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Nonstational Dual Wavelet Frames in Sobolev
spaces

Yingchun Jiang, Yan Tang

Abstract— In view of the good properties of nonstationary
wavelet frames and the better flexibility of wavelets in Sobolev
spaces, the nonstationary dual wavelet frames in a pair of dual
Sobolev spaces are studied in this paper. We mainly give the
oblique extension principle and the mixed extension principle for
nonstationary dual wavelet frames in a pair of dual Sobolev spaces
H*(R%) and H*(R%).
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I. INTRODUCTION AND PRELIMINARIES

A S a redundant wavelet system, wavelet frames are easier
to design and provide more flexibilities in applications.
Because of this, wavelet frames have been extensively studied
in the literature. In particular, wavelet frames obtained from
refinable functions are of interest, due to the associated mul-
tiresolution structure and fast frame algorithms. Constructions
of tight wavelet frames from a refinable function can be
done by the unitary extension principle(UEP)'%; Moreover,
the dual wavelet frames can be done by the mixed exten-
sion principle(MEP)['!], Later, more general oblique extension
principle(OEP) and mixed oblique extension principle are
independently developed by [3,5]. For the stationary case, it
is impossible to obtain MRA-based compactly supported tight
wavelet frames in L?(R) whose generators are in C*°(R). In
recent years, nonstationary spline tight wavelet frames by the
OEP have been systematically studied in [1,2]. Particularly,
motivated by the work of [4] and equipped with pseudo-
splines[ﬁ] , together with the idea of UEP, [9] constructs nonsta-
tionary C>°(R) tight wavelet frames in L?(R) with desirable
properties, especially, the symmetric property. Furthermore,
it have been proved that such wavelet frames can be used
to characterize Sobolev spaces of arbitrary smoothness!®.
Characterization of Sobolev norm and more general Besov
norm of a function in terms of its weighted wavelet coefficient
sequence has already been studied, using a pair of dual
wavelet frames in L2(R?), under the assumption that both
wavelet frames must have regularity and vanishing moments
simultaneously. In [7], the MEP in L?(RY) is generalized
to a pair of dual Sobolev spaces H*(R%) and H~*(R%). T
completely separates the vanishing moments and regularlty
of two competing requirements for two systems. One can
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require the analysis system to have vanishing moments to
achieve the sparsity, while requiring the synthesis system to
have the desired order of regularity for representing functions.
In this paper, we will generalize the extension principle in
a pair of dual Sobolev spaces H*(R?) and H—*(R%) to the
nonstationary case.

For two families of 27-periodic trigonometric polynomials
masks a;,7 € N and @;, j € N, their associated nonstationary
refinable functions are defined by
G20 = a5 ()

n=1

(1.1)

— oo

(€)= 5 H

N (1.2)
Wavelet functions % 1»J € N and T/J.f—pj e N (=
1,2,---, L) are defined by

ey TS T ey 8T €
P (6) = b§(5)¢g(2)7 P (6) = b§(2)¢g(2)~ (1.3)

For a real number s, we denote by H*(R?) the Sobolev
space consisting of all tempered distributions f such that

-y = G [, 1O+ 1Py < o,

where || - || denotes the Euclidean norm in R?. H*(R?) is a
Hilbert space under the inner product

2w/f

3(R%), define linear functional on

(fs9) ms(ray = (1 +1€]1%)*d

Moreover, for each g € H~
H*(RY) as

1 f T
(-9) = gz [ F(3EE

The spaces H*(R%) and H—*(R?) form a pair of dual spaces.

Denote Ng =: N U {0}. For given ¢o,9(j € No, £ =
1,2,---,L) € H*(R%), a properly normalized wavelet system
X5 (¢o; {¢§}76N07 te{1,2,.,L}) in H*(RY) is defined as

{go(- —k): ke ZYu{yy,:

with 1/)J S =2l = 2J<5*8>¢§(2J - —k). We say that
X*(do; {¥S}jens, tef1,2,,0}) is a nonstationary wavelet
frame in H ’(Rd) if there exist positive constants C; and Cs
such that for any f € H*(R?),

Cllf Ve qray < Y 1(fs o08) ooy >+

kezd

f e HY(RY.

: jEN(h 6217277'[’}

)5 (5 Hanﬂ 1(277€),£ € R j € N;

nti1(277),€ € R j € N.
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ZZ Z I{ f7¢§§;,k>Hs<Rd>|2 < Coll fll e (gay-

=1j=0kezd

It is called a Bessel sequence if the right-side inequal-
ity holds. Furthermore, X*(¢o; {1/)?}]-6]\;07 te{1,2,-.,1}) and
X‘S(go; {{/;?}JENO, ¢e{1,2,--,1}) is a pair of nonstationary
dual wavelet frames in (H*(R%), H~*(R%)) if the following
two conditions are satisfied:

(1) X*(¢o; {wf}jENo, te{1,2, L}) is a nonstationary wavelet
frame in H*(R%) and X~ (qbo, {w }ieNs, te{1,2, L}) is a
nonstationary wavelet frame in H~ (Rd)

(43) For any f € H*(R%) and g € H~*(R?), there have

(f.9) = D {f. d00.k) {bo00.k, )+

L oo
DD DS )

II. EXTENSION PRINCIPLE

For a 27— periodic trigonometric polynomial a in d— vari-
ables, we denote deg(a) the smallest nonnegative integer such
that its Fourier coefficients vanish outside [—deg (), deg(a)]?.

Lemma 2.1  Let a;, j € N be 2mr— periodic trigono-
metric polynomials such that sup;en @)l (gay < oo. If

Z 279deg(a;) < oo and Z |a;(0) — 1| < oo hold, then the

mﬁmte product in (1.1) coéverges uniformly on every compact
set of R? and all ¢j, J € No are well-defined compactly
supported tempered distributions.

For two functions f,g: R? — C, define

(£, 91e(€) =2 > F(€+2km)g(€ + 2km) (1 + ||€ + 2k]|?)".

kezd

Furthermore, for our use, we define v(¢) =: sup{s € R :
[¢]7¢]] <M, j € No}.

The following lemma can be obtained by modifying the
Theorem 2.3 of [7]:

Lemma 2.2 Let ¢;(j € No) € H*(R?), s € R satisfy
(65, d)]] < M for some ¢ > s and all j € Np. Define
Ui1(26) = B(O)55(€), € € R, where b(€)(j € N) are
2m— perlodlc measurable functions in d— variables. Assume
that there exists a nonnegative number o > —s and a positive
constant C' independent of j such that

16;(€)| < C'min(1, [|¢]|*), € € RY.

Then X*(¢o;4;,j € No) is a nonstationary Bessel wavelet
sequence in H*(R%).

Lemma 2.308]  X*(¢y; {wf-}jeNoA, tef1,2,--,}) is a frame
in H*(RY) with C1,Cs > 0 if and only if

CullglFr--ray < D (9 do0.x) |2+ZZ > g vyl

kezd =1 j=0 kez?
< Co|gll- s(riy, 9 € H™ *(R7).

The following result is the OEP for nonstationary dual
wavelet frames in Sobolev spaces:

Theorem 2.1 Let aj,b[(j €N, £ =1,2,---,L) and

aj, bj (JeN, £=1,2,---,L) be 2r— periodic trigonometric

polynomials in d— varlables _which satisfy the conditions of
Lemma 2.1. Suppose that gbj, qb] (j € Np) and w‘z, 1/1[(] € Np)
are defined as in (1.1), (1.2) and (1.3), ©;, j € N are
2w —period trigonometric polynomial satisfying ©;(0) = 1
and |©;(§)| < Cy for all j € N. Moreover, the following
identity holds

(1) €T (e +77) + 3 B (E+9m) = 051 (e)

L
0;(26)a; ()a (E+ym)+_ b4(E) bl (é44m) = 0,7 € {0,1}\{0}
—1

(2) for a real number s € R satisfying
v(¢) >s and v(d) > —s,

there exist nonnegative numbers « and o with o > —s and
@ > s, such that the following conditions hold for constants
C, C’ independent of j:

0(6)] < Cmin(1, [€]°)
()] < O min(1, [€]%), £=1,2,--, L.

Let 7;(§) =t ©,41(8)¢;(6)-X*(b0; {¥f}iens, tef12,1))
and X ~*(no; {1/) }ieNo, e{1,2,- 7L}) is a palr of nonstation-
ary dual wavelet frames in (H*(R9), $(R%)). Further-
more, there are positive constants C; and 02 such that

CillglZ - s(r1) < Z 1{g, D0:0,%)] +ZZ Z (g ],]k

kezd =1 j=0kez?

< Collgly-(ray, 9 € HS(RY);

L oo
CEIHJCHH Rd)_ Z [(f:m0:0,k) | +ZZ I(f ij

kezd =1 j=0kezd

< C#”f”%[s(ﬁ)» fe H*(RY). (2.1)

Let ©,(¢) = 1, we obtain the MEP for nonstationary dual
wavelet frames in Sobolev spaces:

Corollary 2.1  Let @7b§(j €N, ( =1,2,---, L),

a0 € N, £ = 1,2,--+,L), 65, 6;(j € No) and ¢,

{/;f (j € Np) be defined as in Theorem 2.1. Suppose that

L
a5 (€)ay (& +ym) + D bE(E) (EBLE +7m) = 0,y 7 € {0,1}%
=1

If the condition (2) of Theorem 2.1 are sat-

isﬁed then  X°*(¢o; {w YieNo, te{1,2,,L}) and
(qbo, {w YieNo, tef1,2,,1}) 1s a pair of nonstatlonary
dual wavelet frames in (H°(R%), H—*(R%)).

For proving the theorems,we give the following lemmas:
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Lemma 2.4
is satisfied, then for any f € H*(R%) and g € H~

ZZ (f 0 (0

=1 kez?

Z (Fsmjrr+1,6(Pj+ 1541k, 9) —

kezd

If the condition of item (1) in Theorem 2.1
s (Rd),

]]k? >*

D ik ) (Bsgkr 9)-

kezd

Proof For simplicity, we only prove the case for d = 1, the
general case can be proved similarly. For any h € H*(R) and

h € H=*(R), by Plancherel formula and Parseval identity,
- 1 L
SR (—4.9) = (s [ U (@l gl e

Since (f,mji0) = 275 (FQ27T),mi( = k), (Sy5009) =

275 (¢;(- — k),9(277-)), then
> i) Dk 9)
keZ
=273 (F277 ) m(- = R) (i (- — k), 9(2774)

keZ

[ (@) B10() - B3 (9(2779) o(€)de
271_ Zf 27¢ + 27 - 2mm)n; (€ + 2m))-

[Z @i (§+2nm)g(27€ + 27 - 2nm)]dE.

Due to . £ ¢
®;(§) = @:1(5)¢j+1(§)
() = 0511 (€)1 (5)551(5),
we obtain

Y F(27e+ 27 2mm)i; (€ + 2mm)] x

[Z B (€ + 20m)5(VE + 20 - 2nm)]

—

Zf (2e+2- 2mﬂ)¢j+1(€ + mw)@j+1(§)aj+l(g
Z¢g+1
Zf (27 + 27+ Qmw)m]
2%1
— & — £

0;11()aj+1 (§)aj+1 (5)

+ n) a]_H(g +nm)g(29i€ + 27 - 2n7)]

+2nm)g(29€ + 20+ - 2nar) | x

—

HY T @+ 27 2mm)ayn (5 + 2mm)] x

+ mm)]

Z¢]+l

+2nm + m)g(29€ + 29+ . 2ng + 29+ 7)) x

O, @i (S)am(§ +m)

+D F(27¢ + 27 2mar 4 271 )¢7+1(§ + 2mm + )] x

m

Z ¢J+1 —|— 2nm)g(27€ + 29+ - 2nm)] x
05 (@i (5 +mam ()

+[Z FIe+ 271 2mm + 2j+1ﬂ)<§:1(% + 2mm + )| %

[Z bj1(2 + onm + m)g(27€ + 241 2na + 27H 1) x

0511(©Tm( + M+ 7).

By the item (1) of Theorem 2.1, one can know

011 (O (T (5) = 85125 Z ()
9]+1(§)a.7+1(2 + 7T)@7+1(2 +)
J+2 Zb]+1 +7) bﬁﬂ(é +7)
g (s ST e
®]+1(§)a]+1(2)a7+1 Z ]+1 Jrﬂ')
/=1
e (8 T YRS
@g+1(§)a3+1(2 + ) a]+1 Z +7T b]+1(2)
=1
Furthermore,

N F(27e+27 - 2mm)i; (€ + 2mm)] x

Y6, + 2nm)g(27€ + 27 - 2nm)]

—

= [Z J?(Zﬂf 4ooitl. 2m7r)9j+2(§)5j+1(§ + 2mm)]x

m

Zd)]-‘rl

[Z f(2e+2itt .2m7r+2f+17r)@j+2(§

+2nm)g(29€ + 29+ . 2nr) |+

—

F g+ 2mr 4 7]

m

Z i

+ 2nm + m)g(20€ + 29+ . 2ng + 29+17)]

—

Z (296 + 27 - 2mm) 4 ( g +mw)b§+1(§

/=1 m

—

+ mm)]x
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+ nm) ]_H(g +nm)g(29i€ + 279 - 2nmr)].

Z¢]+1

The third item equals

ST i+ 2 'QWW)W]X

/=1 m
(57 0L(E + 2nm)5(27E + 27 - 30m).

Therefore, we have the following result by integrating

L .
/_ ST F(@7e+ 27 2mm)yl(€ + 2ma)] x

T=1 m

3" 4(E + 20m)G(27E + 20 - 2nm)lde

Integrating for the first and the second item on [—m, 7] and
using the 27 —period, we obtain

2]+1

27 /_ ng]+15+2]+1 2mm),12(6)dy 1 (€ + 2mm)

1> @i (€ + 2nm)g(27FTE + 24T 2nm))de

2j+1
21

" /wT D f(2j“§+zj+1.2m7r)@j+2(§)$/j:1(5 + 2m)]

2

> di (€ + 2nm)g(2IFIE + 2T 2nm)]de

—

2j+1 ™ o ) —
= o /; [Zf(2-7+1§+2‘7+1.Qmﬂ')@j+2(£)¢j+l(§+2m7.r):|

m

1> dia (€ + 2nm)GRTFTE + 27T 2nm))de
= > (f, 77j+1;j+1,k>><¢j+1;j+1,k79)-
kez

The final equality follows from

—

0,42(E)dj41(€ + 2mm)

—

= 0;12(6 +2mm)djq1 (€ + 2mm) = 571 (§ + 2m).

Finally, we obtain the desired result.

Lemma 2.5 Suppose that the 27— periodic trigonometric
polynomials a;, j € IV satisfies the conditions of Lemma 2.1
and define ¢;, j € Ny by (1.1), then

lim d)n( ) =1.

n—-+0o
Proof By Lemma 2.1, ¢;, j € Ny are well defined, which
means that for all j € N,

: ~ —k
nllgloo klill Ap4j-1(27"¢)

oo

[T axs127"9).

k=1

= ¢j_1(6) =

2517-9934
No:2, 2011

In particular, lim [ @x(27%¢) = (&) =
n—+00 "y k=1
Note that

Therefore,

k=1
- T a2 %)
= J] a@ =5
l=n+1 /7165(2756)

Obviously, we have

lim $,(27"€) = 1

n——+oo

III. PROOF OF THEOREM
Proof of Theorem 2.1: Since v(¢$) > s, we can take ¢ such
that v(¢) > t > s, then [¢;, ¢;]s < M (j € Np) and ¢; €
H*(R?). By Lemma 2.2, X*(¢o; {1/) bieNo, eef1,2,,1})
is a nonstatlonary Bessel sequence in H°(R%); Slmllarly,
X ~3%(no; {wj}jGNa, ¢e{1,2,-,1}) IS a nonstationary Bessel
sequence in H~*(R?%), which is then equivalent to

Z |g7¢00k ‘2+ZZ Z |g7 ]]k

kezd £=17j=0kezd

< 02||9H?14(Rd)7 g€ H*(R%);

L oo
Z|f>n00k ZZZ'fa 7'],1&

kezd £=1j=0kezd

1 2 s(pd
< a“fHHS(Rd)v f e H*(RY).

By Lemma 2.3, in order to show the frame property, we only
need to show the left sides of (2.1).

Let B(R®) denote the set of all tempered distributions f
such that f is compactly supported and f € L>(R?), then
B(R%) C H”(Rd) for any v € R. By Lemma 2.4, we obtain

ZZ fwwk

=1 keZzd

,]Iw >

= > {fmsrgerk) (Birr41k: 90— D (Fonjk) Bk 9)-

kezd kezd

Therefore, we have

L
> (Fnowk) b0k 9) +

kezd

=

n—

PO AT

=1 j=0 kez4

= Z <f7 nn;n,k><¢n;n,k79>7 f7g S B(Rd)

kezd

<¢] B k7g>

At the end of the proof, we will show that

(F.9) = T >~ (F i) (Gnines ), fr9 € BRY). (%)

kezd
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Then

(f.9) = D (. m00.x) (G000, 9)+

kezd

ZZ Z flpmk

=1 j=0kezd

k9 frg € B(RY),

with the series converging absolutely. Moreover, by Holder
inequality,

|<f,g>\2s<2\f,n00k|2+222|f, o)

kezd =1 j=0 keZzd
L o
(Z |<¢0;0,kag>‘2+z Z | ]jkv
kezd =1 j=0 kez4

Therefore, we have

1
(f.9)° < al\fllfgs(m)( > ook 9)*+

keZzd
L oo
Y>> W9l fog € B(RY).
=1 j=0kez4
Furthermore,
[(f. 9

Cy sup 5
senran (o) I/ 5 ray

=D SIS 3 2P LT

kezd £=1j=0kezd

Since B(R?) is dense in H*(R?), then

Cillgll5r-« (ray < Z [(do:0,k> 9)] +ZZ Z| i 9

kezd =1 j=0 kezd
< Callgl} - (gays 9 € B(RY).

Since B(R?) is dense in H~*(R?), the above inequality holds
for all g € H*(R%), that is, X*(do: {t};ene, req1,2,.1})
is a nonstationary wavelet frame in H S(Rd); Similarly, we
know X ~%(no; {w }ieNo, tef1,2,-,L}) is a nonstationary
wavelet frame in H~*(R?). Moreover, they are a pair of dual
wavelet frames in (H*(R%), H—*(R%)).

Now, it remains to prove ():

Z <.f7 7ln;n,k> <¢nm,k’a g>

, g € B(RY).

keza
nd . .
st BRCRRR GO CRIGLE
- i [, BT OREL ) T2 e

Since f,g € B(R?), there exists a positive number N such
that f(¢) = (f)—Oforall£¢ [N, N]% For n > logy (&),
it is easy to show that §(&)f(¢ + 2kn2") = 0 for all k €
Z9\{0} and ¢ € R Therefore,

Sn(27)3(O)f (2"

)3 nlo(2776)

—

= 6n(27")§(€) Y f(&+ 2km2")n(27"E + 2k)
keZ
¢

= 6n(27"€)3(6)f(€)
Since [q/b;, @]9 < M, and

[7/7\]-777}]*5 = |ej+1(€)|2[($ja$j]75 < Cg[aj,aj}fs < M2
for all j € Ny, then we obtain
17 (£); ()] < nn:w |¢7—u ©
< ([ﬁ}’@]— ) ([¢]7¢] \/7< 0.

Therefore, for n > log, (%

|60 (27" )3(O)[F(2"), Tlo(277)]

= 627" (2 ") F(©3O)] < VM| ()5(E)
Since f,g € B(R%), we/lfnow f§ € L'(R%). Note that

m(277¢) = @n+1(2*”§)$n(2*”§), by the Lebesgue dom-
inated convergence theorem and Lemma 2.5, then

lim Z <f, 77n;n,/€> <¢n;n,k7 g>

n—oo
kezd

1 . T~
= o 0

— g [ i @ O E TG A3
R

4 N—00

- @/R F©FE)de = (1, g).
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