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Abstract—In this paper, the melting of a semi-infinite body as a 

result of a moving laser beam has been studied. Because the Fourier 
heat transfer equation at short times and large dimensions does not 
have sufficient accuracy; a non-Fourier form of heat transfer 
equation has been used. Due to the fact that the beam is moving in x 
direction, the temperature distribution and the melting pool shape are 
not asymmetric. As a result, the problem is a transient three-
dimensional problem. Therefore, thermophysical properties such as 
heat conductivity coefficient, density and heat capacity are functions 
of temperature and material states. The enthalpy technique, used for 
the solution of phase change problems, has been used in an explicit 
finite volume form for the hyperbolic heat transfer equation. This 
technique has been used to calculate the transient temperature 
distribution in the semi-infinite body and the growth rate of the melt 
pool. In order to validate the numerical results, comparisons were 
made with experimental data. Finally, the results of this paper were 
compared with similar problem that has used the Fourier theory. The 
comparison shows the influence of infinite speed of heat propagation 
in Fourier theory on the temperature distribution and the melt pool 
size. 

 
Keywords—Non-Fourier, Enthalpy technique, Melt pool, 

Radiational boundary condition 

I. INTRODUCTION 
NVESTIGATION of melting and solidification phenomena 
is important in most heat transfer engineering problems. For 
instance, in semiconductors producing technology, welding, 

found, crystallization and etc. The use of concentrated heat 
source energy such as laser and electrical discharge machining 
(EDM) are common nowadays in melting various materials. In 
all of problems like this, the solid and liquid phases are 
separated with an interface; interface developing in the solid 
or liquid phase, depends on both sides of the temperature 
gradients. 

Rostami et al. [1] investigated the heating and melting of a 
semi-infinite body due to a stationary laser beam. Because the 
laser beam was stationary, the problem was assumed to be 
axisymmetric. The numerical solution was compared with 
experimental data and, because no vaporization occurred at 
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the surface of the workpiece, reasonable agreement was seen. 
Rostami and Raisi [2] studied the heating and melting of a 
semi-infinite body due to volumetric absorption of moving 
laser radiation. That was a transient three-dimensional 
conduction problem with a moving heat source and a moving 
phase boundary which was used with an explicit finite 
difference method. Temperature distribution and melt pool 
size for moving and a stationary laser beam were derived. In 
order to validate, the numerical solution was compared with 
experimental data. The comparisons showed that the 
numerical results were fairly accurate. 

Sadd and Didlake [3] investigated the melting of a semi 
infinite solid in one dimensional based on non-Fourier heat 
conduction law postulated by Cattaneo [4] and Vernotte [5]. 
They confirmed that, unlike the classical Fourier theory which 
predicts an infinite speed of heat propagation, the non-Fourier 
theory implied that the speed of a thermal distribution is finite, 
and the effect of this finite thermal wave speed on the melting 
phenomenon was determined. Finally they found out that, 
non-Fourier results differ from the Fourier theory only for 
small values of time.  

Fangming jiang [6] investigated experiments on porous 
material heated by a microsecond laser pulse and the 
corresponding theoretical analysis. Some non-Fourier heat 
conduction phenomena were observed in the experimental 
sample. The experimental results indicated that only if the 
thermal disturbance be strong enough (i.e., the pulse duration 
is short enough and the pulse heat flux is great enough) it is 
possible to observe apparent non-Fourier heat conduction 
phenomenon in the sample, and evident non-Fourier heat 
conduction phenomenon can only exist in a very limited 
region around the thermal disturbance position. 

 Abdel-jabbar et al. [7] investigated the thermal behavior of 
a thin slab under the effect of a fluctuating surface thermal 
disturbance, as described by the dual-phase-lag heat 
conduction model. It is found that, using the dual-phase-lag 
heat conduction model is essential at large frequencies of the 
surface disturbance. Mathematical criteria that specify the 
limits, beyond which both the hyperbolic wave and the dual-
phase-lag heat conduction models deviate from the diffusion 
model, were obtained. 

II. FORMULATION OF THE PROBLEM 
A review of literatures indicated that, all previous studied 

of the change-of-state heat transfer problems were based on 
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the Fourier heat conduction law. 
 

Tkq ∇−=                                                     

 
  (1)   

Eq. (1) along with the conservation of energy gives the 
classical parabolic heat equation: 
 

t
TT

∂
∂

=∇ 2α
 

  (2)   

Many of the investigations indicated that Fourier's model 
possesses several serious shortcomings. The most prominent 
is that, this model implicates an infinite speed of heat 
propagation. Cattaneo and later Vernotte postulated a wave 
model for heat conduction in solids in the form below: 
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The quantity τ  is called the material thermal relaxation 
time and is a physical result of a finite thermal communication 
time between material points. 
The conservation energy equation is given by: 
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Finally by using Cattaneo combination and conservation of 
energy equations, hyperbolic heat transfer equation may be 
expressed as: 
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The corresponding volumetric heat generation is given by [8]: 
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Fig. 1 Schematic representation of the problem in the two-
dimensional case 

 
Fig. 1 shows a schematic of semi-infinite body. Profile of 

the beam is considered circular and elliptical. The intensity of 
the beam that has Gauss’ distribution may be expressed as [9]: 
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(8)   
In last equations, w  is the beam radius in the circular 

profile 
 state; xw  and yw are the beam radius in the x and y directions  

 in elliptical profile state. 0I  is the radiation intensity at the 

center of the beam, and )(th  stands for the temporal 
variation of the intensity. In the case of continuous heat flux, 

)(th  has the constant value of unity. 
The local intensity of radiation decreases inside the material  

according to: 
 

z
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 (9)   

Where R is the surface reflectivity and α is the absorption 
coefficient of the material. 

Eq. (5) must be solved for the solid and liquid phase 
separately. The two solutions should then be related via the 
energy boundary conditions at the solid-liquid interface. The 
dependence of the position of the interface on the temperature 
distribution makes the problem complicated. One way to 
avoid this complexity is to write the left side of Eq. (5) in 
terms of enthalpy: 
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(10)   

 
In Eq. (10) e  is term of enthalpy and may be expressed as: 
 

∫= cdTe ρ
                                                   

 
 (11)   

A. Initial and boundary condition 

Initially, the temperature is equal to iT  everywhere: 
 

iTTtat ==                          :   0                                    

 
    (12)   

Initially, the temperature variation is equal to zero 

0                      :  0  =
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 (13)   

The boundary condition at the surface may be expressed as: 
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 (14)   

Regions far from the source are supposed to be 
uninfluenced by the source 

iTTxat =±∞→ :      
iTTyat =±∞→ :                                     

 
   (15)   

B. Conditions at the interface 
The energy balance at the interface may be written as [9]: 
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Fig. 2 Solid-Liquid interface in a two-dimensional view. 
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Where sss ZYX ,, indicate the coordinates of the interface in 

the x , y  and z  directions, also 
t

Z
t

Y
t

X sss

∂
∂

∂
∂

∂
∂ ,, are the 

velocity components of the interface in the x , y , and z  
directions, respectively. Once the enthalpy of each element is 
calculated, the following relations can be used to obtain the 
corresponding temperature [1]: 
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se , le  are the amounts of the enthalpy in solid and liquid 
phases, respectively. 

When an element contains both phases, x  (i.e., the volume 
fraction of the liquid phase) must be calculated initially. The 
average enthalpy can be calculated afterward. 
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A procedure for the evaluation of the liquid fraction x  will 
be introduced later. 

For )( cρ  an average value was assumed and by 

substitution ls ee , from Eq. (17) in Eq. (18), Eq. (19) can be 
written as follow: 
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(19)   

Where, mT  is melt temperature. 
C. Thermophysical properties 

The thermophysical properties of the material were allowed 
to vary with temperature and phase state of the material. These 
properties for unalloyed aluminum may be expressed as [10, 
11]: 

C.1. Thermal conductivity coefficient )(
km

WK
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C.2. Specific heat at constant pressure )( kgk
kjC p  

KTKTCps 933300    1067.4762.0 4 <<×+= −  

 KTCpl 933                            921.0 >=               
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C.3. Density )( 3m

kgρ  

 
KTKTs 933300              22.02767 <<−=ρ
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C.4.Emissivity coefficient ε  
 

35 102.3102.7 −− ×+×= Tε                                 

 
(23)   

 
Also, latent heat of diffusion is equal to: 

kg
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By using these equations, ls ee ,  may be expressed as two 
polynomial functions in order 3 and 2, respectively. 
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avc)(ρ  can be expressed as: 
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              (25)   

Which sc)(ρ and lc)(ρ  are related to solid and liquid states, 
respectively. 

By substituting Eq.  (25) in Eq. (19), Eq. (19) can be written 
as follow: 
 

))(09.87322.3068( mTTxxLe −−+=   

 
(26)   

In the numerical solution when an element contains only 
solid phase, the temperature can be calculated by applying the 
first term of Eq. (24), using the Newton-Raphson method. On 
the other hand, when an element contains only liquid phase, 
the temperature can be calculated by solution of polynomial 
function of order 2 in second term of Eq. (24). If an element 
contains two phases, Eq. (26) can be utilized to calculate the 
temperature. 

 
III. NUMERICAL SOLUTION 

In order to save computation time, the solution domain was 
divided into two regions: The inner region, which contains the 
liquid and/or solid state and the outer region, containing only 
the solid state. A fine mesh was used for the inner region, 
where the temperature gradients are large and the solid-liquid 
interface is present. The dimensions of the inner domain are 
smaller than outer region. On the basis of the work of Hsu and 

Mehrabian et al. [12] wI0  is an important parameter. 

If 6
0 101×<wI , the maximum temperature in the workpiece 

will not reach the boiling point of aluminum. Under this 
condition the maximum diameter of the melt pool is 
approximately w4.2  and depth of melt pool is nearly w for 
a stationary beam. 

 In numerical solutions often beam radius is considered 

about mμ100 . Based on these arguments, the diameter of the 

inner region will be 240 microns )( mμ . But because of 
moving heat source it was chosen to be 300 microns. The 
outer boundary of the computation domain was chosen such 
that conditions at infinity could be applied. The outer region 
radius usually is considered as 20 times of the beam radius. 

Then for a beam with a radius of mμ100  the oR  can be 
calculated as follow: 
 

 mwR μ200020 =×=o                           

 
(27)   

For determining the number of grids in the inner region, the 
grid study was used. First, the temperature of central point of 
body geometry versus the grid numbers was drawn. The 
results showed that temperature changing in 15th grid and 
higher can be assumed uniform and can be neglected. As a 
result, the grid numbers in inner region were considered as 
15×15. 

 
Fig. 3  Temperature variation of the surface central point versus 

number of the nodes 
 

Grid numbers in z direction is considered as 13. Hence: 

myx ii μ20
15
300

==Δ=Δ ,  mz i μ12=Δ     

                                                

 
      

Each 5 internal grids are equivalent to one external grid. 
Therefore: 

mxyx ioo μ1005 =Δ×=Δ=Δ , mzz i μ605 =Δ×=Δ o      
                                                

Finally, (15 ×15 ×13 = 2925) rectangular grids were used 
for the inner region, and 57127 grids for outer region. 

      
Fig. 4 Grid generation in x-y and x-z planes 

 
IV. RESULTS AND DISCUSSION 

In numerical solution of Eq. (10) in explicit finite volume 
form, the beam intensity was ( )29

0 /105.3 mWI ×= , the 

target velocity 45.02 =α
Vw , relaxation time sec102.0 14−×=τ  

[13] and the beam radius  was mμ100 . A pulse duration of 

mst p 1=  was used and initial temperature was K300 . 

Fig. 5 shows the maximum depth of the melt pool as a 
function of the beam intensity. It is assumed that the surface 
absorbs all of the beam energy. As it can be seen from Fig. 5, 
the numerical analysis is in good agreement with the 
experimental data, for low beam intensity. However, in the 
wake of the reaching to the vaporization threshold, the 
numerical analysis and experimental data are becoming 
further from each other. 

Fig. 6 shows the depth of the melt pool as a function of the 
radius distance from the center of the beam. In this Fig., it can 
be seen that, there is negligible difference between numerical 
analysis and experimental data. 
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The temperature distribution of the center point as a 
function of time at various velocities is shown in Fig. 7. As it 
is observed, as much as the velocity of the beam increases, the 
temperature of the point decreases. This phenomenon is 
observed, due to the fact that as much as the velocity 
increases, the amount of energy that the specific point 
observes decreases. 

Fig. 8 shows the diameter of the melt pool along x direction 
at z=0. It can be seen that, as much as the velocity of the beam 
increases, the diameter of the melt pool along x direction 
increases slightly. On the other hand, by increasing the 
velocity of the beam, the diameter of the melt pool along y 
direction decreases. 

 The solid-liquid boundary of the melt pool in the xy plane 
for 45.2 o=α

Vw is shown in Fig. 9. It can be perceived from 

Fig. 9 that, because of the moving beam, the melt pool tends 
to the right. Also, as time passes, the diameter of the melt pool 
increases and eventually it reaches to a specific value. 

Fig. 10 shows the solid-liquid boundary of the melt pool in 
xz plane for 3.2 o=α

Vw . Due to the moving beam, the melt 

pool tends to the right. Fig. 11 shows the isotherm in xy plane 
for specific time and beam intensity, but for various beam 
velocity. The temperature fields are not symmetric due to the 
moving laser beam. It can be observed that, the temperature 
curves are more intensive at the left of the x direction. 

Fig. 12 shows the isotherm in the xy plane when the elliptic 
beam is used. The diameter of the melt pool along x and y 
directions are shown in Fig. 13, by using the elliptic beam. 

Now, we are comparing the result of this paper and another 
paper, which has used Fourier model. 

Fig. 14 shows the temperature of the center point. It can be 
perceived from Fig. 13 that, the temperature of the center 
point increases faster, when the Fourier model is employed. 
But, the Fourier model and hyperbolic model reach each other 
by passing the time. This result was predictable, because the 
fourier and the hyperbolic models differ just in short times.  

Fig. 15 shows the depth of the melt pool as a function of 
time for a dimensionless velocity (translational speed) 
of 45.2 o=α

Vw . As it can be observed from Fig. 15, in 

comparison to the other case, the melt pool is deeper when 
Fourier heat conduction is applied. Also, the diameter of the 
melt pool along x direction at z=0 for dimensionless 
velocity 45.2 o=α

Vw , is shown in Fig. 16. It can be seen from 

this Fig. that, the diameter of the melt pool along x direction, 
using Fourier model, can increases faster and finally it reaches 
to a specific value. 

The solid-liquid boundary in xy plane at 5.o=
pt
t for 

45.2 o=α
Vw  is shown in Fig. 17. As it can be predicted from 

Fig. 16, the size of the melt pool in xy plane when Fourier 
model is used, is greater than when the hyperbolic model is 
used. Fig. 18 shows the solid-liquid boundary of the melt pool 

in xz plane at 5.o=
pt
t

for 45.2 o=α
Vw . According to Fig. 18 

it can be concluded that, using Fourier model, the size of the 
melt pool in xz plane is greater than the same melt pool 
obtained from the hyperbolic model. 

 
Fig. 5 Melting pool depth versus laser beam intensity at the center. 

 
Fig. 6 Melting pool depth versus radial distance from the laser beam 

center 

 
Fig. 7 Surface center point temperature with respect to the time at 

various speeds and intensity of ( )29
0 /105.3 mWI ×=  in 

continuous heat flux case 
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Fig. 8  Melting pool diameter on the x-axis with respect to the time 

for two different speeds in continuous heat flux case 
 

 
Fig. 9 Melting pool image on the x-y plane at a constant velocity and 
different times for a circular laser beam in continuous heat flux case  

 

 
Fig. 10 Melting pool image on the x-z plane at a constant velocity 

and different times for a circular laser beam in continuous heat flux 
case 

 

 
Fig. 11 Temperature contours in the x-y plane for circular laser 

 beam in continuous heat flux case 

 
Fig. 12 Temperature contours in the x-y plane for elliptical laser 

beam in continuous heat flux case 

 
Fig. 13 Melting pool diameter on the x and y axes versus time for     

elliptical laser beam in continuous heat flux case 
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Fig. 14 Surface central point temperature versus time using  
Fourier and Hyperbolic methods 

 
Fig. 15 Melting pool depth variation with time using Fourier  

and Hyperbolic methods 
 

 
 Fig. 16 Melting pool diameter on the x-axis versus time using  

Fourier and Hyperbolic methods 

 
           Fig. 17 Melting pool image on the x-y plane for a circular   

     laser beam using Fourier and Hyperbolic methods 
 

 
Fig. 18 Melting pool image on the x-z plane for a circular laser  

      beam using Fourier and Hyperbolic methods 
 

V. CONCLUSION 
The temperature distribution and the size of the melt pool 

for an aluminum solid under the laser beam were studied. The 
hyperbolic heat equation was applied. The results of the 
hyperbolic model and the fourier model were compared and it 
was seen that the increment of the melt pool and temperature 
fields were slower, when the hyperbolic model was applied. 
This phenomenon is in the wake of the infinite speed of the 
thermal waves in fourier model. Also it was deduced that, the 
hyperbolic heat conduction model is suitable for short times 
and large domains and it can reached to the accurate results. 
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