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Abstract—The paper presents the results of theoretical and 

numerical modeling of propagation of shock waves in bubbly liquids 
related to nonlinear effects (realistic equation of state, chemical 
reactions, two-dimensional effects). On the basis on the Rankine-
Hugoniot equations the problem of determination of parameters of 
passing and reflected shock waves in gas-liquid medium for 
isothermal, adiabatic and shock compression of the gas component is 
solved by using the wide-range equation of state of water in the 
analitic form. The phenomenon of shock wave intensification is 
investigated in the channel of variable cross section for the 
propagation of a shock wave in the liquid filled with bubbles 
containing chemically active gases. The results of modeling of the 
wave impulse impact on the solid wall covered with bubble layer are 
presented.  
 

Keywords—bubbly liquid, cavitation, equation of state, shock 
wave 

I. INTRODUCTION 
HE perspectives of invention of new technologies for 
realization of supercompression of matter guarantee the 

rising interest for research of mechanics of bubbly liquids in 
the presence of shock waves [1]–[3]. Small addition of 
bubbles makes liquid high compressible and provides special 
features of propagating of acoustic and shock signals in the 
liquid along with interfacial heat and mass transfer. The 
variety of nonlinear effects in bubbly liquid in nature and 
industry originated the importance of theoretical and 
experimental investigation. 

At the present paper theoretical research of shock waves in 
bubbly liquid is done to describe the nonlinear effects arising 
in the gas-liquid mixture. Earlier theoretical research of shock 
wave propagation in gas-liquid media was restricted by the 
account for only gas or linear liquid compressibility [1]. At the 
present work the problem of determination of parameters of 
passing and reflected shock waves from the solid wall in 
bubble liquid in assumption of isothermal, adiabatic and shock 
compression of gas fraction [4] is studied on the basis of 
Rankine-Hugoniot relations by using the wide-ranged 
equation of state of water in the analytic form [5]. 
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The effect of shock wave intensification is studied in the 

tube of the variable cross section filled with liquid, which 
contains explosive bubbles. The parametric analysis of the 
problem is carried out for different initial void fractions and 
geometric characteristics of the tube. 

The evolution of impulse of pressure in the bubbly liquid is 
researched in two-dimensional case. The impact of the wave 
impulse on the solid wall, covered with bubble layer of limited 
size, is investigated. 

II.  THE INVESTIGATION OF CHARACTERISTICS OF PASSING AND 
REFLECTED SHOCK WAVES IN THE GAS-LIQUID MEDIA 

A. Correlations for Shock Waves in the Gas-Liquid Media 
To investigate the characteristics of shock waves we 

consider the equations of conservation of mass of each phase 
at the initial and current time moment in volume V containing 
two-phase mixture with volume concentrations αl and αg for 
liquid and gas phases correspondingly ( VVll =α , 

VVgg =α , 1=+ gl αα ): 
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from which we can obtain: 
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Here 11111 ggll αραρρ ⋅+⋅= and 00000 ggll αραρρ ⋅+⋅=  
are the average current and initial values of the mixture 
density, which are expressed via reduced densities of phases 

liρ  and giρ , where 10,i = . 
In [6] the model of equilibrium disperse media of 

Campbell-Pitcher is employed, according to which the 
compression of the gas bubbles is isothermal. The 
Rakhmatulin model of bubbly liquid [7] proposes that the 
components of gas-liquid mixture have the same pressure and 
velocity, but differ in compressibility according to the 
individual equations of state. In contradiction to [6], [7] at the 
present paper a wide-range equation of state of water [5] is 
employed. This equation of state allows to account for 
nonlinear compressibility of liquid phase and provides good 
agreement with experimental data on the shock waves 
characteristics of gas-liquid mixture. 
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Consider the process of propagation of a shock wave in 
stationary bubbly liquid. To determine the parameters behind 
the front of the shock wave we use here the equations of 
conservation of mass, momentum and energy for the mixture 
written at the interface (correlation of Rankine-Hugoniot) [8] 
in the following form: 
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where subscripts 0 and 1 denote the parameters in front of and 
behind the shock wave. 

Consider the situation, when the internal energy of the 
mixture is the additive function of two components [1] 

lllggg eee αραρρ += .                       (5) 

Using the equation of conservation of energy in the case of 
shock compression of liquid and gas as single phases we can 
obtain from (1) and (2) the following equations: 
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Summarizing equations (6) we get 
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It is obvious, that equation (5) along with expression 
1=α+α gl  allows to derive equation (4) from (7). 

The noted prove is the reason to use the conservation law of 
energy for two-phase mixture (4), when it is true for the single 
phases (6) and the additivity condition (5) is fulfilled. This 
essentially simplifies the derivation of the parameters of shock 
waves in mixtures. As it stated in [9] earlier this problem was 
not considered elsewhere. On the basis on the proven 
statement we can derive expression for the velocity of the 
shock wave of two-phase mixture via velocities of separate 
components. 
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For the equation of state [5] the shock adiabat of one-
component mixture is determined in the form 
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Here and further the subscript i = 0 corresponds to the 
initial unforced state, so, if i + 1 = 1 the parameters of media 
behind the shock wave front are mentioned. If i = 1 then the 
parameters behind the front of the reflected shock wave are 
defined by index i + 1 = 2. 

For perfect gas the shock adiabat is used in the form [8]: 
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When we model the adiabatic compression of the gas 
fraction in the shock wave we use the Poisson adiabat for 
perfect gas [8]: 
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The volume concentration in the passing shock wave is 
derived from equations (3) and (4): 
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As a result of derivation we can obtain the parameters of the 
mixture after the reflection of the shock wave from the solid 
wall in the moving coordinates, where mass velocity equals 

1U : 
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In the moving coordinates the condition of reflecting shock 
wave from the solid boundary is:  
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In the fixed coordinates from (9) we can obtain the velocity 
of the reflected shock wave 
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The presented set of algebraic equations (3), (8) – (11) for 
calculating density, void fraction, pressure and velocity of the 
shock wave in gas-liquid mixture is solved numerically. 

B. The Analysis of Results of Simulation and Experiments  
Fig. 1 displays the velocity of the front of the passing 1D  

and reflected 2D  shock waves as functions of 0gα  for the 

fixed pressure 1p , which were calculated according to the 
models of adiabatic and shock compression of gas component. 

Fig. 1 The dependencies of velocities of passing (1) and reflected 
(2) shock waves from 0gα  at different 1p  for models of adiabatic 

(solid line) and shock (dashed line) compression of gas 
component. Experimental data [2] are presented for 1p  = 2.4 MPa 

for passing (□, ○, Δ) and reflected shock waves (●, ■, ▲) in the 
media with different viscosity 

 
The results of numerical simulation is in good agreement 

with experimental data for the passing shock waves. As for the 
reflected waves, in the experiments [2] the velocity of the 
front of the shock wave varies for different values of liquid 
viscosity, which depends on the content of glycerine in water. 
According to the experiments the increase of viscosity leads to 
the reduction of the velocity of the reflected shock wave. The 
model of shock compression is preferable to describe the 
experimental data for low-viscosity liquid. The experimental 
observations of reflected shock wave in the high-viscosity 
liquid is better described by the adiabatic compression model. 
The velocity of the reflected shock wave at pressure Ip ≈  
14.32 MPa, when the adiabatic model of compression of gas 
component was used, does not depend on the initial void 
fraction 0gα : in Fig. 1 this value is emphasized by line D ≈ 
1555 m/s.  

In Fig. 2  the solid line depicts the calculated dependencies 
of velocity of passing (1) and reflected (2) shock wave from 

1p  at given 0gα  by using the models of adiabatic 
compression of gas component.  

The obtained results correspond to the results of [10], where 
the gas-dynamical model was used. The velocity of the front 
of the passing shock wave decreases, when the initial gas 
concentration 0gα  arises. For the reflected shock wave we 
define more precisely the characteristic point (point I in Fig. 2 
at 1p ≈ 14.32 MPa), which was received first in [10] by using 
the gas-dynamic model. This point describes the change of 
regime of the shock wave flow: up to 14.32 MPa the increase 
of 0gα  leads to reduction of velocity 2D  by the compression 
of gas component. For large amplitudes there observed the 
contrary dependence: the greater is the initial void fraction 

0gα , the greater is the velocity of the reflected shock wave. 
This is closely connected with the amplitude of the pressure in 
the reflected shock wave and the decreasing of the influence 
of gas component. For large amplitudes of passing shock wave 
the governing factor is the nonlinear compressibility of the 
liquid. The calculations by using the model of shock 
compression of gas component (dashed line in Fig. 2) give 
smaller velocity of the reflected shock wave compared with 
velocity, which is obtained by using the adiabatic model. This 
happens due to the existence of restriction of degree of shock 
compression of gas component, which causes the increase of 
gas content in the reflected shock wave compared with 
adiabatic model. 

 

Fig. 2 The dependencies of velocities of passing (1) and reflected (2) 
shock waves from 1p at different 0gα  for models of adiabatic (solid 

line) and shock (dashed line) compression of gas component 
(nitrogen). The dash-dotted line marks the solution for the case of 

shock compression with linear equation of state 
 
When the pressure 1p  increases, the calculations show the 

growth of 2D  according to the shock compression model 
while the diminishing of initial gas content, which 
asymptotically approaches the velocity of shock wave in clean 
liquid. In Fig. 2 point II marks the pressure value 1p ≈ 20 MPa 

(which corresponds to 2p ≈ 66 MPa). When the pressure 
exceeds this value the nonlinear compressibility of liquid 
becomes the dominant factor forcing the velocity 2D  
compared with calculations of shock compressibility of water 
by using the linear equation of state.  
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Fig. 3 The ratio 12 pp in the reflected shock wave as function of 
p1 for different 0gα . The calculations are made by using the 

models of adiabatic (solid line),  shock (dashed line) and isothermal 
(dash-dotted line) compression of gas component. Line II marks 
the limit of the compression according to the shock compression 

model. The experimental data are displayed by symbols:   [2];  , 
■,▼ [3] 

 
In Fig. 3 the calculated coefficient of reflection 12 pp is 

presented as function of 1p . The dotted line II displays the 
degree of reflection of a shock wave in nitrogen, which is the 
asymptote for the degree of reflection of gas-liquid mixture 
(water-nitrogen) at the increase of initial void fraction. The 
additional fragment in Fig. 3 shows the results of calculations 
according to the model of isothermal compressibility of gas 
component (dash-dotted line) and experimental data from [2] 
and [3]. Calculations show the growth of pressure in the 
reflected shock wave with increase of 0gα  and its reduction 

with decrease of 1p . The ratio 12 pp  according to adiabatic 
model in the reflected wave is greater, than in the model of 
shock compression, for the same 0gα . For 0gα = 0.05 the 
maximum value of coefficient of reflection is plotted in the 
case of isothermal ( maxp1 ), shock ( maxp2 ) and adiabatic ( maxp3 ) 
models of compression of gas component. The experimental 
data [3] for 0gα = 0.02 and 0gα = 0.05 are in good agreement 

with calculated curves. For ≈1p 1.1 MPa the experimental 
points lay below the line corresponding the isothermal model 
of gas phase compression in the mixture. At higher values of 

1p  the experimental points shift closer to the curve, which is 
obtained by using the adiabatic assumption for gas component 
up to 511 .p = MPa. At pressures 1p > 2.0 MPa the model of 
shock compression gives the best approximation of 
experimental data (Fig. 3 for 0gα = 0.04 [2]). For small gas 
contents ( 0gα = 0.005) both the models gives the similar 
results, which correspond to the experiments [3].  

III. THE AMPLIFICATION OF A SHOCK WAVE IN A CHANNEL 
OF VARIABLE CROSS SECTION FILLED WITH LIQUID 

CONTAINING EXPLOSIVE BUBBLES  

A. The Problem Formulation 
The liquid, which contains bubbles of mixture of 

chemically active gases, can be treated as a high explosive 
matter, where detonation waves can occur with amplitude of 
several hundreds of atmospheres [11]. Such the explosive can 
be efficiently used in the industrial technologies for a short 
time increase of the pressure in local zones, but the risk of 
occurrence of accidents is very high because of possibility of 
self-burning. 

In [12] the problem of influence of the dynamics of gas 
bubbles with chemically active mixture inside on the 
contraction of vapor bubbles in deuterated acetone has been 
solved in the presence of a shock wave in the narrowed 
channel. It was observed that the shock wave initiates the 
exothermal reactions inside the gas bubbles, its amplitude 
increases and causes the supercompression of vapor bubbles. 

At the present paper the research of a compression wave 
propagation in liquid with explosive bubbles is studied for a 
round tube of length L  and variable cross section ( )xS . To 
solve the non-stationary problem the model from [12] is used, 
in the absence of vapor bubbles: 

( ) ( ) ,uS
x

S
t LLLL 0=

∂
∂

+
∂
∂ ραρα                      (12) 

( ) ( ) 0=
∂
∂

+
∂

∂ nuS
xt

nS ,           (13) 

( ) ( ) Σ−
∂
∂

−=
∂
∂

+
∂
∂ τραρα

x
p

SSu
x

uS
t

l
LLLL

2 ,     (14) 

where u is the velocity of gas-liquid flow, n  is the number of 
bubbles in a unit volume, Sπ2=Σ  is the perimeter of cross 
section, τ  is the tension coefficient [12]. Under the influence 
of variable pressure the bubbles oscillate, that change the local 
volume concentration of gas in the mixture. 

B. The Results of Numerical Simulation 
A shock wave in the undisturbed liquid, which is in the 

dynamical equilibrium with gas bubbles, is initiated at the left 
ending of the tube by velocity jump up to value 1u  (simulation 
of go in piston). The shock wave can increase or go down 
depends on the parameters of bubbly liquid (radii and 
concentration of bubbles) and the geometric characteristics of 
the channel ( )xS . 
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Fig. 4. The spatial distribution of liquid pressure (a), gas temperature 
(b) and bubble radius (c) for the time moments 0.1 ms (curves 1), 0.4 

ms (curves 2) and 0.7 ms (curves 3) at propagation of a detonation 
wave in the tube of constant cross section. Comparison between 

experimental (dots) and calculated (solid line) distributions of liquid 
pressure in time for the fixed cross section of the tube (d). 

 
In Fig. 4 the spatial profiles of liquid pressure lp , gas 

temperature gT  and bubble radius a  at different time 
moments are presented along the tube of constant cross 
section, which contains liquid with gas bubbles. The inner of 
bubbles consists of the mixture of acetylene (С2Н2) and 
oxygen (О2). The results are obtained for the following 
parameters of the problem [13]: 21 =u  m/s, 00400 .g =α , 

410 .a =  mm, 100 .=p  MPa, 3
0 10=lρ  kg/m3, 2930 =T  K, 

21052 −⋅= .gλ  kg·m/(s3·K), 1=L  m, tube diameter 10.d = m.  

According to graphics the detonation wave propagates as an 
impulse of high pressure (~7 MPa) and temperature (~5000 
K), which is pursued by oscillating wave. The amplitude of 
detonation wave achieves its maximum value after 0.3 
milliseconds from the beginning of piston action, the 
velocities of the front impulse and oscillating wave are 1000 
and 700 m/s correspondingly. In Fig. 4d the comparison 
between the calculations and experimental data from [13] is 
presented for time evolution of pressure during the passing of 
the detonation shock wave. A good correlation between 
experimental and numerical data is observed. 

 

Fig. 5 The maximum pressure in the detonation wave (a) and the 
velocity of its front (b) as functions of initial volume concentration of 

gas 0gα . ● – constant cross section, ■ – expanding channel, ▲ – 
narrowed channel 

 
In Fig. 5 the dependencies of maximum pressure in the wave 

and velocity of its propagation D  from the volume 
concentration 0gα  are plotted for three different configurations 
of the tube: 
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where =L 1 m, == 10 dd 0.1 m (constant cross section), =0d
0.2 m, =1d 0.05 m (narrowed channel), =0d 0.05 m, =1d 0.2 
m (expanding channel). 

The geometry of the channel essentially influences on the 
maximum amplitude of the detonation wave for 310−≤gα : the 
maximum value is achieved for narrowed channel, the 
minimum value corresponds to the expanding channel. For 
large void fraction 2

0 10−=gα  the amplitude of the wave is 
approximately the same for three different configurations of the 
tube. The velocity of the detonation wave also depends on the 
geometrical characteristics of the tube, but this dependence is 
rather weak. 
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IV. THE PROPAGATION OF COMPRESSION WAVES IN BUBBLE 
LAYERS OF LIMITED SIZE 

A. The Problem Formulation 
Suppose that in the region filled with liquid a cylindrical 

bubble layer exists, which is situated in parallel direction to 
the axis z  (the longitudinal size is much greater than its 
transversal size). Consider two-dimensional wave 
perturbations. Such the perturbations arises, for instance, at 
plain slash on the liquid with bubble layer of limited size. 

Let us use the set of equations of conservation of mass, 
momentum, energy and bubble concentration in the bubbly 
liquid supposing the equal velocities of liquid and gas [14]: 
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where γ  is the ratio of specific heats for the gas, ip  is the 

phase pressure, 0
iρ  is the reduced density of phases, q  is the 

intensity of heat exchange [14], w is the radial velocity of a 
bubble. The velocities u  and v  are directed along the axes x  
and y . Subscripts li = , g  mark the parameters of liquid and 
gas phases correspondingly. 

To describe the radial dynamics of a bubble, following the 
assumption made in [15], we shall suppose that AR www += , 
where Rw  is described by Rayleigh-Lamb equation, and Aw  
is defined from solving of the problem of spherical unloading 
on the sphere surface of radius a  in the moving liquid in the 
acoustic assumption: 
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where lν  is the kinematic viscosity of liquid, lC  is the speed 
of sound of liquid ( 1500=lC m/s). 

We shall suppose that the liquid is the acoustically 
compressible and the gas is perfect: 

)( 0
0

02
0 llll Cpp ρ−ρ+= , ggg RTp 0ρ= ,           (17) 

where R  is the gas constant. Here subscripts 0  denote the 
parameters of undisturbed state.  

The set of equations allows to describe the dynamics of 
waves with high gradients, when the bubble compression is 
driven not only by inertia of liquid, but also by acoustic 
unloading on the bubbles surface via liquid compressibility. In 
addition if 0=gα  we can derive the wave equation from this 
set of equations for acoustically compressible liquid. When we 
investigate the interaction of the waves in clean liquid this fact 
allows to use through-type methods of calculation. 

The set of equations (15)–(17) was solved numerically by 
explicit scheme. This scheme does not need for artificial 
viscosity, because the equations contain natural dissipation 
due to phase transfer and acoustical effects [16].  

B. The Results of Numerical Simulation 
In Fig. 6 the effects of nonlinearity and two space 

dimensions are illustrated for the wave impulse in the form: 
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where 0p  is the initial pressure, 0pΔ  is the pressure impulse 
amplitude, *t  is the duration of the impulse, 0t  is the 
parameter, which defines the width of initial impulse. The 
impulse acts through the boundary 00 =x  and propagates into 
the channel filled with water, which contains an air bubble 
layer near the back ending of the calculation region.  

In the numerical simulation the following parameters were 
used: 3

0 10−=a  m, 100 .=p  MPa, 30
0 10=ρl  kg/m3, 

3000 =T  K, 1006=gc  J/(kg·K), 21062 −⋅=λ .g  kg·m/(s3·K). 
The frontal influence of the pressure impulse with time 

width 410−=*t  s on the solid wall, which is partly covered 
with bubble layer, is studied. We shall suppose, that the 
bubble layer is positioned in the middle of the wall. The 
parameters of the calculated region are: 050.== yx ll  m, 

5.0=xL  m, yL = 95.0  m. The sensor D  is placed on the wall 
behind the layer and has the coordinates 500 .=x  m, 

47500 .=y  m. The dash-dotted line corresponds to the case, 
when the bubble layer is absent. The solid and dotted lines 
denote the volume concentration of gas in bubble layer 

2
0 10−=αg  and 310−  correspondingly. 

Fig. 6 shows that bubble layer of limited size essentially 
decreases the amplitude of the impulse impact on the wall. 
The impulse of initial amplitude 300 .=Δp MPa after passing 

the bubble layer with volume concentration 2
0 10−=αg  ( 310− ) 

has the amplitude 050.  MPa ( 20.  MPa). In the absence of 
bubble layer the impulse has the amplitude approximately 60.
 MPa. The presence of bubble layer increases the duration of 
impulse impact on the wall. 
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Fig. 6 The frontal influence of pressure impulse on the wall, which is 
partly covered by bubble layer 

 
Fig. 7 illustrates the compression wave propagation, which 

is caused by instantaneous pressure jump at the boundaries 
00 =x  and 00 =y . The boundary conditions are:  

00
00 pp)x,t(p)y,t(p Δ+== . 

To model this problem we consider the evolution of waves 
in square region ( 5.1== yx LL  m), filled with water, 
accounting for the presence of the bubble layer of squared 
form ( 050.ll yx ==  m). The other parameters are the same as 
in Fig. 6. The oscillograms in Fig. 7 a  correspond to the 
sensor data, which is placed in the middle of bubble layer. The 
solid and dotted lines describe the situations, when the 
pressure waves propagate in the liquid with bubble layer and 
in the clean liquid. The dash-dotted line corresponds to the 
situation, when the pressure impulse is initiated only at one 
boundary ( 00 =x ). For visualization in Fig. 7b  the profile of 
pressure at time moment 80.=t  ms is presented.  

As it can be seen from Fig. 7 a  (dotted line) the maximum 
pressure of about 0.3 MPa is achieved at the bisector of two 
boundaries, when the pressure impulse of 0.1 MPa is initiated 
at these boundaries. The sensor detects the rising of pressure 
up to 30.  MPa, and afterwards this value falls down to 20.
 MPa as the sum of pressure impulses at the boundaries has 
the same value. 

Consider the realization of such the wave picture more 
precisely. After instantaneous jump of pressure from 10.  MPa 
up to 20.  MPa at the boundaries 00 =x  and 00 =y  the 
propagation of waves start in the direction of the boundaries 

xLx =0  and yLy =0 , and the total amplitude reaches the 
maximum value of 30.  MPa. Simultaneously from the point 
of convergence of the two waves the compression waves start 
to propagate in the direction of boundaries 00 =x  and 00 =y  

Fig. 7 The evolution of two wave impulses impacting via related 
boundaries 00 =x  and 00 =y  

 
Reflecting from these boundaries, as they are the free 

boundaries, the secondary waves drop the pressure amplitude 
from 30.  MPa down to 20.  MPa. In the case than the middle 
of the channel is occupied by the bubble layer the sensor at 
this point detects the impulse of pressure, which amplitude is 
two times greater than the pressure in the absence of bubble 
layer. The sensor detects the rarefaction wave passing after 
compression wave. In the case, when the wave is originated 
from the single boundary 00 =x  and the bubble layer is put in 
the middle of the region (dash-dotted line in Fig. 7 a ), the 
sensor detects the pressure amplitude, which equals the 
amplitude of pressure, arising from two initial impulses in the 
absence of bubble layer. 

 
V. CONCLUSION 

The investigation of characteristics of passing and reflected 
shock waves in gas-liquid media shows that the model of 
shock compression of gas component gives the best 
approximation with experimental data on reflection of shock 
waves in slight viscosity liquid. The experiments with large 
viscosity are better described by the model of adiabatic 
compression. For a small gas contents the shock compression 
and adiabatic models give the similar results, which are in 
good agreement with experimental data.   
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The characteristic point for the velocities of reflected waves 
at pressure р1 =14.32 MPa is obtained for the adiabatic 
compression model, which defines the constant value of 
velocity of the shock wave front and does not depend on the 
initial void fraction. The influence of nonlinear 
compressibility of liquid becomes important for the reflected 
wave at р1> 20 MPa. 

It was obtained that the detonation wave arises in the liquid, 
which contains the explosive bubbles. The detonation wave in 
the tube consists of single wave with high amplitude and 
subsequent oscillating wave. The amplitude increases with 
growth of the void fraction up to 10–3. At large volume 
concentration it stops to increase, and in the case of expanding 
channel the amplitude even drops. 

As a result of research of compression waves propagation in 
two-dimensional region it was found that the bubble layer can 
drop or rise the amplitude of the initial pressure impact. The 
type of influence of bubble layer on the amplitude of the 
pressure impulse depends on the size of bubble layer, void 
fraction and bubble radius. The bubble layer, which is placed 
close to the solid wall, influences the wave propagation in 
some distance.  
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