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Abstract—It is well known that the abrasive particles in the 

abrasive water suspension has significant effect on the erosion 
characteristics of the inside surface of the nozzle. Abrasive particles 
moving with the flow cause severe skin friction effect, there by 
altering the nozzle diameter due to wear which in turn reflects on the 
life of the nozzle for effective machining. Various commercial 
abrasives are available for abrasive water jet machining. The erosion 
characteristic of each abrasive is different. In consideration of this 
aspect, in the present work, the effect of abrasive materials namely 
garnet, aluminum oxide and silicon carbide on skin friction 
coefficient due to wall shear stress and jet kinetic energy has been 
analyzed. It is found that the abrasive material of lower density 
produces a relatively higher skin friction effect and higher jet exit 
kinetic energy. 

 
Keywords—Abrasive water suspension jet, Skin friction 

coefficient, Jet kinetic energy, Particulate loading, Stokes number.  

I. INTRODUCTION 
BRASIVE Water Suspension Jet (AWSJ) technology is 
evolving rapidly from last decade. Parallelly the material 

for AWSJ nozzle and the type of abrasive suspension are 
being explored in greater detail using tools of experimental 
and numerical methods. The rapid advances in AWSJ 
machining is due to high capability of the process to machine 
complex shapes that need to be produced from brittle and heat 
sensitive materials and also from the need to machine different 
variety of composites. The advent of computer numerical 
control for the AWSJ motion on the work part complex 
profiles with better surface quality and precision can now be 
achieved. One of the plaguing problems faced by AWSJ 
machining is nozzle  
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wear mainly due to the suspension particles in the jet. Though 
the wear is greatly influenced by material property, it is found 
that nozzle geometry and operating parameter also play vital 
part in the wear process due to change in velocity and pressure 
along the nozzle [8]. Abrasive Water Suspension Jet (AWSJ) 
is one of the variants of AWJ machining in which suspended 
abrasive particles in a liquid medium called slurry is 
pressurized and expelled through the nozzle. Benefit of AWSJ 
over AWJ is the generation of stable jet with higher power 
density, which leads to efficient energy transfer to abrasive 
particles [1-4].  Nozzle wear is a complex phenomenon, which 
is not only influenced by the material properties of the nozzle 
but also by the nozzle geometry and operating parameters of 
AWSJ. A host of articles is available for both experimental 
and numerical aspects of flow through the AWSJ nozzle [5-
23]. AWSJ machining operates at relatively high-pressure    
(10 - 1000 MPa). Slurry is accelerated through a fine orifice to 
produce a high velocity stream, which is capable of machining 
a range of materials. The abrasive particles moving with the 
corresponding high velocity of flow cause severe wall shear in 
the nozzle. This causes erosion of the nozzle, due to which the 
effective diameter of the nozzle may change significantly 
resulting in reduced exit kinetic energy of the jet. Study of 
wear characteristics of the nozzle is critical for the growth of 
AWJ technology. In consideration of this aspect, the present 
work examines the effect of various abrasive particles on the 
skin friction coefficient due to walls shear stress and jet 
kinetic energy. 
 

Nomenclature 
d Focus tube diameter  (mm) 
dp Diameter of abrasive particles (µm) 
D Inlet diameter of nozzle  (mm) 
FLift Lift force (N) 
Fs External body force  (N) 
Fvm Virtual mass force (N) 
K Momentum exchange co-efficient 
l Length of flow domain (mm) 
L Particle spacing (mm) 
m Mass flow rate of mixture (m3/s ) 
St Stokes number 
ts system response time (s) 
V      Velocity of phase (m/s) 
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α  Volume fraction of the phase 
β Particulate loading 
ρ  Density of suspension mixture (kg/m3) 
γ  Density ratio 
τd Particle response time (s) 
μ  Viscosity (kg/m-s) 
 
Subscripts 
p, q  phases 
l       liquid phase 
s      solid phase 

 

II. THEORETICAL FORMULATION  

A. Numerical Model and Assumptions 
The numerical region for flow analysis is made up of flow 

geometry as depicted in the figure 1 for the multistep AWSJ 
nozzle. Computational domain consists of three converging 
steps of nozzle of length 4 mm each between which 4 mm 
straight length duct is introduced. There is a focus tube of 
diameter 1.3 mm and length 17mm. The conical steps of the 
nozzle are of half cone angle of 50 for first and second section 
followed by 100 for third section. The Abrasive water 
suspension mixture is let into the nozzle at the inlet and is 
carried down through the converging cone to the focus tube 
and exits as coherent jet at the nozzle exit, in which the focus 
tube is used for stabilizing the flow.  

 
Fig. 1 Flow domain used for AWSJ nozzle 

 
The numerical model adopted closely follows the work of 

G.Hu et.al [7] in which liquid solid two-phase flow is 
considered and the following assumptions are valid for the 
present work. 

• Flow is taken to be two-phase flow in which the primary 
liquid phase mixes homogeneously with the particles of 
equal diameter, constituting the solid phase.  

• The primary liquid phase is continuous and 
incompressible.  

• Two-phase flow assumed is steady and characterized by 
turbulent flow. 

 

B. The computation of Particulate loading and Stokes 
number 

Particulate loading and the Stokes number are important 
parameters that help to identify the appropriate multiphase 
model. Particulate loading has a major impact on phase 
interactions and is defined as the mass density ratio of the 
dispersed phase to that of the carrier phase. The Particulate 
loading for garnet abrasive is, 

0.1 2300
0.230 (1)

998
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l l
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β
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= = =  

The degree of interaction between the phases is 
intermediate loading, the coupling is two-way i.e., the fluid 
carrier influences the particulate phase via drag and 
turbulence, but the particles in turn influence the carrier fluid 
via reduction in mean momentum and turbulence. All 
multiphase models can handle this type of problem but it is 
found that the Eulerian multiphase model seems to be the most 
accurate one [15]. The average distance between the 
individual particles of the particulate phase can be estimated 
by equation developed by Crowe et al.[14]. 
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The average distance between the individual particles of the 

particulate phase is calculated from equation (4) for an 
abrasive particle size of dp=63 µm. 

1.7925 1.7925 0.063 0.1129L x d x mmp= = =  

Estimating the value of the Stokes number helps to select 
the most appropriate multiphase model. The Stokes number is 
defined as the ratio of the particle response time to the system 
response time is calculated below.  
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For Stokes number less than unity, particles will closely 
follow the fluid flow and any one of the three multiphase 
models namely Volume of fluid model, Mixture model or 
Eulerian multiphase model is applicable. Also from the 
calculation of the effect of particulate loading it is clear that 
coupling between two phases is intermediate [15]. Hence 
present numerical simulation is carried using Eulerian 
multiphase model which though is most expensive in 
computation, but gives most accurate results. Eulerian 
Multiphase model is embedded in Fluent software. Fluent 
solves a multi-fluid granular model to describe the flow 
behavior of fluid solid mixture. The stresses induced in the 
solid phase are deduced through an analogy between the 
random particle motion arising from particle to particle 
collisions and the thermal gradient of molecules in the fluid 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:10, 2012

2269

 

 

stream taking into effect the inelasticity of the granular phase. 
Intensity of the particle velocity fluctuations determines the 
stresses, viscosity and pressure of the solid phase [15].  

The governing equations for mass and momentum 
conservation are solved for the steady incompressible flow. 
The coupling between velocity and pressure has been 
attempted through the phase coupled SIMPLE algorithm 
developed by Patankar S.V [16] using the power law scheme 
for the solution. The turbulence is modeled using Realizable 
 k-ε turbulence model. The governing partial differential 
equations, for mass and momentum conservations are detailed 
below. 
 
Continuity Equation 

1
( ) ( ) ( ) (8)

N
α ρ α ρ v m m

q q q q q pq qpρ t p=1pq

∂
+ ∇ • = ∑

∂
−⎡ ⎤

⎢ ⎥⎣ ⎦

 
Fluid-Solid Momentum Equation 
The conservation of momentum equation for the solid phase is 
as follows.  
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The conservation of momentum equation for the fluid phase is 
as follows. 
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III. METHOD OF SOLUTION  

A. Numerical Scheme 
Conservation equations are solved for each control volume 

to obtain the velocity and pressure fields. Convergence is 
affected when all the dependent variable residuals fall below 
0.00001 at all grid points. Computational domain is modeled 
using commercially available pre-processor routine called 
GAMBIT and meshing is carried out using linear quad paved 
mesh. Wall region in the flow domain is closely meshed using 
the boundary layer mesh concepts for extracting high velocity 
gradients near the boundary walls. According to the structure 
of nozzle and jet characteristics, computational domain is built 
as axi-symmetric model. Figure 2 shows the computational 
domain. The grid independence test is performed to check the 
quality of mesh for solution convergence as shown in figure 3. 
It is clear from the graph that there is almost negligible 

variation (not more than 1 %), in the axial velocity distribution 
for the between mesh geometries consisting of 58320, 87480 
and 116640 control volumes. Hence considering lesser 
computational time required, a mesh geometry consisting of 
58320 control volumes has been adopted in this work. 

 

 
Fig. 2 A portion of the meshed domain near the critical section of 

AWSJ nozzle 
 

 
 
Fig. 3 Results of grid independence test for multi-step AWSJ nozzle 

 

B. Boundary Conditions and Operating Parameters  
Suitable boundary conditions are imposed on the 

computational domain, as per the physics of the problem. Inlet 
boundary condition is specified by the operating pressure 
entering the nozzle. It is assumed that velocity at inlet is 
uniform across the cross section. At the exit, static pressure of 
effluxing flow is taken to be zero (gauge), so that the 
computation would proceed by the relative pressure 
differences across the grid volumes for the entire domain of 
the flow. Wall boundary conditions are impressed to bound 
fluid and solid regions. In viscous flow models, as in the 
present case, velocity components at the wall are set to zero in 
accordance with the no-slip and impermeability conditions 
that exist on the wall boundary. The axis of the nozzle is used 
to solve the computational domain as axisymmetric problem 
and suitable boundary conditions are imposed for the same 
i.e., the gradient of fluid properties are set to zero across the 
axis line. In the present numerical simulation, mixture of water 
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