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 
Abstract—A mathematical model and a numerical method for 

computing the temperature field of the profile part of convectionally 
cooled blades are developed. The theoretical substantiation of the 
method is proved by corresponding theorems. To this end, 
convergent quadrature processes were developed and error estimates 
were obtained in terms of the Zygmund continuity moduli. The 
boundary conditions for heat exchange are determined from the 
solution of the corresponding integral equations and empirical 
relations. The reliability of the developed methods is confirmed by 
calculation and experimental studies of the thermohydraulic 
characteristics of the nozzle apparatus of the first stage of the gas 
turbine. 

 
Keywords—Aviation gas turbine, temperature field, cooled 

blades, numerical modeling. 

I. INTRODUCTION 

ERSPECTIVE of a significant increase of the efficiency 
coefficient of aircraft power units (PU) and the reduction 

of fuel consumption are directly related to the increase in 
parameters of  working process of gas turbine engines (GTE) 
and primarily the temperature. Therefore, in the process of 
improving specific parameters of GTE, one should strive to 
master limiting stoichiometric combustion temperatures of the 
fuel-air mixture, because the specific thrust of GTE when 
other conditions being equal, increases almost in proportion to 

the growth of the gas temperature ahead of the turbine  
*
ГТ  

[1], [3], [6], [13]. 

The release of high 
*
ГТ  in gas turbines (GT) of modern 

GTE goes in several directions [1], [6]-[10], [14], [15], [17], 
[18]:  the first is a creation of new high-temperature alloys 
with improved properties; the second is a development of 
metal-ceramic, ceramic and sintered materials; the third is a 
creation of effective cooling systems (CO) for GT elements. 

The priority direction of research on thermal protection of 
GTE turbine components up to date is the development of 
efficient cooling systems [3], [10], [13], which ensuring the 
required heat dissipation should maintain the metal 
temperature within acceptable limits and equal distribution to 
eliminate residual stresses [3], [5], [10], [13], [14], [15]. 

Due to the comparative simplicity of design and reliability 
of operation, the only practical application in GTE is an open 
air CO, with the use of which 3 directions of the organization 
for thermal protection of GT elements were identified: 
convective, convective-film (obstruction) and penetrating 
(porous) cooling [3], [5], [14], [15]. In this order, maximum 
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levels of cooling depths, achieved in the designed 
constructions of cooled blades, also increase. 

It should be noted that obtaining the required cooling 
depths in modern GTEs within the range of 500-550 deg. is 
achieved by a rather high price - 3.5-4% of air flow rate within 
working blades and 7-8% in nozzle blades in relation to the 
gas flow through the turbine. In general, up to 16-18% of 
cyclic air is used for cooling the turbine of modern GTE, and 
in some cases even more. Along with this, the use of blades 
CO is associated with the emergence of additional losses 
which reduce efficiency coefficient of cooled turbine 
compared to uncooled. As a result, the gain in fuel efficiency 

from the increase in values 
*
ГТ  and 

*
к  in the engine are 

somewhat depreciated by losses caused by the use of CO. 
Peculiarities of heat transfer conditions in GTE elements, 

(complex geometry of heat-stressed parts, large temperature 
differences, high speeds of working fluid motion, 
nonstationary heat exchange processes) do not allow to solve 
the problem of developing a rational CO in a strict formulation 
[10], [15]. In complex shape bodies with different 
configurations, number and arrangement of cooling channels, 
even a separate solution of problems of hydrodynamics and 
heat transfer is far from being an easy task. And this despite 

the fact that with increasing 
*
ГТ  requirements for the 

accuracy of final results increase. 
Widely distributed became Methods of Finite Differences 

(MFD), Finite Element Method (FEM), Boundary Integral 
Equations Method (BIEM) (or its discrete analog ─ Boundary 
Element Method (BEM)). In addition to these, other methods 
are also used [20]. 

The most effective is BIEN (or the method of potential 
theory - MPT), which has proved itself well when considering 
multiply connected regions of a complex configuration due to 
a number of advantages, such as boundary (variable) 
conditions, expansion of class of functions describing the 
shape of the blade and cooling channels. 

II. THEOREM 

In the classical formulation, the differential heat transfer 
equation, describing the non-stationary process of heat 
propagation in a multidimensional region with internal sources 
(sinks) of heat qv, under complex boundary conditions, is 
described by the Fourier-Kirchhoff equation [8], [14], [15]: 
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where   и  , vC - respectively are the density, heat 
capacity and thermal conductivity of the material, qv – internal 
source or heat sink, and T - desired temperature. According to 
the results of the investigations, it is established [4], [14], [15] 
that the temperature state of the profile part of the blade with 
radial cooling channels can be determined with a sufficient 
degree of accuracy as two-dimensional. In the absence of 
internal sources (sinks) of heat, the temperature field under 
steady-state conditions will depend only on the shape of the 
body and on the temperature distribution on the outline 
(boundaries) of the body [4], [14], [15]. In this case (1) will 
look like: 
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To determine the specific temperature fields in the elements 

of gas turbines, boundary conditions of the third kind are set, 
which characterize the heat exchange between the body and 
the environment on the basis of Newton-Riemann hypothesis: 
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which characterizes the amount of heat transferred by 
convection from gas to the unit of surface of the blade and 
taken away by thermal conductivity into the body of the blade. 
Ratio: 
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characterizes the amount of heat released by the convection of 
the cooler, which is transferred by the blade material to the 
surface of the cooling channels. Here: T0 – ambient 
temperature Ti on i=0, that is the temperature of the gas 

surrounding the blade ( M0,i   - number of outlines); Ti – 

ambient temperature on M1,i  , that is cooler temperature 

(M-number of outlines); 0γT - outline temperature iγT  on 

0i   (outer outline of the blade); iγT - outline temperature 

on M1,i   (cooling channel outline); 0 - coefficient of 

heat transfer from gas to the blade surface (on i= 0 ); i  - 
coefficient of heat transfer from blade to cooling air  (on 

M1,i  );  - coefficient of thermal conductivity of the blade 
material; n - outer normal on the outline of the region under 
investigation. 

Let us consider the use of BIEM to solve the problem of 
determining the temperature field of convectionlly cooled 
blades of gas turbines of aircraft engines. 

The function Т=Т(х,у), continuous with the derivatives up 
to the second order, satisfying the Laplace equation in 

considered area, including its outline 
M

i
i

0
  , is harmonic. 

Consequence of the Grin integral formula for researched 
harmonic function Т=Т(х,у) is the ratio: 
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where R – variable at an integration of the distance between 
point K(x,y) and “running” on the outline  k, TГ – temperature 
on the outline Г. The temperature value in some point k lying 
on the boundary is determined as a limiting at approach of 
point  k(x,y)  to the boundary 
 

















  dsnR

n

Т
ds

n

)nR(
Т

2π

1
Т

Г
k

Г

Г

k
Гk 


   (6) 

 
With allowance of set boundary conditions (3)-(4), after 

collecting of terms and input of new factors, the ratio (6) can 
be presented as a linear algebraic equation, computed for the 
point k: 
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where n - is the quantity of sites of a partition of outside 

outline of the blade i  (
0  on i=0) on small sections 

iSS  (0  on i=0), m – is the quantity of sites of a partition 

of outside outlines of all cooling channels i
 (i=1,M) on 

small sections iS . 
Let us note, that unknowns in (7) except the unknown of 

true value Tk in the k point are also mean on sections of 

outlines partition 0S  and iS  temperatures 

min
TTTT  ,...,,...,,

00201 (total number n+m). 
From the ratio (7) we shall receive the required temperature 

for any point, using (5): 
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In contradistinction from [4], [5], the discretization of the 

outline ),1( Mii   was carried out by a many discrete 
points and integrals that are included in the equations as 
logarithmic potentials, was calculated approximately with the 
following ratios: 
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(here 
M
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) In contrast to [4] we offer to decide the 

given boundary value problem (2)-(4) as follows. We suppose 
that the temperature distribution Т(х,у) should be retrieved as: 
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where 
M

0i
iγГ


  - smooth closed Jordan curves; M – quantity of 

cooled channels; 
M

i
i

0
  - density of a logarithmic potential 

uniformly distributed on iγ ; 
M

0i
isS


 - arc coordinate from the 

point (xi, yi). Thus curves 
M

0i
iγГ


  are positively oriented and are 

given in a parametric kind:   x(s), y=y(s), s[0, L]; 
Г

dsL  . 

Using Boundary Integral Equations Method (Boundary 
Element Method) and expression (11) we shall put problem 
(2)-(4) to the following system of boundary integral equations: 
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where     R( s,ξ )= (( x (s ) x( ξ ))2+( y (s ) y (ξ ))2 )1/2
  

For the singular integral operators evaluation, which are 
included in (12), the discrete operators of the logarithmic 
potential with simple and double layer are investigated, their 
connection and evaluations in modules term of the continuity 
(evaluation such as assessments by A. Zigmound are obtained) 
are shown. 

Let us formulate the theorem. Suppose that the following 
condition holds: 

 

∫
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and let (12) have the solution f*CГ (the set of continuous 
functions on Г). Then  0={1,2…} is such that the 
discrete system N>N0 obtained from (12) by using the 
discrete double layer potential operator (its properties has been 
studied), has unique solution 
 

,k 1,m ;j 1,nj jk

(N)f = = ;  

),dx
x

(x)ω
τ

dx
x

(x)ω
)τ(ωdx

x

(x)(x) ωω
ε

dx
x

(x)(x) ωω
С(Г)(|ff|

L/2

ε

f
N

L/2

ε

L/2

0

f
Nf

fξ

ε

0

fξ(N)
jk

*
jk

N

*

N

*

*

*

N
*



 










 

 

where  C(Г) – is a constant, depending only on  ∥ τ N ∥N= 1
∞

 - 

sequence of partitions of Г; {εN }N= 1

∞
 - sequence of positive 

numbers such that the pair ( ∥ τ N∥ ,, εN ) satisfies  the 

condition 2<ε ∥ τ ∥−− 1 <p . 
Let    0,ε d2 where d – is diameter Г and the splitting τ  

is such, that satisfies the condition 
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  )(, zfL   - two-parameter quadrature formula (depending 

on   and ε parameters) for logarithmic double layer potential; 
)(

~
zf - double layer logarithmic potential operator; C(Г) – 
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   )(, zfI   - two-parameter quadrature formula (depending 

on  and ε parameters) for logarithmic potential simple layer; 

f (z )  simple layer logarithmic potential operator; 
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and are developed an effective from the point of view of 
realization on computers, numerical methods, based on 
constructed two-parametric quadratute processes for the 
discrete operators logarithmic potential of double and simple 
layer (their systematic errors are estimated, methods of 
quadratures are mathematically proved for the approximate 
solution of Fredholm I and II boundary integral equations 
using Tikhonov regularization and an appropriate theorems are 
proved) [13], [18], [19]. 

The given calculating technique of the blade temperature 
field can be applied also to blades with the plug–in deflector. 
On consideration blades with deflectors in addition to 
boundary condition of the III kind adjoin also interfaces 
conditions between segments of the outline partition as 
equalities of temperatures and heat flow: 
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where - number of segments of the outline partition of the 
blade cross-section; х, у –coordinates of segments. 

At finding T optimal values, is necessary to solve the 
inverse problem of heat conduction. It is necessary at first to 
find a solution of the heat conduction direct problem with 
boundary condition of III kind from a gas part and boundary 
conditions of I kind from a cooling air part: 

 

  Ty)(x,T
00
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where 0iT - known optimum temperature of the blade wall on 
the part of cooling air. 

The multiples computing experiments with the use of BIEM 
for calculation the temperature fields of gas turbine blades 
have showed that for practical calculations in this approach, 
the discretization of the integrations areas can be conducted 
with smaller quantity of discrete points. Thus the reactivity of 
developed algorithms rises. 

The accuracy of temperature fields of cooling details is 
determined by the reliability of the boundary conditions for 
heat exchange that are laid down in the calculation. 

To calculate the velocity of the gas flow along the contour 
of the blade profile, the methods of direct hydrodynamic 
problems of cascades are used, based on numerical realization 
of integral equations with some singularity. The problem is 
reduced to the solution of boundary integral equations for the 
components of complex flow potential - velocity potential  
  and current function  , which differ from the existing 
[2] by efficiency in numerical realization. 

The velocity field in the flow region of the airfoil cascades 
can be calculated by differentiating the values of the velocity 
potential along the contour, found from the solution of the 
integral equation: 
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where ),( kk yx  - velocity potential value; V  - average 

vectoral velocity of the incident flow;  - angle between 

vector V  and the axis of airfoil cascade; Г  - speed 

circulation; В - corresponds to an output profile edge. 
The distribution of the velocity potential along the outline is 

obtained from the solution of the following system of linear 
algebraic equations: 
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where 12  ni , nj 2 , n - number of sections. 
The values of gas flow velocity are determined by 

differentiating the velocity potential along the outline s , that 

is   dsdsV   using the following formulas of numerical 
differentiation [21]: 
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-  for back and pressure side. 

The velocity distribution along the profile contour, in 
contrast to [1], can be determined by solving also the integral 

equation obtained for the current function  : 
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leading it to the following algebraic form: 
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where     sincos xyV . Calculated velocity 
distribution data along the contour are the initial ones for 
determining the external conditions of heat exchange. 

To calculate local values Г , was used Central Research 
and Design Boiler and Turbine Institute method developed by 
L.M. Zysina - Molojen, which uses the ratio of integral energy 
for thermal boundary layer, written in the variables of AA. 
Dorodnitsyn, which allows in a unified form to present 
solutions for laminar, transition and turbulent boundary layers 
[3], [5], [14], [15]. To make corrections to the basic value 

Г , recommendations of Central Research and Design 
Boiler and Turbine Institute and Kharkiv Polytechnic Institute, 
confirmed by calculation and experiment, were used [5], [14]. 

In determining the internal boundary conditions of heat 
exchange, the interrelation of internal geometric and 
hydrodynamic models with thermal ones, which characterize 
the temperature field of the blade body, is used. The complex 
of parameters, which combines thermal and hydraulic 
characteristics of the cooling system, has a form [5], [14]: 
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At the same time, in fact, an optimization task is performed 
with a preliminary specification of permissible according to 

the strength temperature conditions of walls with gas ГЛТ  

and air ВЛТ  sides, taking into account its extreme 
unevenness. 

The problem of internal hydrodynamics of the cooling 
system is considered in the example of a blade with plug–in 
deflector. 

For thin-walled deflector blades with a transverse flow of 
air, the search for an optimal design of the cooling system 
previously is carried out by detecting of superheated sections. 
To determine the local heat transfer coefficients of the coolant 

В  a preliminary distribution of the flow in the cooling 

channels should be provided. The value of the air flow ВG  
for cooling of individual sections and  entire thin-walled shell 
of the deflector blade can be determined from the following 
dependence: 
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where Г , В - temperature coefficients of gas and air; 

ф - coefficient of shape; Вd - characteristic size in the 

formula BRe ; В , В - coefficients of dynamic viscosity 

and thermal conductivity of the cooler; Вi - Bio criterion for 

the blade wall; ВF  - total area of air passage; nC ,  - 
coefficient and exponent in the criterial ratio of heat transfer 

n
ВВ CNu Re  for the cooling section under consideration. 

To determine the flow distribution in the cooling system of 
the blade, an equivalent hydraulic outline (EHC) is carried out. 

When compiling EHC, the entire flow path of the cooler is 
divided into a set of interconnected sections - typical elements 
(channels), for each of which there is the possibility uniquely 
to determine the values of the coefficients of hydraulic 
resistance. The places of connection of typical elements in 
EHC are replaced by nodal points in which the flow, fusion 
and separation of the coolant flow presumably occurs without 
pressure changing. Typical elements and nodal points are 
interconnected in the same sequence as the sections of CS. 

The flow of the coolant in branched circuits is described by 
the 1st Kirchhoff law [5], [14], [15]: 
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  ,  (13) 

 

where ijG - cooler consumption on the branch, ji  , m - 

number of branches attached to i -node, n - number of 

internal nodes of the hydraulic circuit, ijp - differential 

pressure of the coolant on the branch ji  . In this formula, 

the coefficient of hydraulic conductivity of the branch ( ji  ) 
is defined as follows [5], [9]: 

 

ijijijij pfk  22 ,    (14) 
 

where ijijij pf ,, - respectively, average cross-sectional 

area of the channel ( ji  ), coolant flow density in this 
section, and total coefficient of hydraulic resistance of the 
branch. 

The system of nonlinear algebraic equations (13) is solved 
by the Zeidel method with acceleration according to the 
following formula [5], [9], [22]: 
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where k - iteration number, 
k
ip - coolant pressure in i -

section of the hydraulic circuit. The coefficients of hydraulic 

resistance ij , within (14), can be determined from the 
empirical correlation found in special literature [5]. 

To calculate heat transfer in the channels of cooling systems 
of the blades, criterion correlation are mainly used. Value 

В  in the region of the leading edge of the blade with 
internal segment finnings, air blown by one row of round jets 
through the holes in the nozzle of the deflector, is calculated 
by the dependence [5], [14]: 

 

)//(PrRe 43.098.0
equbLCNu  , 

 

0
2
0 2tdbequ  - width of an equivalent in terms of area gap;  
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0d , 0t - diameter and pitch of the holes in the deflector 

nozzle. Criterion Re  in this formula is determined by the jet 
speed at the outlet through the deflector holes, as a 
characteristic size, the length of entering bypass of leading 

edge L  is used. 
In areas of jet blasting of surfaces, except leading edge 

zone, one can use an empirical dependence [5], [14]: 
 

  8.02
Re1.056.034.036.0018.0 





  k

ckkcx fGfGShNu  ,               

(15) 
 

where d  - deflector relative thickness dhh   - 
relative height of the channel between the deflector and the 

blade wall; dSS   - relative pitch of the jet system; d – 

perforation diameter; hk 5.025.0  . Criterion Re  in 
(15) is determined by hydraulic diameter of the transverse 

channel 45.075.0 L  and coolant flow rate behind 
the deflector perforation zone. 

In calculations in each iterative process, it is necessary to 
check the capacity of the cooling path to the total outlet 
pressure, calculated, respectively, through the loss of total 
pressure and the reduced air flow rate from the blade, taking 
into account its heating. Thus, the necessary heat transfer 

coefficient В  is carried out by varying the complex of 
geometrical parameters of the cooling circuit and regime 
parameters of the cooler [5], [14], [15]. 

III. CONCLUSION 

1) The developed methods for profiling, calculating the 
temperature fields and cooling parameters in cooling 
systems were realized during the computationally 
experimental studies of the thermal state of the nozzle 
apparatus of the 1st stage of the high-pressure turbine of 
combustion turbine unit GTN-6U OAO “UralTurbo” 
(ГТН-6У ОАО “Уралтурбо”) (Yekaterinburg, Russia). 
The following geometrical and regime parameters of the 
gas flow, obtained by calculation, were used: cascade step 
- ммt 5.41 , inlet gas speed to cascade - смV /1561  , 

outlet gas speed to cascade - смV /5122  , outlet 

superficial gas speed  - 891.01 ад ; inlet gas speed vector 

angle - 0
1 7.0 , gas flow temperature and pressure:  on 

entrance to the stage - KTг 1333*  , Паpг
6* 102095.1  , on 

exit from the stage - KTг 10051  , Паpг
6

1 1075.0  . 
2) The geometric model of the blade is obtained (Fig. 1), as 

well as diagrams of speed distributions V and convective 

heat exchange local coefficient of gas г  along the 
profile contour (Fig. 2) are received. 

3) The geometrical model (Fig. 3) and the cooling tract 
equivalent hydraulic scheme (Fig. 4) are developed. 
Cooler basic parameters in the cooking system and the 
temperature field of the blade cross section (Fig. 5) were 
determined. 

 
Fig. 1 Geometrical model of the blade  
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