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Operator Iterated K-times
Jessada Tariboon

Abstract—In this article, using distribution kernel, we study the
nonlinear equations with n-dimensional telegraph operator iterated
k-times.
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I. INTRODUCTION

THE telegraph equation arises in the study of propagation
of electrical signals in a cable of transmission line and

wave phenomena. The interaction of convection and diffusion
or reciprocal action of reaction and diffusion describes a
number of nonlinear phenomena in physics, chemistry and
biology. Further, the telegraph equation is more suitable than
ordinary diffusion in modeling reaction-diffusion for such
branches of applied sciences. We refer the reader to [1]-[4]
and the references therein.

Kananthai [5]-[6] has studied some properties and results of
the distribution eαx�kδ and solved the convolution equation

eαx�kδ ∗ u(x) = eαx
m∑

r=0

Cr�rδ,

which is related to the ultra-hyperbolic equation, where α =
(α1, α2, . . . , αn), αx = α1x1 + α2x2 + · · · + αnxn, Cr are
given constants for r = 1, 2, . . . ,m, �k is the n-dimensional
ultra-hyperbolic operator iterated k times defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− · · · − ∂2

∂x2
p+q

)k

,

with p + q = n and δ is the Dirac-delta distribution with
�0δ = δ, �1δ = �δ.

In this work, by applying the distribution eαx�kδ, we
study the elementary solution of the following n-dimensional
telegraph equation(

∂2

∂t2
+ 2β

∂

∂t
+ β2 − Δ

)k

u(x, t) := T ku(x, t) = δ(x, t),

(1)
where Δ is the n-dimensional Laplacian operator iterated k
times defined by

Δk =
(

∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
n

)k

,
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and β is a positive constant. As an application, we solve
the nonlinear equation with n-dimensional telegraph operator
iterated k-times of the form(

∂2

∂t2
+ 2β

∂

∂t
+ β2 − Δ

)k

u(x, t) = f(x, t), (2)

where f(t, x) is a generalized function.

II. SOME DEFINITIONS AND LEMMAS

Definition 1. Let x = (x1, x2, . . . , xn) be a point of R
n and

write

v = x2
1 +x2

2 + · · ·+x2
p−x2

p+1−x2
p+2−· · ·−x2

p+q, p+q = n.

Define by Γ+ = {x ∈ R
n : x1 > 0 and v > 0} designating

the interior of forward cone and Γ+ designating its closure.
For any complex number γ, we define the function

RH
γ (v) =

{
v(γ−n)/2

Kn(γ) if x ∈ Γ+,

0 if x /∈ Γ+,
(3)

where the constant Kn(α) is given by the formula

Kn(γ) =
π(n−1)/2Γ

(
2+γ−n

2

)
Γ

(
1−γ

2

)
Γ (γ)

Γ
(

2+γ−p
2

)
Γ

(
p−γ

2

) . (4)

Let supp RH
γ (v) ⊂ Γ+ where supp RH

γ (v) denotes the
support of RH

γ (v). The function RH
γ is first introduced by

Nozaki [7] and is called the ultra-hyperbolic kernel of Marcel
Riesz. Moreover, RH

γ (v) is an ordinary function if Re(γ) ≥ n
and is a distribution of γ if Re(γ) < n.

Definition 2. Let x = (x1, x2, . . . , xn) ∈ R
n and write

s = x2
1 + x2

2 + · · · + x2
n.

For any complex number β, define the function

Re
β(s) = 2−βπ−n/2Γ

(
n − β

2

)
s(β−n)/2

Γ
(

β
2

) (5)

The function Re
β(s) is called the elliptic kernel of Marcel Riesz

and is ordinary function if Re(β) ≥ n and is a distribution of
β if Re(β) < n.

Lemma 1. [5] Let L be the partial differential operator
defined by

L = � − 2

⎛
⎝ p∑

i=1

αi
∂

∂xi
−

p+q∑
j=p+1

αj
∂

∂xj

⎞
⎠

+

⎛
⎝ p∑

i=1

α2
i −

p+q∑
j=p+1

α2
j

⎞
⎠ . (6)

kernel.
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Then
(eαx�kδ) ∗ u(x) = Lku(x) = δ (7)

In addition, the unique elementary solution of (7) is given
by u(x) = eαxRH

2k(x), where RH
2k(x) is defined by (3) with

γ = 2k.

Lemma 2. [8] eαxδ(k) = (D − α)kδ where D ≡ d
dx and

eαtδ(k) is a Tempered distribution of order k with support 0.

Lemma 3. [9] Let z be a complex number. Then

Γ(z)Γ(z +
1
2
) = 21−2z

√
πΓ(2z), z �= 0,−1,−2, . . . .

III. MAIN RESULTS

Now, we shall state and prove the following main
results.

Theorem 1. Let T k be the partial differential operator which
iterated k-times defined by

T k =
(

∂2

∂t2
+ 2β

∂

∂t
+ β2 − Δ

)k

, (8)

where Δ is the n-dimensional Laplacian operator and β is
a given positive constant. Then u(x, t) = e−βtM2k(w) is a
unique elementary solution of (1), where Mη(w) is defined by

Mη(w) =

{
w(η−n)/2

Hn+1(η) if t ∈ Γ+,

0 if t /∈ Γ+,
(9)

where w = t2 − x2
1 − x2

2 − · · · − x2
n, t is the time and

Hn+1(η) = π(n−1)/22η−1Γ
(

η − n + 1
2

)
Γ

(η

2

)
. (10)

Proof. Firstly, we define the n+1-dimensional ultra-hyperbolic
operator as

�n+1 =
(

∂2

∂t2
− Δ

)
.

Setting α2 = α3 = · · ·αn = 0, we have

eα(t,x)�k
n+1δ = eα1t

(
∂2

∂t2
− Δ

)k

δ(x, t).

Applying Lemma 3 for p = 1, q = n and p + q = n + 1, (3)
and (4) are reduced to (9) and (10), respectively.

Indeed, we have δ(x, t) = δ(x)δ(t) and eα1tδ(x) = δ(x).
Using Lemma 2, we get

eα1t

(
∂2

∂t2
− Δ

)
δ(x, t) = eα1t ∂2

∂t2
δ(x, t) − eα1tΔδ(x, t)

=
(

∂

∂t
− α1

)2

δ(x, t) − Δeα1tδ(x, t)

=
(

∂2

∂t2
− 2α1

∂

∂t
+ α2

1 − Δ
)

δ(x, t).

Substituting α1 = −β, it follows that

e−βt

(
∂2

∂t2
− Δ

)
δ(x, t) =

(
∂2

∂t2
+ 2β

∂

∂t
+ β2 − Δ

)
δ(x, t)

= Tδ(x, t)

Convolving k-times for both sides of the above equation by
e−βt(∂2/∂t2 − Δ)δ(x, t), we have

e−βt

(
∂2

∂t2
− Δ

)
δ(x, t) ∗ · · · ∗ e−βt

(
∂2

∂t2
− Δ

)
δ(x, t)

= e−βt

(
∂2

∂t2
− Δ

)k

δ(x, t)

= Tδ(x, t) ∗ · · · ∗ Tδ(x, t)

= T kδ(x, t).

Then (1) can be written as

T ku(x, t) = e−βt

(
∂2

∂t2
− Δ

)k

δ(x, t) ∗ u(x, t) = δ(x, t).

Convolving both sides of the above equation by e−βtM2k(w)
and Applying Lemma 1, we have

u(x, t) = e−βtM2k(w),

where M2k(w) is defined by (9) with η = 2k. �
Theorem 2. Given the equation(

∂2

∂t2
+ 2β

∂

∂t
+ β2 − Δ

)k

u(x, t) = f(x, t), (11)

where f(x, t) is a given generalized function and u(x, t) is an
unknown function. Then,

u(x, t) = e−βtM2k(w) ∗ f(x, t). (12)

Proof. Convolving both sides of (11) by e−βtM2k(w) and
applying the Theorem 1, we obtain (12) as required. �
Remark 3. By using the method of proving Theorem 1
together with suitable modifications, we have u(x, t) =
e−βt(−1)kRe

2k(s) is a unique elementary solution of the
following equation(

∂2

∂t2
+ 2β

∂

∂t
+ β2 + Δ

)k

u(x, t) = δ(x, t), (13)

where Re
2k(s) is defined by Definition 2 with β = 2k, s =

t2 + x2
1 + x2

2 + · · · + x2
n and a constant n in (5) is replaced

by n + 1.
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