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Abstract—In this paper, a nonlinear model predictive swing-up 

and stabilizing sliding controller is proposed for an inverted 
pendulum-cart system. In the swing up phase, the nonlinear model 
predictive control is formulated as a nonlinear programming problem 
with energy based objective function. By solving this problem at 
each sampling instant, a sequence of control inputs that optimize the 
nonlinear objective function subject to various constraints over a 
finite horizon are obtained. Then, this control drives the pendulum to 
a predefined neighborhood of the upper equilibrium point, at where 
sliding mode based model predictive control is used to stabilize the 
systems with the specified constraints. It is shown by the simulations 
that, due to the way of formulating the problem, short horizon 
lengths are sufficient for attaining the swing up goal. 
 

Keywords—Inverted pendulum, model predictive control, swing-
up, stabilization.  

I. INTRODUCTION 
N this manuscript, the inverted pendulum swing-up and 
stabilization problem is modeled using two different 

nonlinear model predictive controllers (NMPC) whose 
parameters are determined by using the nonlinear 
programming approach. The main focus of this paper is on the 
swing-up phase of the problem where the objective function 
aims to increase the energy of the system in a finite horizon. 
The stabilization phase of the problem is solved extending the 
sliding mode control philosophy [1] to finite horizon 
approach. Although the objective functions of the NMPC are 
different for the swing-up and stabilization phases, the set of 
constraints are the same for both phases. The structure for the 
objective functions and constraints are suitable for 
generalization to a larger class of systems. 

Due to its inherent nonlinear nature, the inverted pendulum 
is widely used as a test-bed for designing and testing new 
control techniques. In [1], the authors modeled the pendulum 
stabilization problem with bicriteria nonlinear programming 
framework based on sliding mode control using various 
constraints. On the other hand, the inverted pendulum swing-
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up problem has been also studied extensively in the literature. 
A popular approach in designing swing-up controllers is based 
on controlling its energy. The logic behind this approach is 
injecting energy to the pendulum by applying appropriate 
control force to the cart. In [2], a bang-bang control is used to 
raise the energy of the pendulum towards a value equal to its 
steady state value at the upright position. This approach does 
not consider the cart track length constraint. In [3], a variable 
structure system version of energy-speed-gradient method is 
treated in a rigorous manner to show that attractivity of the 
upright equilibrium can be achieved by applying a control of 
arbitrary small magnitude. This approach also does not 
consider any system constraints related to cart track length. In 
[4], the sign condition in the derivative of the energy is 
exploited. In this paper a servo system having a low pass 
property is used for the swing-up. This servo system uses a 
sinusoidal reference input generated from the pendulum 
trajectory. In another significant energy-based work [5], the 
swing-up and stabilization of an inverted pendulum system 
with a restricted cart track length is achieved by using an 
energy-well built within the cart track. It is constructed in 
such a way that the cart experiences a repulsive force as it 
approaches the ends of the track. Although the cart track 
length is integrated into the controller, this is not in a 
systematic and a generalizable way. In the energy-based 
works, the stabilization phase is carried out, generally, by 
using controllers designed for the linearized model of the 
inverted pendulum. In [6], energy-based swinging strategies 
are compared with a fuzzy swing-up algorithm. In [7], a 
Lyapunov function is obtained by using the total energy of the 
system, and the convergence analysis carried out using the 
LaSalle's invariance principle. In fuzzy logic approaches, the 
states of the inverted pendulum system are used as inputs. For 
example, in [8], the fuzzy logic method is used in both swing-
up and stabilization phases. Each state of the inverted 
pendulum is assigned with a single input rule module (SIRM) 
and a dynamic importance degree. Besides, a reader may also 
refer this paper for a very good review of other fuzzy logic 
works in the literature.  

The swing-up strategy in this manuscript is based on 
moving the energy of the inverted pendulum towards the 
energy of the unstable equilibrium point.  Even though the 
energy of the inverted pendulum system is exploited, different 
mathematical tools are used fundamentally and some 
constraints related to physical system are considered in order 
to generate the control signal. Differing from the literature, the 
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problem that is mainly in the differential equation domain is 
transformed, into the domain of nonlinear programming: an 
algebraic domain by means of the NMPC philosophy.  This 
also allows us to embed a variety of design specifications, like 
system constraints, in the problem in a conceptually simple 
way. 

NMPC is a control strategy that is based on solving online a 
finite horizon optimization problem including constraints at 
every sampling instant to generate the control input.  The 
solution is a sequence of control inputs that optimize plant’s 
future behavior. Only the first element of the sequence is 
applied to the controlled plant. Then, the plant state is sampled 
again and the calculations for optimization are repeated from 
the current state, yielding a new control and new predicted 
state path.  

MPC for linear systems with linear quadratic performance 
criteria is a fairly mature field of control systems. The books 
[9] and [10] are significant references on this subject. Due to 
the nonlinear nature of the inverted pendulum system and hard 
constraints imposed on its inputs, nonlinear programming 
modeling naturally fits to this problem. For the nonlinear 
plants, keeping the constraints linear does not provide any 
advantage [11]; therefore, imposing hard constraints on the 
inputs is not avoided. In [12], commercially available model 
predictive control technology is presented. In this work, the 
empirical nature of the nonlinear MPC is highlighted. Due to 
lacking mature mathematical tools for the analysis of 
nonlinear MPC, numerical techniques gain popularity [13]. 
For the same reason, in [14], genetic algorithms are proposed 
for obtaining an optimal control sequence in the nonlinear 
MPC framework. 

In this paper, the swing up and stabilization problems are 
modeled as two NMPC formulations with different objective 
functions and the same set of constraints for some finite 
horizon. In the following section the dynamics of a one degree 
of freedom inverted pendulum system are presented. The 
swing-up and stabilization control problems are modeled in 
NMPC framework in sections three and four respectively. The 
last section contains illustrative simulations for various 
experimental conditions.  

II. INVERTED PENDULUM SYSTEM MODELING 
In this section inverted pendulum dynamics are described 

and presented in a discrete time framework. As shown in Fig. 
1, inverted pendulum is, basically, composed of a pendulum 
attached to a moving cart from a pivot point.  

The inverted pendulum system is an underactuated system 
that has two outputs (x: the position of the cart and θ: the 
pendulum angle) which are controlled by a single input (u: the 
force applied to the cart). 

 

         
Fig. 1 Inverted pendulum system model 

 
The inverted pendulum system has two equilibrium points.  

One of them is the upward equilibrium point of the 
pendulum, )0 , 0(),( =θθ & , and it is named as unstable 
equilibrium point, that is, the pendulum may fall over at any 
time in any direction within the plane of motion. Hence, an 
appropriate force input u has to be generated to keep the 
pendulum up-straight. The other one is the downward 
equilibrium point of the pendulum, )0 , (),( πθθ =& , and it is 
named as stable equilibrium point, which means that if the 
pendulum is exposed to a disturbing force changing its state, it 
tends to restore its previous position. 

The mass of the rod is assumed be concentrated at its upper 
end. The parameters, their definitions and typical values used 
in simulations are presented at Table I. 

 
TABLE I 

DEFINITIONS OF PARAMETERS AND TYPICAL VALUES FOR THE INVERTED 
PENDULUM 

Symbol Parameter Value Unit 

M Mass of the cart 3 kg 

m Mass of the pendulum 0.5 kg 

l Length of the pendulum 0.5 m 

b Friction constant 2 kg/s 

g Gravitational force 9.81 kgm/s2 

 
 
The mathematical model representing the dynamics of an 

inverted pendulum shown in Fig. 1 can be obtained by using 
the principles of the Newtonian mechanics [15]:  
                                                                                    

         uxbmlmlxmM =++−+ &&&&&& θθθθ cossin)( 2             (1) 
θθθ sincos mgmlxm =+ &&&&  
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The state space representation consisting of the nonlinear 
differential equations is given below, where u denotes the 
control input, and the components 41 ,, xx K of the state vector 
X are defined as xx =:1 , xx &=:2 , θ=:3x , θ&=:4x . 
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Equation (2) can be written compactly as, 
 
                            uXhXfX )()( +=&                                    (3) 
 
for suitable vector functions f and h. Its Euler discretization 
with sampling period T is, 
 
                  )())(())(()1( kukXHkXFkX +=+                    (4) 
 
where 

                   
      ))(()(:))(( kXTfkXkXF +=               (5) 

                  ))((:))(( kXThkXH = .                 (6) 
 
These discretized system equations will take place in the 
NMPC model as a set of constraints. 

III. FORMULATION OF THE SWING-UP PHASE 
Inverted pendulum swing-up problem is defined as 

swinging up the pendulum from its lower (stable) equilibrium 
point to the neighborhood of its upper (unstable) equilibrium 
point by applying appropriate control inputs. The method 
proposed at this paper formulates the swing up problem as a 
nonlinear programming based NMPC problem which rewards 
total energy increments and uses discretized system equations 
and limits on inputs and states as constraints.  

The objective function is formed by using the positive 
definite function [16], 
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In the above expression, θE  is an energy equation of an 
uncontrolled inverted pendulum for a given ),( θθ &  pair [2]. 
The absolute value of θE  has its maximum value mgl2  when 

)0,(),( πθθ =&  and has its minimum value 0 when 
)0,0(),( =θθ & . xE  , the other term in (8), is a function which 

attains its minimum when cart position and velocity equal 
zero.  
 The positive definite function V satisfies 0)0( =V and 

0)( >xV  for all 0≠x . This function has its minimum value 
when all the states are zero, that is )0,0,0,0(),,,( =θθ &&xx  . 
With the exception of this point, this function is positive 
valued.    

By using (7) and (8), N-step horizon objective function for 
the problem under consideration is defined as follows: 
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The upper and lower bounds imposed on the state variables 

and the control inputs are used as the (hard) constraints.  
Now the swing up problem is formulated as the following 

nonlinear programming problem:   
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At the k-th sampling instant, this problem is solved to obtain 

),( NkU  where  
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Only the first component of ),( NkU  is applied to the input. 
At the k+1-st sampling instants the computation is repeated to 
obtain the control sequence )1,1( ++ NkU , and so on.  

One may notice that the model in equation (10) is nonlinear 
due to any one of the nonlinear objective function and the 
constraints.  Gradient based numerical solution techniques are 
utilized because of the lacking analytical solutions for the 
equations of this form. 

The swing-up phase terminates upon pendulum enters a 
certain neighborhood of the unstable equilibrium point. 
Following this, the NMPC algorithm for the stabilization 
phase described in the next section activates to take the 
control over.   

IV. FORMULATION OF THE STABILIZATION PHASE  
Inverted pendulum stabilization problem is defined as to 

stabilize the pendulum in the neighborhood of its unstable 
equilibrium point. This is the second phase that comes after 
successful completion of the swing-up phase described in the 
preceding section. The stabilization problem is solved using a 
sliding mode control based NMPC over a finite horizon. This 
phase of the NMPC algorithm is also a nonlinear 
programming problem whose objective function is a squared 
sliding surface function that developed in  [1] and constraint 
equations are same as in the swing-up problem.  

The constant coefficients 41 ,, gg K in the sliding surface 
function 44332211)( xgxgxgxgXs +++= are chosen to 
yield stable sliding surface function. Sliding surface is utilized 
in sliding mode control strategies so that when the state 
trajectory is restricted to a stable sliding surface, the trajectory 
asymptotically approaches the origin in a robust manner [17]. 
Such coefficients can be obtained by using the inverted 
pendulum model linearized at the unstable equilibrium point.  

The nonlinear programming problem that is used for NMPC 
which yields control inputs for the stabilization phase is as 
follows: 
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This formulation relies on positive definite objective such 
that its minimum corresponds to its restriction to the sliding 
surface. For a stable sliding surface, clearly, this drives the 
system dynamics towards the unstable equilibrium point of the 
pendulum. The stabilization problem based on sliding mode 
control philosophy inherently has two sub-phases: reaching 
phase and sliding phase [1]. The system first reaches the 
sliding surface and then the system states are kept therein until 
it reaches the unstable equilibrium point. 

V. SIMULATIONS  
 In this section, the simulations are performed to 

demonstrate the validity of NMPC approach of this paper. 
Throughout the experiments the sliding surface parameters 

)5.1 ,5 ,5.1 ,2(),,,( 4321 =gggg  are used for the stabilization 
phases. Main codes are written in MATLAB in which the 
physical system with a given input is simulated. The main 
codes contain calls for the GAMS optimization package with 
MINOS solver at each step to calculate the input value for the 
nonlinear optimization problems given by (10) and (12). 
Graphical outputs of two simulations for each of the cases are 
presented where the input is constrained to 10≤u and 

15≤u . The two simulations for different horizon lengths 
show the effect of the prediction horizon on the swing-up 
time. 

A. Graphical Results  
The graphical outputs for the horizon lengths 3 and 25 steps 

for each of the two different input constraints are shown in 
Figs. 2-5.  

 

 
Fig. 2 Position of the cart, angle of the pendulum, control inputs and 

energy of the pendulum for 3-step prediction for u∈ [-10,10] 
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Fig. 3 Position of the cart, angle of the pendulum, control inputs and 
energy of the pendulum for the 3-step prediction for u∈ [-15, 15] 
 

 

 

Fig. 4 Position of the cart, angle of the pendulum, control inputs and 
energy of the pendulum for 25-step prediction for u∈ [-10, 10] 

 

 

 
Fig. 5 Position of the cart, angle of the pendulum, control inputs and 

energy of the pendulum for 25-step prediction for u∈ [-15, 15] 
 
Typical values for the inverted pendulum parameters given 

in Table I are used for the simulations. The cart track length is 
constrained to [-1, 1], and simulations were performed for the 
cases where the input is constrained to   [-10, 10] and [-15, 15] 
intervals. In the figures, the first and second rows show cart 
position and pendulum angle versus time respectively. The 
third row shows input versus time, while the last row shows 
energy versus time. In energy graphics, Ke, Pe, and E denote 
the kinetic energy, potential energy, and the total energy of the 
pendulum respectively. 

As seen from the figures, the cart stays within the 
prespecified limits. The graphical outputs reveal that the 
approach of this paper works satisfactory even for the horizon 
length of 3. Nonetheless, the swing-up time decreases as the 
horizon length increases. A more detailed analysis of the 
effect of the horizon length on swing-up time is given in next 
subsection. It is observed that there is chattering in the control 
input u as the pendulum approaches to the upper equilibrium 
point. This is due to the term that minimizes the speed of the 
pendulum to avoid overshooting the upper equilibrium point. 
One may also notice in Figs. 2-5 that the energy graphics 
versus time is very close to a monotone increasing behavior. 
This becomes more significant as the horizon length increases. 
Energy ripples about the upper equilibrium point is due to the 
braking effect resulting from the angular speed minimization 
term in the objective function.  
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B. The Effect of Prediction Horizon on Swing-Up Time 
The effect of the prediction length on swing-up time is 

analyzed in this subsection. Fig. 6 shows swing-up time 
versus prediction step for the input constraint 10≤u . 
 

 
Fig. 6 Swing-up time versus prediction steps for u ∈ [-10, 10] 

 
Fig. 7 shows swing-up time versus prediction step for the 

input constraint 15≤u . 
 

 
Fig. 7 Swing-up time versus prediction steps for u ∈ [-15, 15] 

 
The Figs. 6 and 7 show that good swing-up performances 

are obtained for the prediction horizons larger than 10 steps. 
The improvement in the swing up time is significant for the 
horizon lengths up to 10 steps. For the horizon lengths 
between 10 to 50 steps, the swings up time improvements are 
not significant. Thus 10 steps or its neighboring number of 
steps is suitable for the swing up problem under consideration. 

VI. CONCLUSION 
A novel nonlinear programming based NMPC approach is 

used to solve the inverted pendulum swing-up and 
stabilization problem. The problem is formulated in two 
phases: The first phase considers the swing up problem while 
the second phase considers the stabilization problem. These 
two phases have the same constraints which include the cart 
track length. However, the first phase has energy based 
objective function while the second phase uses a sliding mode 
function in its objective function. The graphical outputs have 
shown that the approach used in this paper works well even 

for relatively small prediction horizon lengths. 
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