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Abstract—A three-dimensional numerical simulation of flow 
through mini and microchannels with designed roughness is 
conducted here. The effect of the roughness height (surface 
roughness), geometry, Reynolds number on the friction factor, and 
Nusselt number is investigated. The study is carried out by 
employing CFD software, CFX. Our work focuses on a water flow 
inside a circular mini-channel of 1 mm and microchannels of 500 and 
100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. 
The general trend can be observed that bigger sizes of roughness 
element lead to higher flow resistance. It is found that the friction 
factor increases in a nonlinear fashion with the increase in obstruction 
height. Particularly, the effect of roughness can no longer be ignored 
at relative roughness height higher than 3%. A significant increase in 
Poiseuille number is detected for all configurations considered. The 
same observation can be done for Nusselt number. The transition 
zone between laminar and turbulent flow depends on the channel 
diameter. 

 
Keywords—Heat transfer, hydrodynamics, micro-channel, 

roughness.  

I. INTRODUCTION 

NTEREST in microdevices has been constantly growing 
over the past decade. In particular, for devices such as micro 

heat exchangers and micro machines, a considerable amount 
of research activity has been devoted to the understanding of 
small scale fluid phenomena. However, although a large pool 
of experimental data for both pressure drop and Nusselt 
number is available, the full comprehension of the microscale 
flow behavior is still an open problem. 

Several studies exhibit contradictory results for both 
mechanical and thermal characteristics of the flow [1]-[3]. 
This is generally due to difference in the many parameters that 
characterize these studies such as geometry, usually made of 
complex multichannels, the hydraulic diameter, the shape and 
surface roughness of the channels, the fluid nature, the 
boundary conditions, the flow regime and the measurements 
and calculating techniques itself. For a fundamental insight 
into microfluidics, it may then be useful to reduce as much as 
possible the number of parameters. 

While most literature references [3], [4] are on the role of 
the surface roughness in the microscale laminar regime agree 
in describing that an increase in Poiseuille number f ·Re, with 
respect to the conventional theory, a much higher uncertainty 
arises when the effects of surface roughness on heat transfer 
are considered.  
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Work in the area of roughness effects on friction factors in 
internal flows was pioneered by [5] and [6]. Their work was, 
however, limited to relative roughness values of less than 5%, 
a value that may be exceeded in microfluidics application 
where smaller hydraulic diameters are encountered. Many 
previous works have been performed through the 1990s with 
inconclusive and often contradictory results. 

Moody [7] presented these results in a convenient graphical 
form. The first area of confusion is the effect of roughness 
structures in laminar flow. In the initial work, [6] concluded 
that the laminar flow friction factors are independent of 
relative roughness ε/D for surfaces with ε/D < 0.05. This has 
been accepted into modern engineering textbooks. The effect 
of pitch on friction factor is another important area.  

While most literature references on the role of the surface 
roughness in the microscale laminar regime agree in ascribing 
to it an increase in Poiseuille number C = f ·Re, with respect 
to the conventional theory, a much higher uncertainty arises 
when the effects of surface roughness on heat transfer are 
considered. According to [8], a high relative roughness of the 
walls increases the convective heat transfer because of the 
regeneration of the thermal boundary layer. On the other hand, 
[9], comparing their experimental results with the numerical 
ones obtained by solving a conjugate heat transfer problem, 
justify the measured lower Nusselt with the surface roughness 
effects. 

Reynaud et al. [10] explain Nusselt numbers lower than 
those predicted by conventional theory by considering the 
non-uniformity of heat flux at the walls.  

Xu et al. [11] performed experimental investigations on 
water flow in microchannels with hydraulic diameters ranging 
from 50 to 300 μm. They observed that the flow 
characteristics deviated from conventional theory for channel 
dimensions below 100 μm. The friction factor was smaller 
than that predicted by the Hagen–Poiseuille law. They also 
present the result for liquid flow in 30–344 µm diameter 
channels at Re numbers between 20 and 4000. The 
characteristics of flow in micro-channels agree with the 
conventional behavior predicted by the Navier–Stokes 
equations. Furthermore, they concluded that if any non-
Navier–Stokes flow phenomena existed, their influence was 
masked by experimental uncertainty. 

Bavière et al. [12] carried out numerical modelling of 
laminar flows in rough-wall micro-channels using rectangular 
prism rough elements in periodical arrays. The numerical 
results confirmed that the flow is independent of the Reynolds 
number in the range 1–200. 
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sphere and the pyramid shape which allow the flow to be 
shaped, and thus improve the very little heat transfer. 

The results show that until diameter of 0.1 mm, the same 
behavior of the flow is denoted for dynamic and thermal 
aspect. This could be explained by the fact that the limit of 
mini-micro channels is not reached yet, or, the fact that the 
fluid flow in micro-channel can be studied through the results 
from the classical theory, with certain precautions. 
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