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Abstract—A numerical investigation is performed for non 

Newtonian fluids flow between two concentric cylinders. The D2Q9 

lattice Boltzmann model developed from the Bhatangar-Gross-Krook 

(LBGK) approximation is used to obtain the flow field for fluids 

obeying to the power-law model. The inner and outer cylinders rotate 

in the same and the opposite direction while the end walls are 

maintained at rest. The combined effects of the Reynolds number 

(Re) of the inner and outer cylinders, the radius ratio (η) as well as 

the power-law index (n) on the flow characteristics are analyzed for 

an annular space of a finite aspect ratio (Γ). Two flow modes are 

obtained: a primary mode (laminar stable regime) and a secondary 

mode (laminar unstable regime). The so obtained flow structures are 

different from one mode to another. The transition critical Reynolds 

number Rec from the primary to the secondary mode is analyzed for 

the co-courant and counter-courant flows. This critical value 

increases as n increases. The prediction of the swirling flow of non 

Newtonians fluids in axisymmetric geometries is shown in the 

present work. 

 

Keywords—Taylor-Couette flows, non Newtonian fluid, Lattice 

Boltzmann method. 

I. INTRODUCTION 

LUIDS contained between two concentric cylinders 

rotating in the same and the opposite direction has been 

the subject of many experimental, analytical and numerical 

studies. This interest is motivated by the several industrial 

applications of this device such as journal bearings, 

purification of industrial wastewater and oil drilling. Taylor 

[1] conducted an experimental and theoretical investigation on 

the stability of a viscous flow in a small annular gap between 

two concentric cylinders with the inner one rotating. Diprima 

[2] found that the flow is relatively stable when the outer 

cylinder is rotating. H.-S. Dou et al. [3] proposed a method for 

calculating the energy loss distribution in the Taylor–Couette 

flow between concentric rotating cylinders. The principle and 

the detailed derivation for the calculation are given for a single 

cylinder rotation of either the inner or outer cylinder. They 

considered the cases of rotations in the same direction and the 

opposite direction.  

Benjamin [4] gave a qualitative description of the 

phenomenon of bifurcation and morphogenesis of the flow 

structure in the annular space with an aspect ratio of about 1. 
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The experimental results were presented for the location of 

bifurcation critical points and flow profiles.  

Researchers have dedicated many studies to Newtonian 

fluids despite, in practical applications the fluids drift away 

from the Newtonian idealized model. Thus, to take into 

account of this aspect more and more studies are devoted to 

non-Newtonian fluids. There was a considerable interest to 

non Newtonian Taylor-Couette instability .Sinevic et al. [5] 

determined the onset of Taylor vortices by measuring the 

torque exerted by a non-Newtonian fluid on the rotating inner 

cylinder.  

Recently, measurements of velocity fields for the Taylor 

Couette flow have been performed by Wereley and Lueptow 

[6] using particle image velocimetry (PIV), the authors 

showed a rich variety of flow regimes that can occur for 

cylindrical Couette flow with an imposed axial flow, 

depending upon Taylor number and Reynolds number. 

Lockett et al. [7] simulated the transition flow using a finite 

element method. The authors found that the stabilizing or 

destabilizing effect induced by the shear-thinning behavior 

depends on the radius ratio. Escudier et al. [8] investigated the 

flow structure in Taylor-Couette geometry with a large radius 

ratio. Axial and tangential velocity measurements were made 

using a laser Doppler anemometer.  

During the last years, the LBM have received a considerable 

attention by fluid dynamic researchers. It has been shown that 

this method is an attractive alternative to classical numerical 

schemes due to its inherent advantages such as its simple 

implementation, high parallelizability and great convenience of 

handling complicated geometries. Khali et al. [9] investigated the 

instability of the Taylor-Couette flow of the Newtonian and non-

Newtonian fluids (pseudoplastic and dilatant fluids) for cases of 

finite aspect ratios using lattice Boltzmann method (LBM). They 

showed that the critical Reynolds number Rec for the passage 

from the first mode of the Couette flow (CF) to the secondary 

mode Taylor vortex flow regime (TVF) exhibits the lowest value 

for the pseudoplastic fluids and the highest value for the dilatant 

fluids.  

The purpose of this work is to investigate the stability of the 

Taylor Couette flow of Newtonian and non Newtonian fluids 

with finite aspect ratios using the Lattice Boltzmann Method 

(LBM). The two cylinders can rotate either in the same or in 

the opposite direction while the end caps are maintained at 

rest. The model proposed by Huang et al. [10] for the 

axisymmetric LMB has been adopted. The velocity and stream 

function distributions along the annular duct are compared 
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with analytical and numerical solutions. The combined effects 

of the Reynolds numbers and the power-law index of the non-

Newtonians fluids on the flow characteristics are analyzed. 

II. LATTICE BOLTZMANN METHOD 

The standard LBM was first developed for Cartesian 

coordinates system. To handle axisymmetric problems with this 

method, without using 3D lattices system, a source term is 

introduced in the original LB equation as it was done by 

Halliday et al. [11]. 

The three-dimensional axisymmetric Navier-Stokes 

equations are written in a pseudo Cartesian form with making 

the following replacement: 

 ��, �� �  ��, 	� and �
� , 
� , 

� �  �
, �, �� ��
� � � 
� �⁄                                                     (1) 

 ����
� � ���
�
��� � ���� � ����
�  � �
�
� �⁄ � �
� ��⁄  ��    (2) 

 

Bearing in mind that, in the standard LB method the 

recovered macroscopic momentum equation is written like: 

 ����
� � ���
�
��� � ���� � �������
� � ��
���        (3) 

 

Therefore we need to rewrite (2) as: 

 ����
� � ���
�
��� � ���� � �������
� � ��
���   � ����
� � ��
�� �⁄  � �
�
� �⁄  � 2 �
� �� ��⁄              (4) 

 

Compared with the form in the (x, y) plane, the two terms in 

the right hand side of the above equation can be considered as 

body forces. Now we follow the idea of Halliday et al. [11] and 

derive an LBE which recovers (1) and (2) from an 

incompressible D2Q9 model. The discrete velocities of this 

model are as follow:  

 

"#
$ �0,0� &'''''''''&&&&&&&''( � 0) *cos .��/0�1� 2 , sin .��/0�1� 25                          ( � 1,2,3,4       

)√2 *cos .��/:�1� � 1;2 , sin .��/:�1� � 1;25   ( � 5,6,7,8
@ (5) 

 

where: c x t= δ δ   

Note that δx and δt are, respectively, the lattice spacing and 

the time step. Both are set to unity. The two-dimensional LBE 

describing 2D flow in (x, r) pseudo-Cartesian coordinates is 

constructed as follow: 

 A��� � )B�� �, � � )B�� � , C �  �� � A���, �, C�                                 � 0D �A�EF��, �, C� � A���, �, C��  � G���, �, C�(6) 

 

where τ is the relaxation time, A� is the density distribution 

function along the i direction, B��B�� , B��� is the particle 

velocity in the i direction, A�EF
is the corresponding equilibrium 

state distribution function, which can be written as: 

 

A�EF��, �, C� � H�� )I�⁄ � �H�JB�
 )I�⁄ � �B�
�� 2)I;⁄ � 
� 2)I�⁄ K   (7) 

 

In the above equation )I � ) √3⁄  is the sound speed, p is 

the pressure and �is the fluid density. The constant factors ωi 

differ from a model to another (in the D2Q9, ω0 =4/9, ωi=1/9 

for i=1, 2, 3, 4 and ωi =1/36 for i=5, 6, 7, 8). 

The relaxation time τ and the fluid viscosity ν are linked as 

follows: 

 L � �2M � 1�  N 6⁄                                (8) 

 

To avoid numerical instabilities and for a positive physical 

viscosity, τ is generally, taken greater than 0.5 [8]  

The term Si (z, r, t) in (6) is defined as a function of a spatial 

(space) and velocity. It can be expressed as: 

 G� �  �G��0� �  ��G����
                               (9) 

 

where G��0�
and G����

respectively, represent the zeroth and first 

order gradients of the macroscopic variables ρ, u. By 

performing a Chapman- Enskog expansion, we obtain the 

following development: 

 G��0� � � H��
� �⁄                                                         (10) 

 G���� � H�J���� �⁄ � � ���
�
�� � ���
�
��K 2�⁄                              � 3H�LJ��
�B�� � ��
�B�� � 
�B�� �⁄ K �⁄                   � 3H�
��
�B�� � 
�B��� �⁄                                             �H��1 � M����� 
� �⁄ �B�� � 
�B�� ��⁄ �                      �H��1 � M���� 
� �⁄ �B�� � 3H��

�B�� �⁄ �       (11) 

 

For the velocity derivations in (11), the terms ��
�, ��
� , ��
�  and ��
�can all be obtained through (12) with replacing O � �, P � �, O � P � � and O � P � � respectively: 

 ��Q
R � �R
Q� � 1 �L⁄ �1 � 1 2M⁄ � ∑ A�TEU�VW B�RB�Q � X�Y��   (12) 

 

Only the remaining term ��
�is obtained by using a second 

order finite difference scheme. It is given by:  

 ���
���,� � ��
���,�Z0 � �
���,�/0� 2 N⁄               (13) 

 

In the streaming step, the distribution function new value 

obtained from (6) would propagate to adjacent eight lattices. 

That procedure can be represented as follows: 

 A��� � )B�� �, � � )B�� � , C �  �� � A�_TE\��, �, C�      (14) 

 

The basic hydrodynamic quantities, such as density ρ and 

velocity u, are obtained through moment summations in the 

velocity space: 

 ���, C� � ∑ A���, C�� ,    �
��, C� � ∑ B�A���, C��              (15) 
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III. PHYSICAL PROBLEM 

We consider the flow of non-Newtonian fluids between two 

finite concentric cylinders with inner radius ri and outer radius 

re. The cylinders rotate independently with inner and outer 

angular velocities Ωi and Ωe.  The Reynolds numbers based on 

the azimuthal velocities and the annulus gap are defined as 

Rei= (Ωi ri).d/υ and Ree= (Ωe re)d/υ for respectively the inner 

and the outer cylinder. Where d=(re-ri) is the annulus gap and 

υ is the fluid viscosity.  

The annulus is characterized by the radius ratio η=ri/re and 

the aspect ratio Γ=H/(ri-re), where H is the height of the 

annulus.  

In order to formulate the problem, it is assumed that the 

flow is incompressible and axisymmetric. The commonly used 

power-law model, for non-Newtonian fluids, is adopted. The 

viscosity varies with the local shear rate γɺ  in the form: 

 � � �]|_̀|T/0                                (16) 

 

where n is the power-law exponent and µa  is the apparent 

viscosity. 

Note that when n=1, the fluid corresponds to the Newtonian 

fluid, and �] is the Newtonian fluid viscosity. For fluids with 

n>1, the effective viscosity increases with the shear rate, and 

are called ‘shear-thickening’ or ‘dilatants’ fluids. While for 

0<n<1, the effective viscosity decreases with the shear rate, 

and in this case the fluids are called ‘shear-thinning’ or 

‘pseudoplastic’ fluids.  

Regarding the relatively low angular velocities considered 

in the present study the shear rate γɺ  is given by [9] 

 

_̀ � 2 a*bcdb� 5� � *cd� 5� � *bceb� 5�f  � .� bb� *cg� 52� � *bcgb� 5� � *bceb� � bcdb� 5�
    (17) 

 

Coupling (8) and (16), we obtain a shear-dependent 

relaxation time at each node in the lattice Boltzmann 

evolution. 

The azimuthal velocity is obtained through the following 

equation by using the first-order forward difference scheme in 

time and the second-order central difference scheme in space 

[10]: 

 



TZ0 �  � .� *
� bcgb� � 
� bcgb� 5 � L@ *bhcgb�h � bhcgb�h 5 � i� *bcgb� � cg� 5 � @cdcg� 2T � 

T  

(18) 

 

Modeling of the boundary conditions is very important in 

numerical modeling because they affect the overall accuracy 

and stability of the numerical scheme. Two kinds of boundary 

conditions are used to describe the non slip condition in the 

present work. On the inner and the outer cylinders the specular 

reflection is adopted while on the two end plates, the bounce-

back condition is applied. This type of conditions supposes 

that the post-collision distribution function at the solid nodes 

with a velocity -ei is set equal to the post-collision distribution 

function at the fluid nodes with a velocity ei. 
 

TABLE I 

GRID INDEPENDENCY TESTS 

Mesh Ψmax (Re=85) Ψmax(Re=100) 

20×76 4.800 10-2 5.465 10-2 

30×114 4.876 10-2 5.555 10-2 

40×152 4.908 10-2 5.594 10-2 

50×190 4.924 10-2 5.623 10-2 

60×228 4.936 10-2 5.636 10-2 

Error (max) %1.58 %1.64 

IV. RESULTS AND INTERPRETATIONS 

A. Mesh Sensitivity  

The required number of lattices is obtained by a grid 

sensitivity analysis in order to insure accurate results. Table I 

summarizes this analysis for the case of γ=0.5, Γ=3.8, Re=85 

and 100. 

To stop the computational process, the convergence 

criterion below reported in [10] has been used: 

 

j kl*
���� , ��, C �  �� � 
���� , ��, C�5� � *
���� , �� , C �  �� � 
���� , �� , C�5�k
kl
���� , ��, C �  ��� � 
���� , �� , C �  ���k�,�

 

 

where i, j are the lattice nodes indices. 
 

TABLE II 
COMPARISON OF ΨMAX AGAINST LITERATURE RESULTS 

Re Present work  Huang et al. [9] Niu et al. [13] ε max 

85 4.903×10-2 4.810×10-2 4.859×10-2 1.82 % 

100 5.553×10-2 5.501×10-2 5.580×10-2 0.93 % 

150 6.361×10-2 6.427×10-2 6.387×10-2 1.25 % 

B. Validation of the Computational Code  

To verify the accuracy of our LBM code predicting the 

Taylor Couette flow of non-Newtonians fluids, some 

validation tests were performed. First, the efficiency of our 

results was checked against results of Huang et al. [10] and 

Niu [12]. The case of a Taylor–Couette flow with an aspect 

ratio of 3.8 with a Newtonian fluid (n=1), for Re=85, 100 and 

150 using a mesh of 20×76 lattices was successfully simulated 

and the maximum deviation of Ψmax does not exceed 1.82% as 

shown in Table II. 

For low Reynolds numbers, the present axisymmetric 

Lattice Boltzmann code successfully recovers the analytical 

profile of the azimuthal velocity [13] as it is shown in Fig. 1. 

 



��� � ��m n1 � o 0�ph q⁄ � 0�mh q⁄ r/0 o 0�h q⁄ � 0�mh q⁄ rs        (19) 
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 LBM n=0,5

 Solution Analytique n=0,5

 LBM n=0,8

 Solution Analytique n=0,8

 LBM n=1

 Solution Analytique n=1

 LBM n=1,5
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Fig. 1 Comparison of the azimuthal velocity with analytical solution. 

For γ=0.5, Γ=3.8 

 

Due to the numerous parameters controlling the flow 

configuration, all the computations have been performed by 

setting fixed the aspect ratio to 6, the mesh size to 20×120 and 

the radius ratio to 0.5. For the non Newtonians fluids flows the 

exponent n was chosen in the range between 0.5 and 1.5 while 

both Reynolds number were varied from 20 to 150. 

 

 

Fig. 2 Variations of the Azimuthal velocity profiles for different 

fluids for γ=0.5 and Γ=6 (Rei=100 and Ree=0) 

 

Fig. 2 illustrates the dimensionless azimuthal velocity 

variations versus the radial position for different values of the 

power-law index n. It shows that the velocity profile decays 

gradually along the radial position for the considered fluids. 

We note that the azimuthal velocity exhibits two distinct 

behaviours as function of n in the annulus space. For 

approximately 0.5<r≤1, the augmentation of n decreases the 

velocity modulus, while, when r < 0.5, n no longer has any 

effect on the velocity profile. Moreover, the azimuthal 

velocity gradients are more important for the pseudoplastic 

fluids than the dilatants fluids. 

To show the flow structures occurring in the Taylor– 

Couette apparatus with a rotating outer cylinder. The flow 

states between counter and co-rotating cylinders is observed 

for the selected range of Reynolds numbers. The flow 

structures transitions were obtained by fixing the outer 

cylinder Reynolds number Ree first and slowly increasing Rei. 

 

 
Rei=40                 Rei=50                   Rei=60 

(a) 

 

 
Rei=75                 Rei=80               Rei=85 

(b) 

Fig. 3 Contours of streamlines (left) and vorticity (right) fields for n 

=0.5 and Γ=6. a-Re=-10, b- Re=-40 

 

The flow structure of the pseudoplastic fluid with counter-

rotating cylinders is shown in the Fig. 3. We note that the 

increasing of the Reynolds number in the opposite direction 

delay the first instability appearance  in the annulus and the 

number of cells increase from 6-cells to 8-cells as shown in 

Fig. 3. 

For the dilatant fluid, we note, in Fig. 4, that the increase of 

the outer cylinder Reynolds number has a weak effect on the 

transition to the Taylor vortex flow (TVF) compared with the 

pseudoplastic fluid. This can be explained by the increase of 

the fluid viscosity due to higher power law index, which lead 

to a stabilising effect on the flow structures. 
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Rei=60               Rei=75            Rei=80 

(a) 

 

 

Rei=75              Rei=80            Rei=85 

(b) 

Fig. 4 Contours of streamlines (left) and vorticity (right) fields for n 

=1.5 and Γ=6. a-Re=-10, b- Re=-40 

 

The co-rotating effect on the transition from the Couette 

flow to the Taylor vortex flow is discussed in this section. For 

the pseudoplastic fluid, the increase of the outer cylinder 

Reynolds number decrease the number of the cells in the 

annulus from N=4 to N=2 as illustrated in Fig. 5. We note that 

the number of cells does not change in the duct for Ree=40. 

This phenomenon can be explained by the great end caps 

influence. The two cells attached to the ends above the Taylor 

vortices reach such importance that they prevent the 

development of Taylor vortices with opposite rotation, even 

for high Reynolds numbers. 

The flow structure for the dilatants fluids is given in Fig. 6. 

One can note that the increase of the inner Reynolds number 

(Rei) slow down the transition to the TVF regime and the flow 

is more stable for the co-rotating case compared with the 

counter-rotating case. We also note that the impact of the 

external cylinder rotation diminishes. 

 

 

 

 

Rei=80              Rei=85            Rei=90 

(a) 

 

 

Rei=130              Rei=140            Rei=150 

(b) 

Fig. 5 Contours of streamlines (left) and vorticity (right) fields 

for n =0.5 and Γ=6. a-Re=10, b- Re=40 
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Rei=85                 Rei=90               Rei=95 

(b) 

Fig. 6 Contours of streamlines (left) and vorticity (right) fields 

for n =1.5 and Γ=6. (a) Re=10, (b) Re=40 

 

Fig. 7 shows the variation of the azimuthal velocity for 

different outer Reynolds number while the inner Reynolds 

number is fixed to Rei=30. We note that for counter-courant 

and co-courant flow, the variations of uz close to the two fixed 

end caps are characterized by important slopes and exhibiting 

the highest and lowest values. This indicates the presence of 

two vortexes attached in the two fixed extremities. For the co-

courant flow (Fig. 7 (a)), as Ree increases, the extremum 

values decrease lowering the intensity of the attached eddies to 

the end caps, and the uz forms a straight inclined which 

indicates that the two ends vortices approach in the middle of 

the pipe. For the counter-courant case (Fig. 7 (b)), the increase 

of Ree in opposite direction implies a variation of the 

azimuthal velocity near the fixed ends and vortex intensities 

and the two ends vortex recede.  

The evolution of the azimuthal velocity in the radial 

direction is shown in Fig. 8. For a fixed position, the increase 

of the outer Reynolds number led the increase of the azimuthal 

velocity in the annulus and it is more significant for the 

counter-rotating case close to 0.5 in the radial direction. The 

variation of the azimuthal velocity due to the outer Reynolds 

number is more expressed near the outer cylinder zone. 
 

 

(a) 

 

(b) 

Fig. 7 Variations of the azimuthal velocity arofiles for different 

Reynolds numbers of the outer cylinder for Rei =30, η=0.5 and Γ=6 

 

 

Fig. 8 Variations of the Azimuthal velocity Profiles for different 

Reynolds numbers at η=0.5 and Γ=6 

 

The effect of the rotation of the outer cylinder on the 

apparition of the first instability in the annuli is shown in Fig. 

9. We note that for all fluids, the rotation of the outer cylinder 

with co-courant or counter-courant make a variation of the 

critical Reynolds number for the transition from the Couette 

flow (CF) regime to the Taylor vortex flow (TVF) regime and 

Reic increase with the power law index n. Moreover, there is a 

range of Ree (negative value) for which the critical Reynolds 

number decreases and this interval augments as n decreases. 
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(c) 

Fig. 9 Critical condition for the primary instability for counter and 

co-rotating cylinders with η=0.5, Recorded is the inner cylinder 

Reynolds number Rei versus Ree, the outer cylinder one 

V. CONCLUSION 

A numerical investigation has been developed for the flow 

of non Newtonians fluids between two concentric cylinders 

using the lattice Boltzmann method D2Q9 model. Flow states 

between counter and co-rotating cylinders were observed for 

the selected range of Reynolds numbers and the transitions 

regimes were located by first fixing Ree and then slowly 

increasing Rei while the end caps are kept at rest. For low 

Reynolds numbers, the present axisymmetric Lattice 

Boltzmann code has been validated against an analytical 

expression of azimuthal velocity and available literature 

results for the Taylor Couette flow. The effect on the flow 

pattern of several parameters such as the Reynolds numbers 

and the power-law index has been analyzed. For Taylor 

Couette flow with counter-rotation (Ω1Ω2<0) and a fixed Ree, 

the increasing of the Reynolds number in the opposite 

direction delay the appearance of the first instability in the 

annulus. Moreover, the number of cells increases from 6-cells 

to 8-cells for pseudoplastic fluids and does not have a large 

effect on the transition to the Taylor vortex flow for dilatant 

fluids. For the case of Taylor Couette flow with co-rotating 

cylinders Ω1 Ω2>0, the increase of the outer cylinder Reynolds 

number decreases the number of the cells in the annulus. For 

the dilatant fluid, the increase of the inner Reynolds number 

(Rei) slow down the transition to the TVF regime and the flow 

is more stable for the co-rotating case.  
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