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Abstract—A new approach to promote the generalization ability 

of neural networks is presented. It is based on the point of view of 
fuzzy theory. This approach is implemented through shrinking or 
magnifying the input vector, thereby reducing the difference between 
training set and testing set. It is called “shrinking-magnifying 
approach” (SMA). At the same time, a new algorithm; α-algorithm is 
presented to find out the appropriate shrinking-magnifying-factor 
(SMF) α and obtain better generalization ability of neural networks. 
Quite a few simulation experiments serve to study the effect of SMA 
and α-algorithm. The experiment results are discussed in detail, and 
the function principle of SMA is analyzed in theory. The results of 
experiments and analyses show that the new approach is not only 
simpler and easier, but also is very effective to many neural networks 
and many classification problems.  In our experiments, the proportions 
promoting the generalization ability of neural networks have even 
reached 90%. 
 

Keywords—Fuzzy theory, generalization, misclassification rate, 
neural network.  

I. INTRODUCTION 
HE generalization ability of neural networks (NNs) is an 
important performance criterion of NNs [1]. Researchers 

of this domain have been making an effort to promote the 
generalization ability of NNs. For solving this problem, people 
had presented several methods, for example, early stopping [2], 
regularization [3,4], result-feedback [5], fuzzification of input 
vector [6], neural network ensembles [7,8], etc. Although these 
methods can improve the generalization ability of NNs to some 
extent, but in general, the problem of NNs’ generalization is 
still not solved or not completely solved. Because the essential 
character of artificial neural networks is of instance-based 
learning, it is impossible that NNs can solve all the problems by 
learning from limited examples. Therefore, developing some 
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new methods for improving NNs’ generalization ability will be 
greatly needed in a long time hereafter.  
   In these methods for improving NNs’ generalization ability, 
the research of H. Ishibuchi and M. Nii is very important, and 
breaking a new path. They fuzzed input vector to avoid 
overfitting of NNs, thereby improving the generalization ability 
of NNs [6]. Recently, a new algorithm [5] to improve the 
learning performance of neural network through 
results-feedback, called FBBP algorithm, presented by Yan Wu 
and Shoujue Wang, can improve NNs’ generalization ability 
too. This FBBP-based algorithm is an inner-and-outer layer 
learning method in which weight value renewing plays the 
dominating role with the assistance of input renewing. It 
minimizes the error function of neural network through the dual 
functioning of weight value and input vector value tuning, 
where tuning of the input vector is similar to fuzz the input 
vector. This idea brings us new inspiration. People had 
previously devoted large amounts of time to tuning weights of 
NNs for improving the NNs’ performance (including the 
generalization ability), but lacked new ideas. In that case, 
improving generalization ability of NNs through fuzzification 
of input vector can be called a new angle of thinking and 
solving the problem. However, we think that the way to fuzz 
input vector is not unique, and there may be another different 
way. Through new explorations, we find a approach to promote 
the generalization ability of neural networks. This approach 
appropriately shrinks or magnifies input vector, thereby makes 
the generalization ability of NNs improved. We called the 
approach “Shrinking-Magnifying Approach” (SMA). The α
-algorithm presented by us described the basic process of SMA. 
Through α -algorithm, we can find the appropriate 
shrinking-magnifying factor (SMF) and obtain a new neural 
network having better generalization ability.  

II.  DEFINITIONS, PRINCIPLE AND APPROACH 
In this section, firstly, we will define the basic concepts used in 
computing and analyzing. Secondly, we will represent the basic 
idea and principle of the approach presented in this paper. 
Finely, the SMA and α-algorithm will be given. 

A.  Definitions 
Definition 1. Assume that E1, E≤1, and E≥1 represent the 

misclassification rate as SMF α =1, α≤ 1, and α≥ 1, 
respectively, and Ra and Rr represent the absolute rate of 
correcting mistakes and the relative rate of correcting mistakes, 
respectively, then we define that  

Novel Approach for Promoting the 
Generalization Ability of Neural Networks 

Naiqin Feng, Fang Wang, and Yuhui Qiu 

T 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2837

 

 

Ra=(E1- E≤1)×100%, ifα≤1                             （1） 
Ra=(E1- E≥1)×100%, ifα≥1                             （2） 
Rr=(E1- E≤1)/ E1×100%, ifα≤1                        （3） 
Rr=(E1- E≥1)/ E1×100%, ifα≥1                        （4） 

 
Definition 2. For vector p, mode m and shrinking 

magnifying factor α, the α-fuzzy-mode-shrinking operation 
FmodS of p is defined as:  

( ) ,          1
mod ( )

(( ) ) , 1
f

F S p
g m

α α
α

α α
≤⎧

= ⎨ − >⎩

p
p

           (5) 

where, m∈N (natural number set), f and g are the real function, 
for example, It can be f(αp)=αp, g((α-m)p)= (α-m)p, etc.. 
In general, f and g are different. 

B. Basic Idea and Principle 
Let’s see a simple phenomenon in life. 
Screen Effect Open the computer, tuning the screen, the 

picture can be shrunk or magnified. With the tuning of 
shrinking or magnifying, the picture can be clear on the whole 
but fuzzy on the local (when shrinking). Sometimes, it can 
become clear on the local but fuzzy on the whole (when 
magnifying). When shrinking, the object might become a fuzzy 
dot, and when magnifying, it might become losing its original 
appearance because the picture overflows out of the screen. In 
brief, in the two conditions, the object is fuzzed on the local or 
on the whole, respectively. 

Shrinking-Magnifying Principle Fuzz-Based In practice, 
the approach of magnifying or shrinking things is often adopted 
by people. The former magnified the detail of the thing, in order 
to observe and research the thing’s parts more accurately. 
However, with the parts being more accurate, the thing is 
fuzzed relatively on the whole, so belonging to the fuzzed 
approach on the whole; and the latter, shrinking approach, 
through shrinking the object and ignoring its detail, summaries 
the object in order to grasp the whole. However, with the whole 
of the object being clearer, the parts of the object are fuzzed 
relatively; thereby it belongs to the fuzzed approach on the 
local. So the two approaches, magnifying and shrinking, seem 
to like a contradiction, but in fact they have the inner 
consistency, and can be viewed as two different fuzz 
approaches. Along with that two objects are fuzzed on the part 
or on the whole, their differences must be reduced on the local 
or on the whole, making two objects that are very different 
more approach, even being merged into the same kind. 

For example, assume that training example p=[x1,x2,x3,x4] 
=[0.3,0.8,0.2,0.5], test example p1=[x1,x2,x3,x4] 
=[0.6,0.3,0.7,0.2], taking the stand on fuzzy theory [9~10], we 
can view p and p1 as two fuzzy sets. If using the Hamming 
distance formula,  
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1( , ) | |i i
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p x p x
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d p p
n

µ µ−
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and calculating semantic distance between p and p1, then the 
semantic distance under normal condition and the semantic 
distance when adopting SMA(α=0.02) respectively are: 
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Obviously, the fuzzy functioning of SMA makes the semantic 
distance between the training example and the testing example 
decrease many times, thereby there may be the possibility of 
correctly classifying to p1.  

To magnifying method (α>1), through FmodS operation, 
the semantic distance between p and p1 can also be decreased, 
so it provides the possibility to improve the generalization 
ability of neural network too. 

C. Shrinking-Magnifying Approach 
Based on the point of view of fuzzy theory given above, 

Shrinking-Magnifying Approach (SMA) is presented. This 
approach shrinks or magnifies input vector of a NN 
appropriately in advanced, thereby reducing the differences 
between training set and testing set, and improving the 
generalization ability of the NN. The appropriate 
shrinking-magnifying factor (SMF) α is determined by α
-algorithm. 

D. α-algorithm 
Step 1.  Divide training set P1 and testing P2, corresponding 

target set t1 and t2. Determine the search range [a, b] 
and search step δ;  j=0; 

Step 2.  for r=a:δ:b  
Step 3.  j=j+1;α[j]=r; 
Step 4.  p1=α[j]·P1; p2=α[j]·P2; 
Step 5.  Train or generate the new net by using p1, t1;  
Step 6.  Simulate and test the net by using p2, deriving the result 

y2; 
Step 7.  Compare y2 with t2, calculate error E[j]=t2-y2; 
Step 8.  endfor; 
Step 9.  Find out the error Eα=1 while α[j]=1; 
Step10.  if min(E[j])<Eα=1 then find out corresponding α[j], 

α0=α[j]; 
else α0=1;endif; 

Step11.  p0=α0·P1; 
Step12. Train or generate the target neural network NET by p0; 
Step13. Return 

III. EXPERIMENTS 

A.  Wine Classification using PNN 
Firstly, we select Probabilistic Neural Network (PNN) to 

make the experiment to wine classification. PNN is simple and 
easy, because the scale of PNN is determined depending on the 
scale of input vector, but not needed to determine the number of 
neurons by people [1]. On the other hand, PNN is appropriate 
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for classification problems. Assume that search range of α
-algorithm is [0.0001, 2], step δ=0.0001.  Wine data set have 
178 examples, and every one includes 13 attributes of wine. 
The 178 examples are divided into three categories, where the 
first category includes 59 examples; the second category and 
the third category include 71 examples and 48 examples, 
respectively. In the experiment, wine dataset is divided into two 
subsets. In the first subset, the example numbers of each of 
three categories are 30, 36 and 24, respectively; in the second 
subset, the example numbers of each of three categories are 29, 
35 and 24, respectively. The two subsets are used to train and 
test respectively. The main results are listed in Table I. 

From Table I, we can obtain results as follows: 
(1) Shrinking method can reduce the Misclassification Rate 

(MR) of PNN to wine classification, i.e. SMA is able to reduce 
or correct misclassification of PNN. The appropriate SMF α is 
about 0.05~0.1; 

(2) Magnifying can not reduce the MR of PNN to wine 
classification, on the contrary, the MR increases following 
increasing of α; 

 
TABLE I 

RESULTS OF WINE CLASSIFICATION USING PNN 
Shrinking    Misclassification 
Factor          Rate 

Shrinking    Misclassification 
Factor          Rate 

0.0001         53/88 0.07             25/88 
0.0003         42/88 0.09             25/88 

0.0005         30/88 0.10             25/88 
0.0007         30/88 0.30             26/88 
0.0009         29/88 0.50             29/88 
0.001           28/88 0.70             34/88 
0.003           25/88 0.90             42/88 
0.005           27/88 1.00             44/88 
0.007           25/88 1.10             46/88 
0.009           28/88 1.30             53/88 
0.01             28/88 1.50             54/88 
0.03             26/88 1.70             56/88 
0.05             25/88 2.00             57/88 

 
(3) By calculating from Table I and formula 1 and 3, the 

maximum of Ra and Rr respectively are: 
max(Ra)=(E1- E0.05)×100%=19/88×100%=22% 
max(Rr)=(E1- E0.05)/ E1×100%=19/44×100%=43% 

From the above we can see that, when SMA is applied to 
PNN to wine classification, Ra and Rr of SMA are good.   

 

B.  Iris Classification using RBFN 
Iris database is a known data system, widely used to pattern 

classification problems. Fisher’s Iris database includes 150 
records or patterns, where every one includes four attributes of 
Iris: Sepal Length, Sepal Width, Petal Length, and Petal Width, 
and can be expressed as a vector of four dimensions. The 150 
records are divided into three species categories: Iris Setosa, 
Iris Versicolor, and Iris Virginica, where each of three 
categories includes 50 records. In our experiment, Iris data set 
is divided into two parts P1 and P2, each of them includes 75 
examples, respectively, where P1 used to establish BPNN, and 
P2 used to simulate or test. The Radial Basis Function Network 

(RBFN) is established by function “newrbe” included in 
MATLAB neural network toolbox. The experiment results are 
given in Figure 1. 

From Figure 1, we can obtain results as follows: 
(1) Shrinking method can reduce the Misclassification Rate 

(MR) of RBFN to Iris classification, i.e. SMA is able to reduce 
or correct misclassification of RBFN. The appropriate SMF α 
is about 0.2; 

(2) Magnifying can also reduce the MR of RBFN to Iris 
classification, but the reducing is less than shrinking method. 
The appropriate SMF α is about 1.2~1.6,  

(3) From Figure 1, the maximum of Ra and Rr respectively 
are: 

max(Ra)=(E1- E0.2)×100%>50% 
max(Rr)=(E1- E0.2)/ E1×100%>90% 

From the above, we can see that the Ra and Rr of SMA are 
very good when SMA is applied to RBFN to Iris classification. 
This is encouraging because of obviously improving the 
generalization ability of RBFN. 
 

 
Fig. 1 Results of iris classification using RBFN 

C.  Iris Classification using BPNN 
The application of neural networks using back propagation 

algorithm (BPNN) is very much wide at present, so the effect of 
SMA to BPNN should be studied. In this experiment, the 
architecture of BPNN is 4-6-3, and its transfer functions are 
“tansig” and “purelin”, respectively. The learning algorithm to 
BPNN adopts the sized conjugate gradient back propagation 
algorithm. The BPNN is established by function “newff” 
included in MATLAB neural network toolbox. The Iris 
database used in this experiment is the same as the Iris database 
used in the above experiment.  The main results are given in 
Table II. 

The experiment results of BPNN are very interesting, and 
worth research. 

(1) The results are concerned with initialization of BPNN. 
The experiment results show that SMA is not effective to 
BPNN’s generalization ability to Iris classification problem, 
when all values of weights and biases of BPNN are initialized 
as zero through function “initzero”. Whatever what value SMF 
α takes, the MR is always 18/75 (BPNN is established by 
function “newcf”).  However, when the NN is initialized by 
Nguyen-Widrow method (by adopting this method, the 
activated area of every neuron will be well-distributed in whole 
input space, thereby avoiding wastage of neurons), SMA is 
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effective. At this time, the maximum of values of Ra and Rr 
respectively are: 

max(Ra)=(E1- E0.28)×100%=9.55/75×100%=13% 
max(Rr)=(E1- E0.28)/ E1×100%=9.55/10.85×100%=88% 
(2) Random initialization makes the work results of BPNN 

correspondingly change. Table 2 lists the mean of MR value for 
the 20 runs. 

(3) Magnifying approach is effective to BPNN, i.e. it can 
improve the BPNN’s generalization ability. To Iris 
classification problem, the maximum of Ra and Rr respectively 
are: 

max(Ra)=(E1- E1.08.)×100%=7.7/75×100%=10% 
max(Rr)=(E1- E1.08)/ E1×100% 

=7.7/10.85×100%=71% 
It is clear that magnifying approach can also increase the 
generalization ability of BPNN. Of cause, shrinking is more 
effective than magnifying. The above experiment results may 
be not the optimal, but the conclusions are still effective. 
 

TABLE II 
RESULTS OF IRIS CLASSIFICATION USING BPNN 

Shrinking    Misclassification 
Factor          Rate 

Shrinking    Misclassification 
Factor          Rate 

0.24             1.70/75 0.68             3.25/75 
0.28             1.30/75 0.70             4.90/75 

0.30             3.45/75 0.74             5.45/75 
0.34             1.60/75 0.78             9.30/75 
0.38             4.50/75 0.80             3.45/75 
0.40             3.30/75 0.84             1.55/75 
0.44             1.90/75 0.88             2.75/75 
0.48             2.85/75 0.90             1.35/75 
0.50             2.00/75 0.94             5.30/75 
0.54             8.20/75 0.98             3.00/75 
0.58             3.30/75 1.00             10.85/75 
0.60             2.10/75 1.04             10.45/75 
0.64             5.30/75 1.08             3.15/75 

 
In addition, we have made the experiment to Wine 

classification using Radial Basis Function Network (RBFN), 
the experiment to Iris classification using PNN and the 
experiment to wine classification using Learning Vector 
Quantization Network (LVQN), with expectant effects. The 
experiment results of the former are as follows: 

(1) Appropriate SMF α is about 0.02; 
    (2) In the experiment range, magnifying is not effective; 

(3) At this time, the maximum of Ra and Rr respectively are: 
max(Ra)=(E1- E0.02)×100%=39/88×100%=%44 
max(Rr)=(E1- E0.02)/ E1×100%=39/59×100%=66% 

The experiment results of wine classification using LVQN 
are weaker, 

max(Ra)=(E1- E2.0)×100%=2/88×100%=2.3% 
max(Rr)=(E1- E2.0)/ E1×100%=2/27×100%=7.4% 

However, we need to point out that it is not invalid, although 
here the functioning of SMA improving generalization ability 
of LVQN is less effective. In fact sometimes, improving 1% 
can be crucial. In addition, LVQN’s results of learning and 
simulation are concerned with its initialization. 

IV. DISCUSSIONS AND ANALYSES 
Why can such simple SMA and α-algorithm improve the 
NN’s generalization ability and be very much obvious 
sometimes? Analyzing the results of experiments and exploring 
its causes, we think that there are several aspects as follows: 

(1) Neural network belongs to the soft computation or not 
classical computation, having uncertainty and fuzziness in 
essence. This uncertainty and fuzziness are the application 
foundation of SMA. 

(2) Shrinking approach is similar to a shrinking glass, in 
which the differences between two objects are shrunk or 
fuzzed. To neural networks, it shrinks or fuzzes the difference 
between training set and testing set (or new patterns), thereby 
promoting the adaptability of data which is similar to training 
example, i.e. improving the generalization ability of NNs. For 
instance, in Iris database, there is such a data 
p1=[x1,x2,x3,x4]=[60,22,50,15], which is of the third species. 
But when using the created PNN to simulate and test the testing 
set p1, it is misclassified as the second species, being one of 
three misclassified examples. However, when using SMA, 
taking SMF α=0.04~0.08, and recreating PNN and testing to 
p1, the previous mistake disappears, correcting one of total of 
three mistakes. To understand its reasons, we can do such 
analysis: randomly take a example from training set, which is of 
the third species, for example, p=[ x1,x2,x3,x4]=[63,28,51,15]. 
Standing on fuzzy theory, we might as well can regard p and p1 
as another kind of fuzzy set, however, their membership 
function’s vale range is not in normal [0, 1], but in [0,100]. If 
using Hamming distance formula directly to calculate the 
semantic distance between p and p1, then it is 

1

4

1 ( ) ( )

1

1( , ) | |
4

i ip x p x

i

d p p µ µ−
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4
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While adopting SMA (α=0.05), it becomes 
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1
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4

i ip x p x
i

d p p αα α µ µ−

=

= ×∑  

= ( )1 0.05 3 6 1 0
4

× × + + + =0.125 

Obviously, the fuzz functioning of SMA makes semantic 
distance between training data and test data reduce many times, 
PNN therefore correctly classifies p1 as the third species. 

(3) The regularization method can improve generalization 
ability of NNs, at the same time here we can take advantage of 
the point to interpret the functioning of SMA. 

Under the condition that size of training set is kept, the NN’s 
generalization ability inseparable from NN’s scale. If NN’s 
scale is much less than the training set’s size, then the chance of 
overfitting is very little. On the contrary, to the same training 
example set, if the NN is on a large scale, then there is much 
probability of overfitting. But to a specific problem, it is very 
difficult to determine the NN’s scale. The regularization 
method develops a new style. It modifies the NN’s performance 
function of training in order to improve NN’s generalization 
ability. In general NN’s performance function of training is the 
mean squared error function, i.e. 
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The regularization method modified the performance 
function of NN as follows: 

. (1 )msereg mse mswγ γ= + −                           (8) 
where, γ is the proportional coefficient, msw is mean of the 
total of NN squared weight, i.e.  

2

1

1 n

j
j

msw
n W

=

= ∑                                     (9) 

Through adopting the new performance criterion function, 
and under the condition of guaranteeing the value of 
performance function as little as possible, we can make the NN 
having less weight, i.e. make the NN’s effective value of 
weights is as little as possible. This is equivalent to 
automatically shrinking of NN’s scale. 

The point of view that SMA is advantageous to reduce NN’s 
weights is obvious to PNN (also to RBFN). The PNN is 
actually a parallel implementation of a standard Bayesian 
classifier. It is a three-layer network that can perform pattern 
classification. In its standard form, the probabilistic network is 
not trained. The training vectors simply become the weight 
vectors in the first layer of the network. The advantage of the 
PNN is that it does not require training. Consequently as SMA 
shrinks the training vectors, the PNN’s weights are shrunk in 
the wake of it, being equivalent to automatically shrinking the 
NN’s scale. It is clear that, from the formula 8 and 9, this is 
advantageous to reduce the value of performance function, i.e. 
is advantageous to reduce the PNN’s error and improve NN’s 
generalization ability. Of cause, because of the limit of the 
thing, shrinking boundlessly is not possible, but with a 
appropriate SMF α . 

(4) In general, shrinking and magnifying is contradictory and 
opposite, but on the specific condition, both of them are also the 
unity of opposites. To PNN and RBFN, shrinking can 
effectively improve their generalization ability, but magnifying 
can’t do that. However, under the specific conditions of LVQN 
or BPNN, both shrinking and magnifying are simultaneously 
effective, i.e. SMA is simultaneously effective to α  in both 
range (- ∞ , 1] and [1, + ∞ ). According to authors’ 
comprehension, magnifying is also a fuzz approach: it 
magnifies and stresses a object’s details, but fuzzes the whole 
of the object, i.e. shrinks and fuzzes the difference in its entirety 
between training examples and new patterns, equally, it can 
improve the NN’s generalization ability. 
  The functioning mechanism of SMA can be better revealed by 
the screen effect and the fuzzy mode shrinking operation in 
section 2. Still using p and p1 as examples, when α =1.08, we 
can get m=1, g(x)=x, then, 
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By the Hamming distance formula 6, we obtained 
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Simultaneously, the semantic distance between p and p1 is 
reduced, preparing the external condition for correct 
classification of the NN. Of cause, this is merely an external 
cause, and the external cause takes effect by the internal cause. 
The real effect of the NN is determined by the common 
function of the internal and external cause. 

V.  CONCLUSIONS 
Standing on fuzzy theory, this paper presented a new 

approach and a new algorithm for improving the NNs’ 
generalization ability. They are implemented by shrinking or 
magnifying the example data, thereby shrink or fuzz the 
difference between training set and testing set. We make a lot of 
experiments in order to verify their effectiveness, at the same 
time, with discussing and analyzing to their principle. The 
results of experiments and analyses show that SMA and α
-algorithm are not only simple and easy, but also obvious effect 
and having its theory base to some extent. They are applicable 
to improve the generalization ability of many neural networks. 
But of cause, NNs is a big family, although we make many 
experiments and some analyses, wholly enumerating is 
impossible. Therefore, more practices and researches are 
needed to promote preferably the theory worth and application 
worth of SMA and α-algorithm. 
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