization of the gradients and the source

terms in (5) are well-balanced i.e.,

S(W̃i) =

⎛
⎜⎝ 0

−g
H̃i−1 + 2H̃i + H̃i+1

4

Z̃i−1 − Z̃i+1

2Δy

⎞
⎟⎠ .

Note that other numerical reconstructions of the numerical

fluxes for the solution of (5) can easily be used without

major conceptual modifications. It should also be noted that

since explicit time stepping schemes are used in our solution

procedure the time step must satisfy a stability condition in

the same form as the canonical CFL condition.

IV. NUMERICAL RESULTS

In this section we examine the performance of the proposed

techniques for dam-break problems over dry areas. We

consider both dam-break flows over a flat bed and over a hump.

For all considered examples we compare the results obtained

using our approach to those obtained using the conventional

method for which the shallow water equations are solved

for the whole domain using the well-balanced Lax-Friedrichs

scheme and the special wet/dry treatment studied in [2]. First

we solve a dam-break in flat channel (z(x) = 0) with a

length of 30 m and the dam is localized at the center of the

channel. We perform a grid convergence for this test example

and for this end we summarize in Table I the results obtained

for both approaches at time t = 1. In this table we list the

relative L1-error in the water free-surface, the minimum time

step Δt used in the simulation and the CPU time for each

method. Note that a reference solution obtained on a very

fine mesh with 12800 gridpoints is used as exact solution

to calculate the errors in both methods. It is clear from the

results presented in Table I that increasing the number of

gridpoints results in a decrease of the relative L1-errors in both

approaches but a faster convergence can be observed for the
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(a) (b)

Fig. 3 Water free-surface in the space-time domain obtained using the conventional approach (a) and the proposed approach (b)

proposed approach compared to the conventional approach.

In terms of time steps used in both simulations, a slightly

larger time steps have been used for the proposed approach

than for the conventional approach. However, a larger CPU

times is required in the proposed approach compared to the

conventional approach. This can be attributed to the additional

method of characteristics used in the advective stage of the

proposed approach.

In Fig. 2 we present the water free-surface obtained using

the conventional approach and the proposed approach at time

t = 2 using different gridpoints. As expected refining the

mesh more accurate water free-surface profiles are obtained

in both approaches but the proposed approach simulate more

accurately this test example than the conventional approach.

Similar conclusions have been drawn for results not presented

here for the water discharge. Note that for coarse meshes

numerical diffusion is more pronounced in both approaches

compared to the refined meshes. Overall the flow features

and the rarefaction waves are accurately captures by the

proposed approach and no spurious oscillations have been

detected as shown in the time-space solutions presented in

Fig. 3. It is evident that the conventional approach exhibits

a slower water fronts compared to those obtained using the

proposed approach. The behavior of the wet/dry interface is

also different in both approaches for example observe the time

evolution of the interface in Fig. 3 for both approaches.

The second test example consists of a dam-break problem

over a non-flat domain. Again the length of the channel is

30 m, the dam is localized at the center of the channel and

the bottom is defined by

z(x) =
1

5
e

(−x− 15)2

20 .

In Fig. 4 we present the results for the water surface

obtained using the conventional and proposed approaches.

For comparsion reason we also include a reference solution

obtained on fined mesh with 12800 points along with the

bed topography. As it can be seen, both the conventional and

the proposed approach capture the flow structures associated

with this dam-break problem. Compared to the reference

solution the proposed approach produces the most accurate

results. Similar features have observed for the water discharge.

To further qualify the results we present in Fig. 5 the

water free-surface profiles in the space-time domain. As in

the previous dam-break problem, the conventional and the

proposed approaches demonstrate differences in the water

fronts and also in the wet/dry interfaces. A faster moving

water fronts over the hump are detected in the conventional

approach compared to the proposed approach. In sumamry,

the proposed appoach is able to resolve dam-break problems

over both flat and non-flat beds without introducing excessive

numerical diffusion or nonphysical oscillations. In addition,

the proposed approach does not require special treatment of

the we/dry interface similar those techniques used for the

conventional approaches.

V. CONCLUSION

A novel method for solving shallow water flows over dry

areas has been presented. The governing equations have been

derived by introducing a new coordinate system using moving

wet/dry fronts in shallow water flows. The method aims to

track the point of interface between wet/dry region and then

solve the problem up to that point only, where the mesh

is updated at each time step based on the moving domain.

The new governing equations have been reformulated in a

hyperbolic system of conservation laws with a source term.

As a numerical solver we proposed a combined method

of characteristics and the well-known Lax-Friedrich finite

volume method. The proposed method has been applied for

solving dam-break problems on flat and non-flat dry beds.

The obtained results indicate good shock resolution with high

accuracy in smooth regions and without any nonphysical

oscillations near the shock areas. Although we have restricted

our numerical computations to the first order Lax-Friedrichs

method, our next step will focus on extending these techniques

to more complex shallow water flows over dray areas using

high order finite volume methods.
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Fig. 4 Results obtained for the dam-break over a hump at time t = 2 using a mesh with 100 gridpoints

(a) (b)

Fig. 5 Water free-surface in the space-time domain obtained for the dam-break over a hump using the conventional approach (a) and the proposed approach
(b) on a mesh with 100 gridpoints
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