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Number of Parametrization of Discrete-Time
Systems without Unit-Delay Element:

Single-Input Single-Output Case
Kazuyoshi Mori

Abstract—In this paper, we consider the parametrization of the
discrete-time systems without the unit-delay element within the
framework of the factorization approach. In the parametrization,
we investigate the number of required parameters. We consider
single-input single-output systems in this paper. By the investigation,
we find, on the discrete-time systems without the unit-delay element,
three cases that are (1) there exist plants which require only one
parameter and (2) two parameters, and (3) the number of parameters
is at most three.
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I. INTRODUCTION

IN this paper, we consider the parametrization of the

parametrization of the discrete-time systems without the

unit-delay element within the framework of the factorization

approach.

The factorization approach to control systems has the

advantage that it includes, within a single framework,

numerous linear systems such as continuous-time as well as

discrete-time systems, lumped as well as distributed systems,

one-dimensional as well as multidimensional systems, etc.

[1]-[8]. In the factorization approach, when problems such as

feedback stabilization are studied, one can focus on the key

aspects of the problem under study rather than be distracted by

the special features of a particular class of linear systems. This

approach leads to conceptually simple and computationally

tractable solutions to many important and interesting problems

[9], [10]. A transfer matrix of this approach is considered as

the ratio of two stable causal transfer matrices.

For a long time, the theory of the factorization approach

had been founded on the coprime factorizability of transfer

matrices. On the other hand, Anantharam showed in [11]

a model that has plants which are stabilizable but do not

admit coprime factorization. Mori and Abe also showed such

a model[5].

II. PRELIMINARIES

The stabilization problem considered in this paper follows

that of [4], and [5], who consider the feedback system Σ [9,

Ch.5, Fig. 5.1] as in Fig. 1. For further details the reader is

referred to [9], [3]-[5].

We consider that the set of stable causal transfer functions is

an integral domain, denoted by A. The total ring of fractions
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Fig. 1 Feedback system Σ

of A is denoted by F ; that is, F = {n/d |n, d ∈ A, d �=
0}. This F is considered as the set of all possible transfer

functions. Matrices over F are transfer matrices. Let Z be

a prime ideal of A with Z �= A. Define the subsets P and Ps

of F as follows: P = {a/b ∈ F | a ∈ A, b ∈ A\Z}, Ps =
{a/b ∈ F | a ∈ Z, b ∈ A\Z}. Then, every transfer function

in P (Ps) is called causal (strictly causal). Analogously, if

every entry of a transfer matrix is in P (Ps), the transfer

matrix is called causal (strictly causal).

Throughout the paper, the plant we consider has single-input

and single-output, and its transfer function, which is also called

a plant itself simply, is denoted by p and belongs to P . We

can always represent p in the form of a fraction p = nd−1,

where n ∈ A and d ∈ A with nonzero d.

For p ∈ P and c, a matrix H(p, c) ∈ F2×2 is defined as

H(p, c) :=

[
(1 + pc)−1 −p(1 + pc)−1

c(1 + pc)−1 (1 + pc)−1

]
(1)

provided that 1 + pc is a nonzero of A. This H(p, c) is the

transfer matrix from [ u1 u2 ]t to [ e1 e2 ]t of the feedback

system Σ. If 1 + pc is a nonzero of A and H(p, c) ∈ A2×2,

then we say that the plant p is stabilizable, p is stabilized by c,
and c is a stabilizing controller of p. In the definition above,

we do not mention the causality of the stabilizing controller.

However, it is known that if a causal plant is stabilizable, there

always exists a causal stabilizing controller of the plant [5].

It is known that W (p, c) defined below is over A if and

only if H(p, c) is over A:

W (p, c) :=

[
c(1 + pc)−1 −pc(1 + cp)−1

pc(1 + pc)−1 p(1 + cp)−1

]
. (2)

This W (p, c) is the transfer matrix from [ u1 u2 ]t to

[ y1 y2 ]t.

We employ the symbols used in [12], [4] in general.
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III. PARAMETRIZATION WITHOUT COPRIME

FACTORIZABILITY

Here we briefly review the parameterization method of [12],

which does not require coprime factorization. Let H be the

set of H(P,C)’s with all stabilizing controllers C. Let H0 be

H(P,C0) ∈ A(m+n)×(m+n), where C0 is a fixed stabilizing

controller of P with m inputs and n outputs. Let Ω(Q) be

a matrix defined as

Ω(Q) =

(
H0 −

[
In On×m

Om×n Om×m

])
Q (3)

×
(
H0 −

[
On×n On×m

Om×n Im

])

+H0

with a stable causal and square matrix Q in A(m+n)×(m+n).

Then we have the identity

H = {Ω(Q) |Q is stable causal and Ω(Q) is nonsingular}
[12, Theorems 4.2 and 4.3]. Then, from (1), any stabilizing

controller has the form Ω21Ω
−1
22 , where Ω21 and Ω22 are

the (2,1)- and (2,2)-blocks of Ω(Q), provided that Ω22 is

nonsingular.

The parameterization above is given by a parameter

matrix Q without coprime factorizability of the plant. Thus,

this method can be applied to models in which some

stabilizable plants do not admit doubly coprime factorizations,

such as in [11], and models in which we do not yet

know whether or not there always exists a doubly coprime

factorization for a stabilizable plant, such as multidimensional

systems with structural stability [13], [14].

IV. DISCRETE-TIME SYSTEMS WITHOUT UNIT-DELAY

ELEMENT

The author [5] considered the case A = R[z2, z3], where Z

denotes the set of integers. This ring is an integral domain but

not a unique factorization domain. In fact, z6 ∈ A has two

factorizations, z2 · z2 · z2 and z3 · z3. He showed that the plant

P :=

[
(1− z3)/(1− z2)
(1− 8z3)/(1− 4z2)

]
∈ P2×1 (4)

does not admit a coprime factorization but is stabilizable and

C =
−1

αI1λ
2
I1
〈(1 + z)(1 + 2z)(1− 3z)〉

[
αI1n1 αI2n2

]
.

is a stabilizing controller, where

n1 = 〈(1 + z)(1 + 2z)(1− 3z)〉
× (1 + αI1λI1 〈(1 + z)(1 + 2z)(1− 3z)〉),

n2 = 〈(1 + z)(1 + 2z)(1− 3z + z2)〉,
αI1 = −4233−23646z2−39836z3−201780z4−113016z5+75344z6

5852
,

αI2 = 10085+18418z2+121140z3+131852z4+113016z5

5852
,

λI1 = αI1 〈(1 + 2z)(1− 3z)(1 + z + z2)〉,
λI2 = αI2 〈(1 + z)(1 + 2z + 4z2)(1− 3z + z2)〉.

V. NECESSARY PARAMETERS FOR SISO SYSTEMS

The following result is from [15].

Theorem 1: ([15, Theorem 1]) Let us consider a stabilizable

single-input single-output (SISO) plant. We do not assume

the coprime factorizability of the plant. Then the number

of parameters for the parameterization of the stabilizing

controllers of the plant is up to three.

VI. ONE-PARAMETER CASE

As in Section IV, we consider A = R[z2, z3].

First, as a simple case, let us suppose that a plant

admits a coprime factorization over A, we can employ

Youla-Kučera-parametrization [17]-[19]. In this case, the

number of parameter is always one.

Let p = 1/(z2 + 1). Then a stabilizing controller is

c0 =
−z4 + 2

z2 − 1
.

Then we have a coprime factorization ny + dx = 1, where

n = 1, d = z2 + 1,

y = −z4 + 2, x = z2 − 1.

Then all stabilizing controllers are give as

−z4 + 2 + r(z2 + 1)

z2 − 1− r
(5)

with r ∈ A and z2 − 1− r �= 0.

In the case of Anantharam’s model [11], [16], [15], there

exist an SISO plant such that [15]

(1) the plant does not admit a coprime factorization but is

stabilizable,

(2) the number of parameters for all stabilizing controllers is

one.

Let us consider the parametrization based on Section III.

Let Q, H(p, c0), and Ω(Q) be as in Section VI. Then ω11,

ω12, ω21, and ω22 are

ω11 = −((1 + z2)((−2 + 2z2 + z4 − z6)q11 (6)

+(−2 + z4)2q12

−(−1 + z2)(q21 − z2q21 + (−2 + z4)q22))),

ω12 = (−2 + 2z2 + z4 − z6)q11 + (−2 + z4)2q12 (7)

−(−1 + z2)(q21 − z2q21 + (−2 + z4)q22),

ω21 = (1 + z2)2((−2 + 2z2 + z4 − z6)q11 (8)

+(−2 + z4)2q12

−(−1 + z2)(q21 − z2q21 + (−2 + z4)q22)),

ω22 = −((1 + z2)((−2 + 2z2 + z4 − z6)q11 (9)

+(−2 + z4)2q12

−(−1 + z2)(q21 − z2q21 + (−2 + z4)q22))).

We now see that ω11 = ω22. Let αijkl (i, j, k, l = 1, 2
except for k = l = 2) be the coefficient of qij of ωkl. By
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using αijkl’s, we make a matrix A such as

A =

⎡
⎢⎢⎣
α1111 α1112 α1121

α1211 α1212 α1221

α2111 α2112 α2121

α2211 α2212 α2221

⎤
⎥⎥⎦ . (10)

Using qij’s, (10) is rewritten as

α1111 = 2− 3z4 + z8,

α1112 = −2 + 2z2 + z4 − z6,

α1121 = −2− 2z2 + 3z4 + 3z6 − z8 − z10,

α1211 = −4− 4z2 + 4z4 + 4z6 − z8 − z10,

α1212 = 4− 4z4 + z8,

α1221 = 4 + 8z2 − 8z6 − 3z8 + 2z10 + z12,

α2111 = −1 + z2 + z4 − z6,

α2112 = 1− 2z2 + z4,

α2121 = 1− 2z4 + z8,

α2211 = 2− 3z4 + z8,

α2212 = −2 + 2z2 + z4 − z6,

α2221 = −2− 2z2 + 3z4 + 3z6 − z8 − z10.

We now consider the following matrix T = (tij):

t11 = 1− 4z2,

t12 = −z2,

t13 = 1− 4z2 − 2z4 + z6,

t14 = 0,

t21 = 5− 4z2,

t22 = 1− z2,

t23 = 6− 2z2 − 3z4 + z6,

t24 = 0,

t31 = 1− 6z2 + 9z4 − 4z6,

t32 = −z2 + 2z4 − z6,

t33 = 2− 6z2 + 7z4 + z6 − 4z8 + z10,

t34 = 0,

t41 = −1,

t42 = 0,

t43 = 0,

t44 = 1.

The determinant of T is 1. Then TA becomes

TA =

⎡
⎢⎣
1 + z2 −1 −(1 + z2)2

0 0 0
0 0 0
0 0 0

⎤
⎥⎦ (11)

The matrix T can be decomposed as

T = T10T9T8T7T6T5T4T3T2T1, (12)

where

T1 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

⎤
⎥⎦ , (13)

T2 =

⎡
⎢⎣
1 0 z2 0
0 1 −z4 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (14)

T3 =

⎡
⎢⎣
1 0 1 0
0 1 −2z2 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (15)

T4 =

⎡
⎢⎣
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (16)

T5 =

⎡
⎢⎣
1 0 0 0
4 1 0 0
z2 0 1 0
0 0 0 1

⎤
⎥⎦ , (17)

T6 =

⎡
⎢⎣
1 −z2 0 0
0 1 0 0
0 −z4 1 0
0 0 0 1

⎤
⎥⎦ , (18)

(19)

T7 =

⎡
⎢⎣
1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (20)

T8 =

⎡
⎢⎣
1 0 0 0
0 1 0 0
z4 0 1 0
0 0 0 1

⎤
⎥⎦ , (21)

T9 =

⎡
⎢⎣

1 0 0 0
0 1 0 0

−3z2 0 1 0
0 0 0 1

⎤
⎥⎦ , (22)

T10 =

⎡
⎢⎣
1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

⎤
⎥⎦ . (23)

Thus, from the matrices T1 to T10, we have the sequence of

replace of parameters:

(i) q11 → (q11 − q22),
(ii) q21 → (q21 + q11z2 − q12z4),

(iii) q21 → (q21 + q11 − q12z2),
(iv) q21 → (q21 + q12),
(v) q11 → (q11 + 4q12 + q21z2),

(vi) q12 → (q12 − q11z2 − q21z4),
(vii) q11 → (q11 + q12),

(viii) q11 → (q11 + q21z4),
(ix) q11 → (q11 − 3q21z2),
(x) q11 → (q11 + q21).

By applying the eight replacements above to Ω(Q) of (3),

we obtain

Ω(Q) =

[
φ11 φ12

φ21 φ22

]
, (24)

where

φ11 = (1 + z2) ∗ (−1 + z2 + q11),

φ12 = 1− z2 − q11,

φ21 = −((1 + z2)(−2 + z4 + q11 + z2q11)),

φ22 = −1 + z4 + q11 + z2q11,
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which has only one parameter. Based on (24), we can obtain

a stabilizing controller of p as

φ21φ
−1
11 =

−(−2 + z4 + q11 + z2q11)

−1 + z2 + q11

=
2− z4 − (z2 + 1)q11

−1 + z2 + q11
.

By replacing q11 by −q′11, we have

φ21φ
−1
11 ==

−z4 + 2 + q′11(z
2 + 1)

z2 − 1− q′11
,

which is equivalent to (5).

VII. TWO-PARAMETER CASE

In this section, we show that there exists SISO plant whose

stabilizing controller is parametrized by two parameters. From

now, we show that such a plant is p = (z2 − 1)/(z3 − 1) and

a its stabilizing controller c0 = −(z3 + 1)/(z2 − 1).
Let Q, H(p, c0), and Ω(Q) be as in Section VI. Then ω11,

ω12, ω21, and ω22 are

ω11 = ((−1 + z6)q11 − (1 + z2 + z3 + z4

+z5 + z7)q12 − q21 + z2q21 + z3q21 − z5q21

−q22 + z6q22)/4 (25)

ω12 = (−((−1 + z2 − z3 + z5)q11) + (1 + z3)2q12

−(−1 + z)(1 + z)2(q21 − zq21 + q22

−zq22 + z2q22))/4 (26)

ω21 = ((1 + z + z2)2(−((−1 + 2z − 2z2 + z3)q11)

+(1− z + z2)2q12 − (−1 + z)(q21 − zq21

+q22 − zq22 + z2q22)))/4 (27)

ω22 = ((−1 + z6)q11 − (1 + z2 + z3 + z4 + z5 + z7)q12

−q21 + z2q21 + z3q21 − z5q21

−q22 + z6q22)/4 (28)

We now see that ω11 = ω22. Analogously to Section VI, we

have matrices A (= (α····)), T , and TA as follows:

α1111 = (−1 + z6)/4,

α1112 = (1− z2 + z3 − z5)/4,

α1121 = (1 + z2 − z3 + z4 − z5 − z7)/4,

α1211 = (−1− z2 − z3 − z4 − z5 − z7)/4,

α1212 = (1 + 2z3 + z6)/4,

α1221 = (1 + 2z2 + 3z4 + 2z6 + z8)/4,

α2111 = (−1 + z2 + z3 − z5)/4,

α2112 = (1− 2z2 + z4)/4,

α2121 = (1− 2z3 + z6)/4,

α2211 = (−1 + z6)/4,

α2212 = (1− z2 + z3 − z5)/4,

α2221 = (1 + z2 − z3 + z4 − z5 − z7)/4,

T =

⎡
⎢⎣

8 4z2 −12− 8z2 − 4z4 0
−8 4− 4z2 4 + 4z2 + 4z4 0
0 0 4 0
−4 0 0 4

⎤
⎥⎦ ,

TA =⎡
⎣

1− 2z2 − 3z3 − 2z4 0 −1 + z2 + z3 − z5 0
(1 + z)2(−1 + 2z) 0 (−1 + z2)2 0

(−1 + 2z)(1 + z + z2)2 0 (−1 + z3)2 0

⎤
⎦
t

.

The determinant of T is 511, which is a unit of A. The

matrix T can be decomposed as

T = T7T6T5T4T3T2T1, (29)

where

T1 =

⎡
⎢⎣
4 0 0 0
0 4 0 0
0 0 4 0
4 0 0 4

⎤
⎥⎦ , (30)

T2 =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

⎤
⎥⎦ , (31)

T3 =

⎡
⎢⎣
1 0 0 0
0 1 −z2 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (32)

T4 =

⎡
⎢⎣
1 0 0 0
0 1 −2 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (33)

T5 =

⎡
⎢⎣
1 z2/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (34)

T6 =

⎡
⎢⎣
2 0 −3 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (35)

T7 =

⎡
⎢⎣

1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ . (36)

Thus, from the matrices T1 to T8, we have the sequence of

replace of parameters:

(i) q11 → 4q11, q12 → 4q12, q21 → 4q21, q22 → 4q22,

(ii) q11 → (q11 − q22),
(iii) q21 → (q21 − q12z

2),
(iv) q21 → (q21 − 2q12),
(v) q12 → (q12 + 1/2q11z

2),
(vi) q21 → (q21 − 3q11), q11 → 2q11,

(vii) q11 → (q11 − q12),
(viii) q11 → (q11 − q12).

By applying the eight replacements above to Ω(Q) of (3),

we obtain

Ω(Q) =

[
φ11 φ12

φ21 φ22

]
, (37)

where

φ11 = 1/2− z3/2 + q11 − 2z2q11 − 3z3q11 − 2z4q11

−q21 + z2q21 + z3q21 − z5q21,

φ12 = −1/2 + z2/2− q11 + 3z2q11 + 2z3q11 + q21

−2z2q21 + z4q21,

φ21 = 1/2 + z2/2 + z4/2− q11 + z2q11 + 4z3q11

+3z4q11 + 2z5q11 + q21 − 2z3q21 + z6q21,

φ22 = 1/2− z3/2 + q11 − 2z2q11 − 3z3q11 − 2z4q11

−q21 + z2q21 + z3q21 − z5q21,

which has two parameters, q11 and q21. Based on (37), we

can obtain a stabilizing controller of p as φ21φ
−1
11 . Thus, the
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parametrization of all stabilizing controllers of p is achieved

by two parameters (q11 and q21).

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have considered SISO the discrete-time

systems without the unit-delay element. In the model, we

have shown that the number of parameterization is depend on

plants. We have shown concrete plant examples which have

the parameterization of stabilizing controllers of one or two

parameters.

We will investigate the relationship a plant and the number

of parameters of stabilizing controllers of the plant.
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