Nonlinear Equations with N -dimensional Telegraph Operator Iterated K-times

Jessada Tariboon

Abstract

In this article, using distribution kernel, we study the nonlinear equations with n-dimensional telegraph operator iterated k-times

Keywords-Telegraph operator, Elementary solution, Distribution kernel.

I. Introduction

T1 HE telegraph equation arises in the study of propagation of electrical signals in a cable of transmission line and wave phenomena. The interaction of convection and diffusion or reciprocal action of reaction and diffusion describes a number of nonlinear phenomena in physics, chemistry and biology. Further, the telegraph equation is more suitable than ordinary diffusion in modeling reaction-diffusion for such branches of applied sciences. We refer the reader to [1]-[4] and the references therein.

Kananthai [5]-[6] has studied some properties and results of the distribution $e^{\alpha x} \square^{k} \delta$ and solved the convolution equation

$$
e^{\alpha x} \square^{k} \delta * u(x)=e^{\alpha x} \sum_{r=0}^{m} C_{r} \square^{r} \delta
$$

which is related to the ultra-hyperbolic equation, where $\alpha=$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \alpha x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}, C_{r}$ are given constants for $r=1,2, \ldots, m, \square^{k}$ is the n-dimensional ultra-hyperbolic operator iterated k times defined by

$$
\square^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}
$$

with $p+q=n$ and δ is the Dirac-delta distribution with $\square^{0} \delta=\delta, \square^{1} \delta=\square \delta$.

In this work, by applying the distribution $e^{\alpha x} \square^{k} \delta$, we study the elementary solution of the following n-dimensional telegraph equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}+2 \beta \frac{\partial}{\partial t}+\beta^{2}-\Delta\right)^{k} u(x, t):=T^{k} u(x, t)=\delta(x, t) \tag{1}
\end{equation*}
$$

where Δ is the n-dimensional Laplacian operator iterated k times defined by

$$
\Delta^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right)^{k}
$$

[^0]and β is a positive constant. As an application, we solve the nonlinear equation with n-dimensional telegraph operator iterated k-times of the form
\[

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}+2 \beta \frac{\partial}{\partial t}+\beta^{2}-\Delta\right)^{k} u(x, t)=f(x, t) \tag{2}
\end{equation*}
$$

\]

where $f(t, x)$ is a generalized function.

II. SOME DEFINITIONS AND LEMMAS

Definition 1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of \mathbb{R}^{n} and write
$v=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}, \quad p+q=n$. Define by $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.v>0\right\}$ designating the interior of forward cone and $\bar{\Gamma}_{+}$designating its closure.

For any complex number γ, we define the function

$$
R_{\gamma}^{H}(v)= \begin{cases}\frac{v^{(\gamma-n) / 2}}{K_{n}(\gamma)} & \text { if } x \in \Gamma_{+} \tag{3}\\ 0 & \text { if } x \notin \Gamma_{+}\end{cases}
$$

where the constant $K_{n}(\alpha)$ is given by the formula

$$
\begin{equation*}
K_{n}(\gamma)=\frac{\pi^{(n-1) / 2} \Gamma\left(\frac{2+\gamma-n}{2}\right) \Gamma\left(\frac{1-\gamma}{2}\right) \Gamma(\gamma)}{\Gamma\left(\frac{2+\gamma-p}{2}\right) \Gamma\left(\frac{p-\gamma}{2}\right)} \tag{4}
\end{equation*}
$$

Let supp $R_{\gamma}^{H}(v) \subset \bar{\Gamma}_{+}$where $\operatorname{supp} R_{\gamma}^{H}(v)$ denotes the support of $R_{\gamma}^{H}(v)$. The function R_{γ}^{H} is first introduced by Nozaki [7] and is called the ultra-hyperbolic kernel of Marcel Riesz. Moreover, $R_{\gamma}^{H}(v)$ is an ordinary function if $\operatorname{Re}(\gamma) \geq n$ and is a distribution of γ if $\operatorname{Re}(\gamma)<n$.
Definition 2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and write

$$
s=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}
$$

For any complex number β, define the function

$$
\begin{equation*}
R_{\beta}^{e}(s)=2^{-\beta} \pi^{-n / 2} \Gamma\left(\frac{n-\beta}{2}\right) \frac{s^{(\beta-n) / 2}}{\Gamma\left(\frac{\beta}{2}\right)} \tag{5}
\end{equation*}
$$

The function $R_{\beta}^{e}(s)$ is called the elliptic kernel of Marcel Riesz and is ordinary function if $\operatorname{Re}(\beta) \geq n$ and is a distribution of β if $\operatorname{Re}(\beta)<n$.

Lemma 1. [5] Let L be the partial differential operator defined by

$$
\begin{array}{r}
L=\square-2\left(\sum_{i=1}^{p} \alpha_{i} \frac{\partial}{\partial x_{i}}-\sum_{j=p+1}^{p+q} \alpha_{j} \frac{\partial}{\partial x_{j}}\right) \\
+\left(\sum_{i=1}^{p} \alpha_{i}^{2}-\sum_{j=p+1}^{p+q} \alpha_{j}^{2}\right) \tag{6}
\end{array}
$$

Then

$$
\begin{equation*}
\left(e^{\alpha x} \square^{k} \delta\right) * u(x)=L^{k} u(x)=\delta \tag{7}
\end{equation*}
$$

In addition, the unique elementary solution of (7) is given by $u(x)=e^{\alpha x} R_{2 k}^{H}(x)$, where $R_{2 k}^{H}(x)$ is defined by (3) with $\gamma=2 k$.
Lemma 2. [8] $e^{\alpha x} \delta^{(k)}=(D-\alpha)^{k} \delta$ where $D \equiv \frac{d}{d x}$ and $e^{\alpha t} \delta^{(k)}$ is a Tempered distribution of order k with support 0 .

Lemma 3. [9] Let z be a complex number. Then

$$
\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z), \quad z \neq 0,-1,-2, \ldots
$$

III. Main Results

Now, we shall state and prove the following main results.
Theorem 1. Let T^{k} be the partial differential operator which iterated k-times defined by

$$
\begin{equation*}
T^{k}=\left(\frac{\partial^{2}}{\partial t^{2}}+2 \beta \frac{\partial}{\partial t}+\beta^{2}-\Delta\right)^{k} \tag{8}
\end{equation*}
$$

where Δ is the n-dimensional Laplacian operator and β is a given positive constant. Then $u(x, t)=e^{-\beta t} M_{2 k}(w)$ is a unique elementary solution of (1), where $M_{\eta}(w)$ is defined by

$$
M_{\eta}(w)= \begin{cases}\frac{w^{(\eta-n) / 2}}{H_{n+1}(\eta)} & \text { if } t \in \Gamma_{+}, \tag{9}\\ 0 & \text { if } t \notin \Gamma_{+},\end{cases}
$$

where $w=t^{2}-x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}$, t is the time and

$$
\begin{equation*}
H_{n+1}(\eta)=\pi^{(n-1) / 2} 2^{\eta-1} \Gamma\left(\frac{\eta-n+1}{2}\right) \Gamma\left(\frac{\eta}{2}\right) \tag{10}
\end{equation*}
$$

Proof. Firstly, we define the $n+1$-dimensional ultra-hyperbolic operator as

$$
\square_{n+1}=\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right)
$$

Setting $\alpha_{2}=\alpha_{3}=\cdots \alpha_{n}=0$, we have

$$
e^{\alpha(t, x)} \square_{n+1}^{k} \delta=e^{\alpha_{1} t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right)^{k} \delta(x, t) .
$$

Applying Lemma 3 for $p=1, q=n$ and $p+q=n+1$, (3) and (4) are reduced to (9) and (10), respectively.

Indeed, we have $\delta(x, t)=\delta(x) \delta(t)$ and $e^{\alpha_{1} t} \delta(x)=\delta(x)$. Using Lemma 2, we get

$$
\begin{aligned}
e^{\alpha_{1} t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) & \delta(x, t)=e^{\alpha_{1} t} \frac{\partial^{2}}{\partial t^{2}} \delta(x, t)-e^{\alpha_{1} t} \Delta \delta(x, t) \\
& =\left(\frac{\partial}{\partial t}-\alpha_{1}\right)^{2} \delta(x, t)-\Delta e^{\alpha_{1} t} \delta(x, t) \\
& =\left(\frac{\partial^{2}}{\partial t^{2}}-2 \alpha_{1} \frac{\partial}{\partial t}+\alpha_{1}^{2}-\Delta\right) \delta(x, t)
\end{aligned}
$$

Substituting $\alpha_{1}=-\beta$, it follows that

$$
\begin{array}{r}
e^{-\beta t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) \delta(x, t)=\left(\frac{\partial^{2}}{\partial t^{2}}+2 \beta \frac{\partial}{\partial t}+\beta^{2}-\Delta\right) \delta(x, t) \\
=T \delta(x, t)
\end{array}
$$

Convolving k-times for both sides of the above equation by $e^{-\beta t}\left(\partial^{2} / \partial t^{2}-\Delta\right) \delta(x, t)$, we have

$$
\begin{aligned}
& e^{-\beta t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) \delta(x, t) * \cdots * e^{-\beta t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) \delta(x, t) \\
&= e^{-\beta t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right)^{k} \delta(x, t) \\
&=T \delta(x, t) * \cdots * T \delta(x, t) \\
&=T^{k} \delta(x, t) .
\end{aligned}
$$

Then (1) can be written as

$$
T^{k} u(x, t)=e^{-\beta t}\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right)^{k} \delta(x, t) * u(x, t)=\delta(x, t)
$$

Convolving both sides of the above equation by $e^{-\beta t} M_{2 k}(w)$ and Applying Lemma 1, we have

$$
u(x, t)=e^{-\beta t} M_{2 k}(w),
$$

where $M_{2 k}(w)$ is defined by (9) with $\eta=2 k$.
Theorem 2. Given the equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}+2 \beta \frac{\partial}{\partial t}+\beta^{2}-\Delta\right)^{k} u(x, t)=f(x, t) \tag{11}
\end{equation*}
$$

where $f(x, t)$ is a given generalized function and $u(x, t)$ is an unknown function. Then,

$$
\begin{equation*}
u(x, t)=e^{-\beta t} M_{2 k}(w) * f(x, t) . \tag{12}
\end{equation*}
$$

Proof. Convolving both sides of (11) by $e^{-\beta t} M_{2 k}(w)$ and applying the Theorem 1, we obtain (12) as required.
Remark 3. By using the method of proving Theorem 1 together with suitable modifications, we have $u(x, t)=$ $e^{-\beta t}(-1)^{k} R_{2 k}^{e}(s)$ is a unique elementary solution of the following equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial t^{2}}+2 \beta \frac{\partial}{\partial t}+\beta^{2}+\Delta\right)^{k} u(x, t)=\delta(x, t) \tag{13}
\end{equation*}
$$

where $R_{2 k}^{e}(s)$ is defined by Definition 2 with $\beta=2 k, s=$ $t^{2}+x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ and a constant n in (5) is replaced by $n+1$.

Acknowledgment

This research is supported by King Mongkut's University of Technology North Bangkok, Thailand.

References

[1] D.M. Pozar, Microwave Engineering, New York, Addison-Wesley, 1990.
[2] A. Jeffrey, Advanced Engineering Mathematics, Harcourt Academic Press, 2002.
[3] A. Jeffrey, Applied Partial Differential Equations, New York, Academic Press, 2002.
[4] M. Dehghan, A. Ghesmati, Solution of second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem. 34 (2010), 51-59.
[5] A. Kananthai, On the distribution related to the ultra-hyperbolic equations, J. Comput. Appl. Math. 84 (1997), 101-106.
[6] A. Kananthai, On the convolution equation related to the N -dimensional ultra-hyperbolic operator, , J. Comput. Appl. Math. 115 (2000), 301-308.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:8, No:5, 2014
[7] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kodai Math. Semin. Report, 6(2) (1964), 69-87
[8] A. Kananthai, On the distribution $e^{\alpha t} \delta^{(k)}$ and its applications, Proc Annual Conf. Math. KMITL, Thailand, 1996.
[9] Bateman, Manuscript Project, Higher Transcendental Functions, Vol. 1, Mc-Graw Hill, New York, 1953

[^0]: Jessada Tariboon are with the Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok,Bangkok 10800, Thailand.
 (e-mail: jessadat@kmutnb.ac.th).

