
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

609

A Novel Method for Elliptic Curve Multi-Scalar
Multiplication

Raveen R. Goundar, Ken-ichi Shiota, and Masahiko Toyonaga

Abstract—The major building block of most elliptic curve cryp-
tosystems are computation of multi-scalar multiplication. This paper
proposes a novel algorithm for simultaneous multi-scalar multipli-
cation, that is by employing addition chains. The previously known
methods utilizes double-and-add algorithm with binary representa-
tions. In order to accomplish our purpose, an efficient empirical
method for finding addition chains for multi-exponents has been
proposed.

Keywords—elliptic curve cryptosystems, multi-scalar multiplica-
tion, addition chains, Fibonacci sequence.

I. INTRODUCTION

Multi-scalar multiplication is required in many elliptic curve
cryptosystems (ECC) such as provable-secure digital signa-
tures [11], [12], multi-party protocols [2] and protocols of
Brands [3]. It is given by the formula

∑t
i=1 kiGi where ki is

a scalar variable (exponent), Gi shows a rational point (base)
on an elliptic curve and i is an integer in [1, t] where t ≥ 2.

In most cases where multi-scalar multiplication is applied,
the process in dominant in determining the overall efficiency.
Hence, efficiency of multi-scalar multiplication are essential
in elliptic curve cryptosystems. Conventional methods for
computation of multi-scalar multiplication can be classified
into two types. In methods of one type includes independent
computation of the scalar multiples kiGi, followed by their
addition. Such method could be very expansive but in cases
where some of the scalars are fixed then a comb method [8]
combined with a window method could enhance the overall
efficiency of the process. In the methods of the other type, the
multi-scalar multiplication is computed in one stage, without
separate computation of kiGi. This includes simultaneous
methods such as Shamir [4] and Interleave [9] method which
utilizes binary representations for double-and-add algorithm.

In this paper we propose a novel algorithm for simultaneous
multi-scalar multiplication that is, by utilizing addition chains.
Hence, to accomplish our purpose, we propose an efficient
empirical method for finding short addition chains for multi-
exponents.

II. BACKGROUND

In this section, we give a brief overview on elliptic curve
cryptography, addition chains and Fibonacci sequence.

R.R.Goundar is with Department of Computing and Mathematics, Fiji
Institute of Technology, Suva, Fiji, email: goundar rr@fit.ac.fj

K.Shiota and M.Toyonaga is with Graduate School of Mathemat-
ics and Information Science, Kochi University, Japan, email: {shiota,
toyonaga}@is.kochi-u.ac.jp

A. Elliptic Curve Cryptography
Let Fp be a finite field, where p > 3 is prime. Let E be

an elliptic curve over Fp . The elliptic curve can be used to
construct an abelian group E(Fp) with identity element O
called the point of infinity. A point P ∈ E(Fp) in affine
coordinates is represented as P = (x, y) where its inverse
−P = (x,−y) can be computed virtually for free. The elliptic
curve addition operation P +Q and doubling operation 2P are
denoted by ADD and DBL, respectively, where P,Q ∈ E(Fp).
More details could be cited from [5], [10] .

B. Review on Addition Chains and Fibonacci Se-
quence

The use of moderately short addition chains can result
in an efficient multi-scalar multiplication algorithm. However
finding the shortest addition chain is known to be an NP-
complete problem [5]. Conventionally, utilization of addition
chains are considered to be cheaper for the cases of fixed
exponent and variable bases [10], [7], since it is exponent
dependent. However, if efficient algorithms for generating
short addition chains are available then one may also consider
for the cases of variable exponents and fixed bases.

Different types of addition chains and efficient methods for
finding short addition chains are discussed in [1], [10]. The
following defines an addition chain.

Definition 1. An addition chain computing an integer k is
given by two sequences c = (c0, . . . , c�) and d = (d1, . . . , d�)
such that c0 = 1 , c� = k , ci = cr + cs , for all 1 ≤ i ≤
� with respect to di = (r, s) and 0 ≤ r, s ≤ i− 1 . The length
of the addition chain is �.

Note that if the construction of addition chain involves fixed
pattern then representations could be used during exponentia-
tion instead of the index di .

Definition 2. The Fibonacci sequence is defined as
Fn = Fn−1 + Fn−2 for n ≥ 2 where F0 = 0 and F1 = 1.

The Fibonacci sequence has many properties [6], [13] but
we recall only one here, by stating the following Binet’s
Formula.

Theorem 1. Binet’s Formula:

Fn =
φn − (1 − φ)n

√
5

, ∀n ∈ N ,

where φ = 1+
√

5
2 is the positive root of the real polynomial

X2 − X − 1 .

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

610

From the above theorem, it is easy to deduce the following
classical result.

lim
n→∞

Fn

Fn−1
= φ , (1)

where φ is a golden ratio, also called a golden section.

III. SIMULTANEOUS ADDITION CHAIN FOR
MULTI-EXPONENTS

In this section, we propose an algorithm for finding simul-
taneous addition chain for multi-exponents.

A. Strategy for Simultaneous Addition Chain for Multi-
Exponents

Here, we discuss an efficient empirical method for the con-
struction of simultaneous addition chain for multi-exponents,
considering the case of dimension 2. We term it as simulta-
neous golden ratio addition chain method or SGRAC method
in short.

The SGRAC method constructs chain starting from the last
term, that is the input exponents u and v. We pair the two
exponents with variables x and y to distinguish it from each
other. Hence, we let wi = uix+ viy in general. Our aim is to
follow a Fibonacci pattern using the fact from equation (1).
Hence, we try to maintain a near golden ratio value between
succeeding terms. We begin by letting

w0 = ux + vy ,

w1 = [w0 × φ−1] ,
wi = wi−2 − wi−1 for i = 2, 3, . . . (2)

Here wi denotes the reverse of ci that is, wi = c�−i .
If continued with the procedure (2), wi will exponentially
deviate from (wi−1×φ−1) as i increases. In order to overcome
this problem, a parameter MAXIMALGAP is introduced,
where MAXIMALGAP = uMGx + vMGy. Hence, the above
procedure (2) terminates whenever

|wi − (wi−1 × φ−1)| > uMGx + vMGy or wi � wi−1

2
.

Note that the above inequalities holds for the corresponding
x and y terms. Hence, a new wi is defined to be the nearest
integer of (wi−1 ×φ−1). Then procedure (2) is resumed with
wi−1 and new wi as the initial terms. The old wi is included in
the chain between wi−1 and new wi, as a consequence there is
a gap gj =(old wi−new wi), which is included in the storage.
Note that, subtraction is involved whenever old wi < new wi.

We introduce another parameter LOWERBOUND as
uLBx + vLBy. The above procedure (2) stops in either of
the following three cases; (i) (ui < uLB) and (vi < vLB),
(ii) ui < uLB and vi > vLB , (iii) ui > uLB and vi < vLB .
The details of these three cases are included in the SGRAC
algorithm.

B. Proposed SGRAC Algorithm
Algorithm 1 SGRAC Method (Dimension 2)
Input: An integer u , v , MAXIMALGAP and LOWERBOUND.
Output: m = {m1, . . . , mn+1}SGRAC , SACx , SACy and S.

1. φ−1 ← −1+
√

5
2

2. wi ← uix + viy
3. w0 ← ux + vy
4. w1 ← [w0 × φ−1]
5. w2 ← w0 − w1

6. m = {0, 0}
7. S = {1x, 1y, 2x, 2y, 3x, 3y}
8. G← ∅
9. i← 2
10. j ← 1
11. (uMGx + vMGy)← MG
12. (uLBx + vLBy)← LB
13. while (uix > uLBx) or (viy > vLBy) do
14. mi ← 0
15. if |wi − (wi−1 × φ−1)| > MG or wi � wi−1

2
then

16. wi+1 ← [wi−1 × φ−1]
17. gj ← (wi − wi+1)
18. S ← S ∪ {gj}
19. j ← j + 1
20. mi−1 ← 2 , mi ← 1 , mi+1 ← 0
21. m← m ∪ {mi−1 , mi , mi+1 }
22. wi+2 ← (wi−1 − wi+1)
23. i← i + 2
24. else
25. m← m ∪ {mi}
26. i← i + 1
27. wi ← (wi−2 − wi−1)
28. if (ui < uLB) and (vi < vLB) then
29. mi−1 ← 3 , mi ← 3
30. m← m ∪ {mi−1, mi}
31. T1 ← wi−1 , T0 ← wi

32. S ← S ∪ {T1 , T0}
33. SACx

34. SACy

35. else if ui < uLB and vi > vLB then
36. gj ← ui−1x , gj+1 ← uix
37. S ← S ∪ {gj , gj+1}
38. j ← j + 2
39. SACx

40. vi+1y ← vi−1y
41. vi+2y ← viy
42. mi+1 ← 0 , mi+2 ← 0
43. m← m ∪ {mi+1 , mi+2}
44. vi+3y ← (vi+1y − vi+2y)
45. i← i + 3
46. Repeat step 13 to step 27 only for y terms
47. mi−1 ← 3 , mi ← 3
48. m← m ∪ {mi−1, mi}
49. T1 ← vi−1y , T0 ← viy
50. S ← S ∪ {T1 , T0}
51. SACy

52. else
53. gj ← vi−1y , gj+1 ← viy
54. S ← S ∪ {gj , gj+1}
55. j ← j + 2
56. SACy

57. ui+1x← ui−1x
58. ui+2x← uix
59. mi+1 ← 0 , mi+2 ← 0
60. m← m ∪ {mi+1 , mi+2}
61. ui+3x← (ui+1x− ui+2x)
62. i← i + 3
63. Repeat step 13 to step 27 only for x terms
64. mi−1 ← 3 , mi ← 3
65. m← m ∪ {mi−1, mi}
66. T1 ← ui−1x , T0 ← uix
67. S ← S ∪ {T0 , T1}
68. SACx

69. max← j − 1
70. n← i− 1
71. m← reverse the arrangements in m and rename the elements

in increasing order starting with numeral 1 to n + 1
72. return m = {m1, . . . , mn+1}SGRAC , SACx, SACy and S

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

611

Note that in step 15 we check either the inequalities are
satisfied for the corresponding x terms or y terms. In
steps 20, 29, 47 and 64, the old mi−1 has been replaced with
new mi−1 in m . Also note that SACx and SACy represents
the construction of short addition chains using the absolute
values of x terms and y terms in the storage, respectively.
The symbols MG and LB represents MAXIMALGAP and
LOWERBOUND, respectively.

Example 1. Evaluate Algorithm 1 for input u = 10361 ,
v = 103864 , LOWERBOUND = 5x + 5y and
MAXIMALGAP = 10x + 10y.

First, we will find the SGRAC representation m, during
which we will obtain the elements for the storage S. Later,
we will use all the storage elements to construct a short
addition chain SACx and SACy .

We pair u and v with variables x and y to distinguish
their computations. We begin by letting,

w0 = 10361x + 103864y , m0 = 0
w1 = [w0 × φ−1] = 6403x + 64191y , m1 = 0
w2 = w0 − w1 = 3958x + 39673y , m2 = 0
w3 = w1 − w2 = 2445x + 24518y , m3 = 0
w4 = w2 − w3 = 1513x + 15155y , m4 = 0
w5 = w3 − w4 = 932x + 9363y , m5 = 2
w6 = w4 − w5 = 581x + 5792y , m6 = 1

since v6y exceeds the MAXIMALGAP, that is |v6y − (v5y ×
φ−1)| > 5y , we let

w7 = [w5 × φ−1] = 576x + 5787y . m7 = 0

There exist a gap, g1 = w6−w7 = 5x+5y , which we include
in the storage. Let

w8 = w5 − w7 = 356x + 3576y , m8 = 0
w9 = w7 − w8 = 220x + 2211y , m9 = 0
w10 = w8 − w9 = 136x + 1365y , m10 = 0
w11 = w9 − w10 = 84x + 846y , m11 = 0
w12 = w10 − w11 = 52x + 519y , m12 = 2
w13 = w11 − w12 = 32x + 327y , m13 = 1

since v13y exceeds MAXIMALGAP, that is |v13y − (v12y ×
φ−1)| > 5y , we let

w14 = [w12 × φ−1] = 32x + 321y. m14 = 0

There exist a gap, g2 = 6y , which we include in the storage.
Let

w15 = w12 − w14 = 20x + 198y , m15 = 0
w16 = w14 − w15 = 12x + 123y , m16 = 3
w17 = w15 − w16 = 8x + 75y , m17 = 3

Henceforth, we terminate the x term of wi, since it transcends
the corresponding LOWERBOUND = 10x. Thus, we store
g3 = 12x and g4 = 8x . We continue the above process,
considering the y terms only by letting

w18 = 123y , m18 = 0
w19 = 75y , m19 = 0

Hence, we have

w20 = w18 − w19 = 48y , m20 = 0
w21 = w19 − w20 = 27y , m21 = 0
w22 = w20 − w21 = 21y , m22 = 0

We stop the above continuous procedure at w22, since the next
term,

w23 = w21 − w22 = 6y ,

transcends the given LOWERBOUND = 10y. Let T0 = 6y ,
T1 = 21y and store in S . Hence, we obtained the following
storage.

S = {1x, 1y, 2x, 2y, 3x, 3y, g1 = 5x + 5y, g2 = 6y,

g3 = 12x, g4 = 8x, T1 = 21y, T0 = 6y}.
We list m0, . . . ,m22 as elements of set m. Hence, we have

m = {0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 3, 3, 0, 0, 0, 0, 0}.

Then we reverse the arrangements of the elements in the set
m and rename it in increasing order starting from m1 to m23.
Thus, it results in the following SGRAC representation.

m = {0, 0, 0, 0, 0, 3, 3, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0}SGRAC .

Next, we shall consider constructing doubling-free short
addition chain including absolute values of all x terms in S.
We will denote it as SACx. Hence, we have

{1x, 2x, 3x, 5x, 12x, 8x}.

Excluding the repeated terms and rearrangement results

{1x, 2x, 3x, 5x, 8x, 12x}.

It follows that 1x + 2x → 3x, 2x + 3x → 5x, 3x + 5x → 8x,
3x + 8x → 11x and 1x + 11x → 12x. Hence, the following
results the SACx.

1 → 2 → 3 → 5 → 8 → 11 → 12.

Now, we shall consider constructing doubling-free short addi-
tion chain including absolute values of all y terms in S. We
will denote it as SACy . Hence, we have

{1y, 2y, 3y, 5y, 6y, 21y, 6y}.

Excluding the repeated terms and rearrangement results

{1y, 2y, 3y, 5y, 6y, 21y}.

It follows that 1y + 2y → 3y, 2y + 3y → 5y, y + 5y → 6y,
5y + 6y → 11y, 6y + 11y → 17y, 3y + 17y → 20y and
1y + 20y → 21y. Hence the following results the SACy .

1 → 2 → 3 → 5 → 6 → 11 → 17 → 20 → 21 .

IV. APPLICATION TO ELLIPTIC CURVE
CRYPTOSYSTEMS

In this section, we propose a multi-scalar multiplication
algorithm by utilizing the proposed SGRAC method.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

612

Algorithm 2 Multi-scalar multiplication using SGRAC (Dimension 2)
Input: An integer u , v and P , Q ∈ E(Fp) .
Output: uP + vQ.
Precomputation (SGRAC method)
1. m = {m1, . . . , mn+1}SGRAC

2. S
3. SACx and SACy

4. G← ∅
5. x← P , y ← Q
6. for j = 1 to max
7. gj ← compute using SACx and SACy

8. G← G ∪ {gj}
9. G← reverse the arrangements in G and rename the elements

in increasing order starting with numeral 1 to max
10. T0 ←compute using SACx or SACy

11. T1 ←compute using SACx or SACy

Main loop
12. j ← 1
13. for i = 1 to n do
14. if ei+1 = 0 then
15. Ti+1 ← Ti−1 + Ti

16. else if ei+1 = 1 then
17. Ti+1 ← Ti + Gj

18. j ← j + 1
19. else if ei+1 = 2 then
20. Ti+1 ← Ti−2 + Ti−1

21. else ei+1 = 3 then
22. Ti+1 ← Ti−1 + Gj

23. j ← j + 1
24. return Tn+1

Hence the required output uP + vQ = Tn+1. Note that
Algorithm 2 involves storage of the preceding two points
during scalar multiplication. Also, a temporary storage G
containing max number of points gj’s, which are discarded
during the scalar multiplication after being used, hence having
less constraint on memory containing devices.

Example 2. Compute 10361P +103864Q using Algorithm 2.

Precomputation.
Example 1 results the following.
m = {0, 0, 0, 0, 0, 3, 3, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0}SGRAC .

S = {1x, 1y, 2x, 2y, 3x, 3y, g1 = 5x + 5y, g2 = 6y, g3 = 12x,

g4 = 8x, T1 = 21y, T0 = 6y}.
SACx : 1→ 2→ 3→ 5→ 8→ 11→ 12 .

SACy : 1→ 2→ 3→ 5→ 6→ 11→ 17→ 20→ 21 .

Next, we replace x and y with P and Q in S, respectively.
Then, we compute all gj’s using SACx and SACy for
j = 1 to 4, which are then stored in G. Hence, we have
G = {g1 = 5P + 5Q, g2 = 6Q, g3 = 12P, g4 = 8P}. Now
we reverse the arrangements in G and rename the elements
in increasing order starting with numeral 1 to 4 . Hence, we
have G = {g1 = 8P, g2 = 12P, g3 = 6Q, g4 = 5P + 5Q}.
We compute T0 = 6Q and T1 = 21Q using SACy .

Evaluation Stage.
Henceforth, we use the SGRAC representation of m, to
compute Ti for i = 2 to i = 23 as follows.

i = 1 , m2 = 0 , T2 = T0 + T1 = 27Q ,
i = 2 , m3 = 0 , T3 = T1 + T2 = 48Q ,
i = 3 , m4 = 0 , T4 = T2 + T3 = 75Q ,
i = 4 , m5 = 0 , T5 = T3 + T4 = 123Q ,
i = 5 , m6 = 3 , T6 = T4 + g1 = 8P + 75Q ,
i = 6, , m7 = 3 , T7 = T5 + g2 = 12P + 123Q ,
i = 7 , m8 = 0 , T8 = T6 + T7 = 20P + 198Q ,

TABLE I
THE DISTRIBUTION OF PRECOMPUTATION CHAIN LENGTHS FOR 1000

RANDOMLY SELECTED INTEGERS u AND v OF 160 BIT.

length (�) 12 13 14 15 16 17 18 19 20
inputs 31 198 463 144 103 37 12 10 2

TABLE II
THE DISTRIBUTION OF STORAGE FOR 1000 RANDOMLY SELECTED

INTEGERS u AND v OF 160 BIT.

Storage capacity 14 15 16 17 18 19
inputs 5 42 173 397 345 38

i = 8 , m9 = 0 , T9 = T7 + T8 = 32P + 321Q ,
i = 9 , m10 = 1 , T10 = T9 + g3 = 32P + 327Q ,
i = 10 , m11 = 2 , T11 = T8 + T9 = 52P + 519Q ,
i = 11 , m12 = 0 , T12 = T10 + T11 = 84P + 846Q ,
i = 12 , m13 = 0 , T13 = T11 + T12 = 136P + 1365Q ,
i = 13 , m14 = 0 , T14 = T12 + T13 = 220P + 2211Q ,
i = 14 , m15 = 0 , T15 = T13 + T14 = 356P + 3576Q ,
i = 15 , m16 = 0 , T16 = T14 + T15 = 576P + 5787Q ,
i = 16 , m17 = 1 , T17 = T16 + g4 = 581P + 5792Q ,
i = 17 , m18 = 2 , T18 = T15 + T16 = 932P + 9363Q ,
i = 18 , m19 = 0 , T19 = T17 + T18 = 1513P + 15155Q ,
i = 19 , m20 = 0 , T20 = T18 + T19 = 2445P + 24518Q ,
i = 20 , m21 = 0 , T21 = T19 + T20 = 3958P + 39673Q ,
i = 21 , m22 = 0 , T22 = T20 + T21 = 6403P + 64191Q ,
i = 22 , m23 = 0 , T23 = T21 + T22 = 10361P + 103864Q .

V. EXPERIMENTAL RESULTS

In this section, we show the experimental analysis for multi-
scalar multiplication algorithm based on SGRAC method for
the case of dimension 2. We consider the factors necessitated
in obtaining the best results.

We carried out an experiment to analyze Algorithm 2
using a python programming language on 2.60 GHz intel
celeron processor. We randomly selected 1000 integers u and
v of 160 bits and set the searching range of the parameters,
LOWERBOUND to be between 4x + 4y to 23x + 23y and
MAXIMALGAP to be between 5x + 5y to 16x + 16y. It
took 209 trials to obtain chains of lengths between 295 to
316 as shown in Table IV. On average it took about 11.31
seconds to find each chain. The Table I, II, III, V and VI
shows the distribution of precomputation, storage, main loop,
MAXIMALGAP and LOWERBOUND, respectively. The av-
erage chain length is found to be 307 and the average storage
capacity is found to be 17. Experiment result shows that
SGRAC method achieves 63% of Fibonacci pattern, but overall
we could not guarantee it to be optimal.

In a similar experiment as above, we give an experimen-
tal analysis of multi-scalar multiplication based on SGRAC
method for dimensions t = 2, . . . , 6 as shown in Table VII.
We randomly selected 1000 scalars ki’s of 160 bits for the
respective dimensions. It shows that there is a linear increase
in the storage capacity and the addition chains with respect to
dimension.

VI. CONCLUSION

In this paper we have proposed a novel algorithm for the
simultaneous computation of multi-scalar multiplication, that

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:9, 2009

613

TABLE VII
ANALYSIS OF SIMULTANEOUS MULTI-SCALAR MULTIPLICATION ALGORITHMS FOR HIGHER DIMENSIONS.

Dimension Avg. Average Average Average Fibonacci Average
(t) storage precomputation Main loop Cost pattern Run time
2 17 14 ECADD + 2 ECDBL 293 ECADD 307 ECADD + 2 ECDBL 63% 10.7 sec
3 26 21 ECADD + 3 ECDBL 333 ECADD 354 ECADD + 3 ECDBL 54% 13.9 sec
4 35 28 ECADD + 4 ECDBL 372 ECADD 400 ECADD + 4 ECDBL 47% 17.5 sec
5 44 34 ECADD + 5 ECDBL 411 ECADD 445 ECADD + 5 ECDBL 43% 21 sec
6 53 41 ECADD + 6 ECDBL 449 ECADD 490 ECADD + 6 ECDBL 39% 24.3 sec

TABLE III
THE DISTRIBUTION MAIN LOOP CHAIN LENGTHS OF 1000 RANDOMLY

SELECTED INTEGERS u AND v OF 160 BIT.

length (�) 280 281 282 283 284 285 286 287
inputs 2 1 - 5 6 8 26 30

length (�) 288 289 290 291 292 293 294 295
inputs 37 60 80 80 90 110 109 118

length (�) 296 297 298 299 300 301 302 303
inputs 103 49 41 20 15 7 2 1

TABLE IV
THE DISTRIBUTION OF TOTAL CHAIN LENGTHS FOR 1000 RANDOMLY

SELECTED INTEGERS u AND v OF 160 BIT.

length (�) 295 296 297 298 299 300 301 302
inputs 1 2 1 3 3 13 25 34

length (�) 303 304 305 306 307 308 309 310
inputs 48 71 83 105 121 127 125 103

length (�) 311 312 313 314 315 316
inputs 60 33 22 11 7 2

TABLE V
THE DISTRIBUTION OF MAXIMALGAP FOR 1000 RANDOMLY SELECTED

INTEGERS u AND v OF 160 BIT.

MAXIMALGAP 5 6 7
inputs 783 203 14

TABLE VI
THE DISTRIBUTION OF LOWERBOUND FOR 1000 RANDOMLY

SELECTED INTEGERS u AND v OF 160 BIT.

LOWERBOUND 4 5 6 7 8 9 10 11
inputs 248 154 197 137 75 54 34 28

LOWERBOUND 12 13 14 15 16 17 18 19
inputs 14 12 8 15 8 4 3 4

LOWERBOUND 20 21 22
inputs 3 1 1

is by employing addition chains. In order to accomplish our
purpose, we have proposed an efficient empirical method to
generate addition chains for multi-exponents simultaneously.
The analysis from Table VII shows that there is a linear
increase in the cost with respect to the dimension of the
multi-scalar multiplication. Further work may include reducing
storage capacity and chain length in order to enhance further
efficiency.

REFERENCES

[1] R.M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F.
Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press, 2005.

[2] M. Bellare, J.A. Garray, and T. Rabin. Fast Batch verification for
modular exponentiation and digital signatures. Advances in Cryptology-
EUROCRYPTO’98, volume 1403 of Lecture Notes in Computing Science,
pages 236-250. Springer-Verlag, 1998.

[3] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates-
Building in Privacy. MIT Press, p.356, 2000.

[4] T. ElGamal. A Public key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, vol.31,
pp.469-472, 1985.

[5] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[6] D. Knuth. Fundamental Algorithms. The Art of Computer Programming,
volume 1, Addision-Wesley, 1981.

[7] K. Kobayashi, H. Morita, and M. Hakuta. Multiple Scalar-Multiplication
Algorithm over Elliptic Curve. IEICE Transactions on Information and
System, E84-D, No.2, pp.271-276, Feb.2001.

[8] C.H. Lim and P.J. Lee. More Flexible Exponentiation with Precomputa-
tion. Advances in Cryptology-CRYPTO’94, volume 839 of Lecture Notes
in Computing Science, pages 95-107. Springer-Verlag, 1994.

[9] B. Möller. Algorithms for Multi-exponentiation. Selected Areas in Cryp-
tography, volume 2259 of Lecture Notes in Computing Science, pages
165-180. Springer-Verglag, 2001.

[10] A.J. Menezes, P.C. vanOorschot, and S.A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[11] T. Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. Advances in Cryptology-CRYPTO’92,
volume 740 of Lecture Notes in Computing Science, pages 31-53.
Springer-Verlag, 1993.

[12] T. Okamoto. Practical identification schemes as secure as the DL and
RSA problems. http://grouper.
ieee.org/groups/1363/addendum.html#Okamoto, March 1999.

[13] N. Vorobiev. Fibonacci Numbers. Birkhuser Verlag, 2002.

