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Abstract—Many recent electrophysiological studies have 

revealed the importance of investigating meditation state in order to 
achieve an increased understanding of autonomous control of 
cardiovascular functions.  In this paper, we characterize heart rate 
variability (HRV) time series acquired during meditation using 
nonlinear dynamical parameters. We have computed minimum 
embedding dimension (MED), correlation dimension (CD), largest 
Lyapunov exponent (LLE), and nonlinearity scores (NLS) from HRV 
time series of eight Chi and four Kundalini meditation practitioners. 
The pre-meditation state has been used as a baseline (control) state to 
compare the estimated parameters. The chaotic nature of HRV during 
both pre-meditation and meditation is confirmed by MED. The 
meditation state showed a significant decrease in the value of CD and 
increase in the value of LLE of HRV, in comparison with pre-
meditation state, indicating a less complex and less predictable nature 
of HRV. In addition, it was shown that the HRV of meditation state 
is having highest NLS than pre-meditation state. The study indicated 
highly nonlinear dynamic nature of cardiac states as revealed by 
HRV during meditation state, rather considering it as a quiescent 
state. 
 

Keywords—Correlation dimension, Embedding dimension, Heart 
rate variability, Largest Lyapunov exponent, Meditation, 
Nonlinearity score.  

I. INTRODUCTION 
EDITATION is an ancient spiritual practice with a 
potential benefit on health and well-being [1], [2]. It is a 

holistic system of mind-body practice for mental and physical 
health. This practice incorporates multiple techniques 
including breathing exercise, sustained concentration, physical 
posture, and many more. Indeed, meditation is considered as 
an altered state of consciousness different from ordinary wake 
and sleep states. Recently, the electrophysiological studies 
have revealed the importance of investigating the state 
changes related to meditation in order to achieve increased 
understanding of physiology in general. In this direction, 
many studies have focused on the physiological effect of 
different meditation techniques to gain insight into the 
physiological prerequisites responsible for the improvement of 
health [3]-[10]. 

Various studies carried out with meditation practitioners 
have suggested a number of physiological changes. It is said 
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that during meditation, the body is under a hypometabolic 
state and controlled most of the time by parasympathetic 
nervous system [11], reduction or variability in heart rate [7], 
modifications in the concentrations of neurotransmitters [12], 
a drop in oxygen uptake as well as in carbon dioxide output 
[13], [11]. The use of meditation practice is becoming more 
popular to reduce stress, and effective as a complementary 
treatment for many disorders, such as hypertension, anxiety 
and insomnia [14], [15]. The meditation is associated with 
physiological signs of altered activation of autonomic and 
endocrine systems. This is evident from the studies of 
increased level of skin resistance and reduced levels of heart 
rate, blood-lactate level, cortisol, and respiration rate [16], 
[17], [12], [18].  

The meditation practice has improved the self-rated quality 
of sleep in older persons compared to a group receiving an 
ayurveda poly-herbal preparation and another wait-list control 
group [19]. Meditation practice has shown to reduce stress 
and increase feelings of calm [20]. In normal volunteers, 
meditation has shown reduced psychophysiological arousal 
based on a decrease in oxygen consumption [21], [22], and 
changes in heart rate variability suggestive of a shift towards 
vagal dominance [23], decreased occupational stress levels 
and baseline autonomic arousal [24]. Studies have shown that 
meditation practice can improve mood [25], [26], increase 
resilience to chronic and acute stress [27], [28], enhanced 
performance on a variety of cognitive [29], [30], psychomotor 
[31], [30], and physical [25], [32] tasks. 

Meditation is a complex physiological process which 
affects neural, psychological, behavioral, and autonomic 
functions, and is considered as an altered state of 
consciousness, differing from wakefulness, relaxation at rest, 
and sleep [33]-[35]. There are many evidences to the fact that 
meditation practice leads to functional changes in 
physiological states of humans [36]-[38], [12]. Most of the 
meditation techniques work by affecting the ANS, in turn 
regulating many organs and muscles, controlling functions 
such as the heart beat, sweating, breathing, and digestion. One 
possible way for meditation to act on autonomic activity is 
through respiration control. Respiration is one of the few body 
autonomic functions that can be controlled and can affect 
functioning of the ANS [39], [40]. Many meditation traditions 
consider breath, body and mind as linked, and thus have given 
the breath a central role in meditation practice. Slower 
respiration rate during meditation practice induces changes in 
the cardiovascular activity that corresponds to an increase in 
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the activity of restorative parasympathetic system [41]. This 
increased parasympathetic activity has also been assessed 
through the slowing down of basal heart rate in meditators 
[42], and the increased synchronization, or respiratory sinus 
arrhythmia (RSA), between the breathing cycle and the heart 
beat during meditation [43], [44]. The RSA corresponds to 
high variability in heart rate as heart rate becomes faster 
during inhalation and slower during exhalation. Slow 
breathing has also been associated with increased baroreflex 
sensitivity [45], [46]. Decrease in blood pressure is often 
reported after meditation practice in both healthy subjects and 
hypertensive patients [47], [48]. Improved control of blood 
pressure is usually considered as a sign of balance between 
parasympathetic and sympathetic activity. 

The analysis of heart rate variability (HRV), the variation of 
period between consecutive heart beats, provides valuable 
information to assess the autonomous nervous system (ANS). 
The HRV can be significantly affected by physiological state 
changes and many disease states. Hence, HRV analysis is 
becoming a major experimental and diagnostic tool. Its low 
cost, noninvasive nature and effectiveness encourages the 
development of new HRV analysis methods to broaden and 
improve its applications. 

The analysis of HRV is not an easy task due to its 
nonstationarity [49]-[51] and nonlinearity [52]-[54] nature of 
time series. Traditional HRV analysis methods are based on 
linear methods in the time, frequency, or time-frequency 
domain. And these methods have been extensively used to 
reveal fundamental control activity of sympathetic and 
parasympathetic activity of ANS. The spectral analysis has led 
to the identification of three fairly distinct spectral peaks: high 
(0.15-0.5 Hz), low (0.05-0.15 Hz), and very low (0-0.05 Hz) 
frequency bands. The very low frequency (VLF) band has 
been associated with thermoregulation [55], low frequency 
(LF) spectral power reflects sympathetic and vagal influences 
on cardiac control via baroreceptor-mediated regulation of 
blood pressure [56]. The high frequency (HF) power is a 
function of respiratory modulation of vagal activity [41].  

Many researchers have stressed on the importance of 
nonlinear techniques to study HRV [57]. This is because the 
cardiovascular system appears to be influenced by internal 
dynamics as well as from various external factors, which 
makes the system more dynamic and nonlinear. Generally, 
nonlinear dynamical analysis of time series involves 
estimation of dynamical invariants from the reconstructed 
attractor, such as, dimensions, Lyapunov exponents, and 
degree of nonlinearity. The classical nonlinear dynamical 
methods, such as correlation dimension [58], Lyapunov 
exponents [59], Poincare plots [60], various entropy measures 
[61]-[63], etc., have been used to quantify HRV dynamics. 
Several recent studies have used other nonlinear measures, 
including fractal dimension [64], approximate entropy [65], 
measures derived from symbolic dynamics and 1/f scaling 
[66], [67] to characterize HRV time series.  

Many algorithms have been proposed in the literature to 
estimate nonlinear dynamical parameters from experimental 

time series data. However, most of these require long time 
series to obtain reliable estimates of nonlinear measures. In 
real biological systems, including while practicing meditation, 
acquiring long stationary time series may not be possible due 
to various reasons. Hence, the methods which give robust 
estimation results for shorter data lengths are very much 
desirable. 

The nonlinear techniques, as mentioned above, have been 
widely used to study ANS in health as well as in various 
diseases. However, these methods have not been applied to 
study HRV during meditation. Even though there are some 
studies of HRV during meditation, those use linear spectral 
analysis techniques. These investigations have revealed that 
during meditation practices, there has been extremely 
prominent heart rate oscillations correlated with slow 
breathing [6], with amplitudes significantly greater than that 
measured before meditation, in the same individuals.  

In this paper, we discuss application of nonlinear dynamical 
techniques to quantify HRV time series derived during 
meditation. Major emphasis is made on two types of 
mediation techniques; Chi meditation (Chinese style) [90] and 
Kundalini Yoga meditation (Indian style) [91]. We compute 
minimum embedding dimension, correlation dimension, 
largest Lyapunov exponent, and nonlinearity scores, from the 
HRV time series of both meditation and control (pre-
meditation) state. We also aim to test the hypothesis that the 
nonlinear measures of HRV during meditation state would 
differ from those of control state.  

II. MATERIALS AND METHODS 

A. Minimum Embedding Dimension 
The first step in nonlinear dynamical analysis is 

reconstruction of attractor in the phase space, from scalar time 
series. For this purpose, Taken’s embedding theorem is used, 
which ensures reconstructed attractor to preserve all 
topological properties of the original attractor. If ix , 

1, 2,...,i N=  is the time series, then the time delay vectors 

in phase space are formed as 1 2[ , ,..., ]T
Ly y y y= , where the 

number of time delay vectors are ( 1)L N m τ= − − , and 
each time delay vector is expressed as 

( 1)( , ,..., )i i i i my x x xτ τ+ + −= , 1, 2,..., ( 1)i N m τ= − − , 

where m  is the embedding dimension and τ  is the time 
delay. 

Proper reconstruction of the attractor is guaranteed if the 
dimension of the phase space is sufficient to unfold the 
attractor. It is shown that an embedding dimension of 

2 1m d> +  will achieve this [68], where d is the dimension 
of the attractor. In most cases of the observed time series 
analysis, one neither has knowledge of d or m . There are 
many algorithms in the literature to estimate these quantities 
[69]-[73]. However, most of them have disadvantage of either 
being too subjective or computationally intensive. The method 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:5, No:9, 2011

399

 

 

proposed in [74] overcomes these difficulties and is suitable 
for short length time series also. More over, the method gives 
more reliable estimate of minimum embedding dimension 
(MED) even while the dimension of the system under 
consideration is sufficiently large. 

The scalar time series is embedded in m -dimensional 
phase space, and the nearest neighbor for each phase space 
vector ( )iy m  is found and its distance in both dimensions 

m and 1m +  are computed. The ratio of this distance is 
expressed as  

( , )

( , )

( 1) ( 1)
( , )

( ) ( )
i n i m

i n i m

y m y m
a i m

y m y m

+ − +
=

−
, 

1, 2,...,i N mτ= − , where .  denotes some measurement 

of Euclidian distance. In this analysis we have used maximum 
norm which is defined as 

0 1
( ) ( ) maxk l k j l jj m

y m y m x xτ τ+ +≤ ≤ −
− = − . The ( 1)iy m +  

is the thi  reconstructed vector with embedding dimension 
1m + . The ( , )n i m  is an integer in the range 

(1 ( , ) )n i m N mτ≤ ≤ −  such that ( , ) ( )n i my m  is the nearest 

neighbor of ( )iy m  in the m -dimensional reconstructed 

phase space, in the sense of distance . . The ( , )n i m  

depends on i and m . If ( , ) ( )n i my m  equals ( )iy m , then the 

second nearest neighbor is taken. 
If m  is qualified as an embedding dimension according to 

the embedding theorem, then any two points which stay close 
in the m -dimensional reconstructed space will be still close 
in the 1m +  dimensional reconstructed space. Such a pair of 
points is called true neighbors, otherwise they are false 
neighbors. Perfect embedding means that no false neighbors 
exist. Then the following quantity which is the mean value of 

all ( , )a i m  is computed as 
1

1( ) ( , )
N m

i
E m a i m

N m

τ

τ

−

=

=
− ∑ . 

The ( )E m  is dependent only on the dimension m and the lag 

τ . To investigate its variation form m to 1m + , we compute 
( 1)1( )

( )
E mE m

E m
+

= . The 1( )E m  stops changing when 

m is greater than some value 0m , if the time series comes 

from an attractor. Then 0 1m +  is the minimum embedding 
dimension which accommodates the attractor completely. The 
saturation characteristics of 1( )E m  is one indicator of 
presence of chaos in the time series. 

For random time series 1( )E m  will never attain a 
saturation value as m  is increased. However, because of 
limited data samples and practical computations, it may be 

difficult to assess whether 1( )E m  is slowly changing or 
stopped changing. In such situations, another quantity which 
is useful in distinguishing deterministic signals from 
stochastic signals is as 

*
( , )

1

1( )
N m

i m n i m m
i

E m x x
N m

τ

τ ττ

−

+ +
=

= −
− ∑ . Its variation 

from m  to 1m +  is computed as 
*

*

( 1)2( )
( )

E mE m
E m

+
= . 

Since for random data future values are independent of past 
values, 2( )E m  will be equal to 1 for any m , whereas for 
deterministic signals, there exist some m  such that 

2( ) 1E m ≠ . It is advisable to determine both 1( )E m  and 

2( )E m to ensure presence of chaos. In the present study, we 
compute value of both of the quantities from epochs of HRV 
time series. The algorithm is particularly chosen because it is 
robust against length of time series, and gives reasonably good 
estimation even for high dimensional systems. 

B. Correlation Dimension 
The correlation dimension (CD) gives an estimate of system 

complexity. A dynamical system having strange attractor will 
have non-integer value for CD. Grassberger and Procaccia 
(GP) proposed an algorithm to compute CD from scalar time 
series [70], [75]. The disadvantage of GP algorithm is that it 
assumes the data is generated by a finite dimensional attractor 
and then seeks to determine its dimension. Hence, we almost 
always expect to get a finite fractional CD estimate from this 
algorithm. There are other methods to estimate correlation 
dimension based on kernel algorithms [76], [77]. 

Let 1{ }L
t ty =  be an embedding of a time series 1{ }N

i ix =  in 
m . The correlation function is defined by 

1

0
( ) ( )

2L i j
i j L

L
C I y yε ε

−

≤ < ≤

⎛ ⎞
= − <⎜ ⎟

⎝ ⎠
∑ , where ( )I q is the 

indicator function, which has a value of 1 if condition q  is 

satisfied and 0 otherwise, and .  is distance function in m . 

The sum ( )i ji
I y y ε− <∑  is the number of points 

within a distance ε  of jy . If  the points iy  are distributed 

uniformly within an object, this sum is proportional to volume 
of intersection of a sphere of radius ε  with the object, and 

( )LC ε  is proportional to the average of such volumes. Then 

( ) cd
LC ε ε∝ , where cd is the dimension of the object. Then 

the CD is defined as  
0

log ( )lim lim
log

L
c L

Cd
ε

ε
ε→ →∞

= . Since the 

observation time series 1{ }N
i ix =  are contaminated by noise, 

one cannot know 1{ }L
t ty =  precisely. Therefore, computation 
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of ( )i jI y y ε− <  is actually somewhat fuzzy. One can 

replace the hard indicator function with a continuous one, 

such as Gaussian basis functions 

2

exp
4
i jy y

ε

⎛ ⎞− −⎜ ⎟
⎜ ⎟
⎝ ⎠

. The 

method is called Gaussian kernel algorithm. The 
generalization of correlation integral is as follows: 

2

2
0 0

1 1( ) exp
1 4

e i jd
L

i L j i L

y y
T h

L L h≤ ≤ ≤ ≠ ≤

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟−

⎝ ⎠⎝ ⎠
∑ ∑ , 

where h  is analogous to ε , ed  is the embedding dimension. 

It is possible to use any other functions (.)ϕ  as kernel 
function, provided they should have finite (bounded) support. 
For any such function, it can be shown that the following 
correlation dimension scaling law holds ( )e cd d

LT h h∝ . By 

using 2( ) exp( / 4)q qϕ = − , we get 
/ 22 2 2

2 2( )
ce

e e

dd
d K d

L
e

h hT h e
h d

τ σϕ
σ

− ⎛ ⎞⎛ ⎞ +
≈ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠

, when 

2 2 0h σ+ →  and ed → ∞ . In the above equation K  is 
the correlation entropy, τ  is the time delay. The noise level 

/n sσ σ σ= , where nσ  is the standard deviation of the 

additive Gaussian noise in the signal, and sσ  is the standard 
deviation of the observed signal (including the noise 

component). If 0σ > , 2 2 0h σ+ →  does not hold. By 

estimating ( )ed
LT h  for a range of embedding dimensions ed , 

one can estimate each of the parameters cd , K , and σ , 
simultaneously. This is relatively robust technique which 
correctly accounts for noise when the noise is Gaussian and 
additive. This method is although technically more complex, 
in practice, more reliable and less prone to misinterpretation. 
We have computed CDs of epochs of HRV time series for 
various values of embedding dimension, and compared the 
values for pre-meditation and meditation states.  

C. Measure of Predictability 
Lyapunov exponents (LE) are used to characterize attractor 

of a dynamical system. The LEs quantify sensitivity of the 
system to initial conditions and are related to average rate of 
divergence or convergence of nearby trajectories in phase 
space. An m -dimensional dynamical system has m  LEs, of 
which some of them may be positive. The set of all LEs is 
called Lyapunov spectrum, and presence of positive LE is an 
indication of chaos. However, a completely predictable system 
(such as periodic signals, etc) has zero LE, whereas chaotic 
systems have at least one positive LE. In most of the 
applications, it is sufficient to estimate only largest LE (LLE) 

instead of Lyapunov spectrum. The LLE gives an idea about 
prediction zone of the time series under consideration. 

Computing Lyapunov spectrum or LLE is straight forward 
when differential equations governing the system are known. 
However, in experimental set up, the governing equations of 
the system are not known, and one has only observation time 
series of the experiment. Wolf et al [78] proposed a method to 
estimate LLE. However, the method has a deficiency of 
orientational problem, since one has to successively replace 
nearby orbits, minimizing the orientational change. The 
method proposed by Sato et al [79] and is further improved by 
Rosenstein et al [80, overcome some of these problems.  

After reconstruction of the attractor dynamics in a phase 
space, the number of phase space points is 

( 1)L N m τ= − − .  The algorithm locates the nearest 
neighbor of each point on the trajectory. The nearest neighbor, 

îy , is found by searching for the point that minimizes the 

distance to the particular reference point, iy . That is 

ˆ
ˆ(0) min

i
j i iy

d y y= − , where (0)jd  is the initial distance 

from the thj point to its nearest neighbor, and .  denotes the 

Euclidian norm. 
An additional constraint is imposed that nearest neighbors 

have a temporal separation greater than the mean period of the 

time series. That is ˆj j mean− >  period . The mean 

period can be computed from the power spectrum as the 
reciprocal of mean frequency. Each pair of neighbors is 
considered to be nearby initial conditions for different 
trajectories. Then the LLE is estimated as mean rate of 
separation of the nearest neighbors.  

1
1

( )1 1( ) ln
(0)

L i
j

j j

d i
i

i t L i d
λ

−

=

=
Δ − ∑ , where tΔ  is the 

sampling period of the time series, ( )jd i is the distance 

between thj pair of nearest neighbors after i discrete time 

steps ( i tΔ  sec), and L is the number of phase space points. 
Since the equation converges slowly, then an alternate form is 
proposed. 

1
1

( )1 1( , ) ln
( )

L k
j

i j

d i k
i k

k t L k d i
λ

−

=

+
=

Δ − ∑ , k is held 

constant, and 1λ  is estimated by looking the plateau region of 

1( , )i kλ  with respect to i . This location of plateau is some 

times problematic and very subjective and hence estimated 1λ  
is unreliable many times. This difficulty is due to the 
normalization of ( )jd i .  

In general, the LLE can be defined using the equation 
1( ) td t Ceλ= , where ( )d t  is the average divergence at time 
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t  and C is a constant that normalizes the initial separation. If 

the thj pair of neighbors diverge approximately at a rate given 

by the largest LE, then 1 ( )( ) i t
j jd i C eλ Δ≈ , where jC is the 

initial separation. By taking log of both sides of this equation, 
we get 1ln ( ) ln ( )j jd i C i tλ≈ + Δ . This equation represents 

a set of approximately parallel lines (for 1, 2,...,j L= ), each 

with slope approximately proportional to 1λ . The average line 

can be defined by 
1( ) ln ( )jz i d i
t

=
Δ

, where .  denotes 

average over all values of j . The LLE is estimated using a 
least-square fit to this average line. This process of averaging 
helps to calculate accurate values of 1λ  using small, noisy 

time series. The LLE 1λ  is extracted from a least square fit to 

the longest possible linear region of ( )z i  versus i  plot. The 
presence of smooth linear region indicates positive LE. 

The method is easy to implement, and computationally fast 
because it uses a simple measure of exponential divergence. 
This method gives more accurate values even for small data 
sets because it takes advantage of all the available data. The 
time evolution of logarithmic divergence is calculated and 
slope of the scaling region (LLE) is computed from epochs of 
HRV time series for both pre-meditation and meditation 
states. 

D. Measure of Nonlinearity 
Detection of nonlinearity in a time series needs a check for 

the presence of nonlinear time correlations among the time 
series values. The algorithm used in this study is based on the 
analysis of the extrema in time series. The theoretical and 
numerical results suggest that the sequence of extrema of a 
time series contains dynamical information on the process 
responsible for its generation. 

It has been shown that a polar singularity corresponds to 
each local maximum or local minimum of the real time 
solution. Regular distribution of singularities reflects the 
corresponding periodic behavior of the real time solution [81]. 
The second condition arises from the general property of a 
stochastic process, which states that given a mean square 
differentiable stochastic process ( )w t , the expected number 
of its extrema for unit time is contained in the joint density 
function of ( )w t , ( )w t′ , and ( )w t′′  [82]. If the system is in 
a chaotic regime, then the corresponding sequence of 
singularities in the complex time plane associated with the 
local extrema becomes very irregular. It was also shown that 
the distances of these singularities from the real time axis, that 
is the position of these extrema are related to real values of the 
solution [83], [84]. 

The two algorithms proposed by Di Garbo et al extract 
these features such as number of extrema and length of broken 
line connecting these extrema as suitable statistics. The pattern 

of singularities in the complex time plane (PSC) algorithm 
uses length of broken line connecting these extrema. The 
number of extrema for unit time (NET) algorithm uses number 
of extrema in the unit time as statistics. Then, surrogate test is 
performed based on these statistics on extrema to account for 
Gaussian linear stochastic process. The significance of the test 
gives an estimation of its deviation from linearity. The 
procedure of nonlinearity test involves measurement of the 
above mentioned statistics for both original and surrogate data 
followed by statistical discrimination between them.  

A larger value of nonlinear score means system is more 
nonlinear or it is deviating from a linear process which share 
many properties of system under consideration like mean, 
standard deviation, autocorrelation, and power spectrum, by a 
greater extent. We make use of methods proposed by [85].  

Two types of surrogates are used in this analysis, Gaussian 
scaled (GS) and phase randomized (PR) surrogates [86]. The 
GS surrogates preserve histogram of amplitudes and 
approximately, the linear time correlations of the original time 
series. The PR surrogates preserve autocorrelation function 
and hence power spectrum. The steps involved in generating 
GS surrogates of time series are: (i) histogram transformation, 
(ii) Fast Fourier transform (FFT), (iii) phase randomization, 
(iv) inverse FFT, (v) inverse histogram transformation. 
However, in generating PR surrogates, only steps (ii) to (iv) 
are used.  

In the PSC algorithm, the local maxima of the given time 
series are located and length of the line connecting these 
maxima is computed. The significance is computed as  

s
psc

s

L L
S

σ
−

= , where L  is the broken length 

corresponding to original and sL is the mean of the broken 

line lengths ( )sL i , 1, 2,...,i M= corresponding to 

M surrogates, and sσ is the standard deviation of lengths 

( )sL i . In the NET algorithm, number of extrema for unit time 
in both original and surrogate time series is determined, and 
the statistic is computed as  

o s
net

s

N N
S

σ
−

= , where oN is the number of extrema in 

the original signal and sN  is the mean of ( )sN i , 

1, 2,...,i M= corresponding to number of extrema in the 

surrogate set, and sσ is the standard deviation of ( )sN i . The 

values of pscS and netS  for both GS and PR surrogates are 

computed. Both PSC and NET algorithms are used to 
calculate NLS of epochs of HRV time series, considering both 
Gaussian scaled and phase randomized surrogates. This has 
been done for pre-meditation and meditation states of both 
Chi and Kundalini systems of meditation.  
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Fig. 1. Calculation of minimum embedding dimension (MED) values of HRV time series, the values E1 and E2 are plotted against the embedding dimension, for 
pre-meditation and meditation conditions of Chi meditation. The plot shows presence of chaos in HRV during Chi meditation. 
 

 
 
Fig. 2. Calculation of minimum embedding dimension (MED) values of HRV time series, the values E1 and E2 are plotted against the embedding dimension, for 
pre-meditation and meditation conditions of Kundalini meditation. The plot shows presence of chaos in HRV during Kundalini meditation. 
 

E. Subjects and Meditation Protocols 
In this study, two meditation techniques have been studied; 

(i) Chinese Chi meditation and (ii) Kundalini Yoga 
meditation. The meditation practitioners of both groups were 
in good general health, and they did not follow any specific 
exercise routines. From the 8 Chi meditators (5 females and 3 
males, age range 26-35 years, mean age 29 years), 10 hours of 
Holter ECG recordings have been obtained. Each of the 
practitioners practiced one hour of meditation. During this 
session, they sat quietly, listening to the taped guidance of the 
Yoga Master. They were instructed to breathe spontaneously, 
while visualizing the opening and closing of a perfect lotus in 
the stomach. The meditation session lasted for about one hour. 
The 4 Kundalini Yoga meditators (2 females and 2 males, age 
range 20-52 years, mean age 33 years), wore Holter monitor 
for one and a half hours. 15 minute of base line quiet 
breathing were recorded before the one hour of meditation. 
The meditation protocol consisted of a sequence of breathing 
and chanting exercises, performed while seated in a cross 
legged posture. 

Practitioners, in good general health condition, have been 
selected and ECG signals are recorded. The Holter recordings 

have been manually verified, and outliers deleted. The data is 
grouped into pre-meditation control and meditation, and is 
available online in the PhysioNet data archives [6]. 
Instantaneous heart rate time series are derived by taking the 
inverse of each successive inter beat intervals.  

Prior to the analysis, all HRV time series are made 
uniformly sampled to have 4 samples per second, using cubic 
spline interpolation technique, and then digitally filtered with 
a band pass filter of 0.01-0.57 Hz, in order to remove high 
frequency noise which is out of the band of interest. The pre-
processed HRV time series are then segmented into 3 minute 
epochs (3x60x4 = 720 samples), and then each of the epochs 
are subjected to nonlinear dynamical analysis. The nonlinear 
dynamical nature of HRV epochs is verified using Cao’s 
method, and then nonlinear dynamical measures, such as 
correlation dimension, LLE, and nonlinearity scores are 
estimated for each of the epochs and averaged over the entire 
length of HRV time series. The extracted parameter values are 
group tested for statistical significance. Normal distribution of 
the values of nonlinear measures is assessed using the 
Shapiro-Wilks test for normality. Since many of the parameter 
values are non-normally distributed, comparison of nonlinear 
parameter values between meditation and pre-meditation  
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Fig. 3. Correlation dimension (CD) of HRV time series computed using Gaussian kernel algorithm, after embedding the series using different embedding 
dimensions. The CDs are computed for pre-meditation and meditation conditions of (a) Chi meditation, and (b) Kundalini meditation. 
 
control is carried out using Kruskal-Wallis test, and a 
probability value of 0.05 is accepted as significant, and 
marked as ‘a’ in the tables.  

III. RESULTS 
The parameters E1 and E2 are computed from the epochs of 

HRV time series and averaged across the subjects, for each of 
the meditation cases. The variation of parameters E1 and E2 
with respect to embedding dimension are shown in Fig. 1 and 
2, respectively, for Chi and Kundalini meditation. It is clear 
from the figures that the parameter values attain saturation for 
higher values of embedding dimension. From the Fig. 1(a) and 
2(a), it is clear that irrespective of the meditation type, the 
MED value reaches a constant value which can be taken 5, for 
both pre-meditation and meditation states. Looking at the 
values of E2 from the Fig. 1(b) and 2(b), E2 is not constant for 
all embedding dimension, and there are many embedding 
dimensions for which the value of E2 is not equal to one, 
indicating the chaotic nature of HRV time series under 
consideration.  

Table 1 summarizes the CD values (mean, SD), for pre-
meditation and meditation states and the p-values of Kruskal-
Wallis test, for Chi meditation. The same is depicted in the 
Table 2 for the case of Kundalini meditation. The average 
value of CD is plotted for various embedding dimensions in 
Figure 3. The pre-meditation state has lower CD values than 
the meditation state, for embedding dimensions greater than 4, 
with significant differences between the two states. The result 
suggests that the HRV during meditation state is less complex 
than during control state.  

In order to estimate LLE, the time evolution of log of 
divergence is plotted as shown in Fig. 4. The box plot of 
estimated LLEs is shown in Fig. 5, and results are summarized 
in the Table 3. There is a significant increase in the value of 
LLE for meditation state compared to pre-meditation state,  

 
 

TABLE I 
AVERAGE CORRELATION DIMENSION VALUES IN VARIOUS EMBEDDING 

DIMENSIONS FOR HRV TIME SERIES OF CHI MEDITATION 
 

  Pre-meditation Meditation Statistical analysis 

ED mean std mean std Chi-sq p-value 

2 0.2333 0.8399 0.5711 0.7290 2.8235 0.0928 
3 1.1298 0.0555 1.1779 0.0421 3.1875 0.0742 
4 1.4964 0.0494 1.4610 0.0896 0.3970 0.5286 
5 1.7495 0.0581 1.6519 0.1166 2.8235 0.0928 
6 2.0152 0.0835 1.8328 0.1667 5.3382 0.0208a 
7 2.2421 0.1093 2.0010 0.2106 5.3382 0.0208a 
8 2.4560 0.1289 2.1643 0.2570 5.8346 0.0157a 
9 2.6425 0.1338 2.3117 0.2812 5.8346 0.0157a 
10 2.8158 0.1239 2.4500 0.3002 5.3382 0.0208a 
11 2.9699 0.1365 2.5827 0.3168 5.3382 0.0208a 
12 3.1153 0.1384 2.7051 0.3238 6.3529 0.0117a 
13 3.2549 0.1463 2.8170 0.3245 7.4559 0.0063a 
14 3.3744 0.1591 2.9159 0.3173 8.6471 0.0032a 
15 3.4659 0.1718 2.9935 0.2962 8.6471 0.0032a 
16 3.5166 0.1729 3.0542 0.2715 8.0404 0.0045a 
17 3.5535 0.1858 3.1026 0.2415 9.2757 0.0023a 
18 3.5382 0.1832 3.1390 0.2093 8.6471 0.0032a 
19 3.5002 0.1793 3.1499 0.1693 8.0404 0.0045a 
20 3.4315 0.1532 3.1497 0.1359 8.0404 0.0045a 
 

which states that the HRV time series during meditation is less 
predictable than that during pre-meditation state. 

The nonlinearity scores (NLS) estimated from HRV time 
series using PSC and NET algorithms, considering both GS 
and PR surrogates, are shown in Table 4 and 5 respectively 
for Chi and Kundalini meditation. It is observed that the NLS 
are higher for meditation state than that for pre-meditation 
state. The results are significant in NET algorithm (p < 0.05). 
Even though, the NLS using Gaussian scaled PSC algorithm 
has not  
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Fig. 4. Plot of <ln(divergence)> versus time to compute LLE of HRV time series. The LLE is estimated by calculating slope of the line after least square fit. The 
curves are shown for pre-meditation and meditation conditions of (a) Chi and (b) Kundalini meditation. 
 

 
 

Fig. 5. Box-plot of LLE of HRV in pre-meditation and meditation conditions, (a) Chi meditation, (b) Kundalini meditation. 
 
shown as much difference as for NET algorithm in the case of 
Kundalini meditation, the values are comparable. 

IV. DISCUSSION 
In this study, we have analyzed HRV time series, derived 

while performing two types of meditation practices, using 
nonlinear dynamic techniques. The meditation practices 
considered here are Chi meditation and Kundalini Yoga 
meditation. The nonlinear dynamic parameters such as NLS, 
MED, CD, and LLE are derived from the reconstructed 
attractor of scalar HRV time series. To compute these 
nonlinear dynamical parameters, we have chosen the methods, 
which are explained in the methods section, that give more 
accurate estimation results even for short length of time series.  

The MED parameter is measured to check the nonlinear 
dynamical nature of HRV during meditation, which quantifies 
the interaction of dynamical parameters. In each of the 
meditation states, the attractor of the system can be 
reconstructed from time series with smaller embedding 
dimension compared to pre-meditation state. The MED values 
can be taken in the range 8-15 to completely unfold the 
dynamics. Even though there are not much difference in the  

MED values of HRV between meditation and pre-meditation 
states, the results indicate high dimensional chaotic nature of 
HRV time series in both meditation and pre-meditation states.  

The HRV during meditation has shown a higher value of 
NLS compared to pre-meditation state. Higher NLS have 
suggested an increased nonlinearity of HRV, especially in 
meditation state. The higher NLS probably reflect possible 
increase in sympathetic function during meditation. The 
differences in NLS between the two states are also statistically 
significant. The NLS measures used in this work are based on 
local extrema of time series.  

The CD gives a measure of complexity of systems 
measured as degree of freedom or number of state variables of 
the dynamical system. It is found that during meditation state 
the HRV time series have significantly lower CD values than 
pre-meditation state. From this it is inferred that the HRV 
during meditation is more rhythmic. The reduction of 
irregularity of HRV could be explained by a decrease of 
dynamical complexity of cardiovascular system. The statistical 
analysis has showed that the CDs are best differentiable 
between the two groups. 
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TABLE II 
AVERAGE CORRELATION DIMENSION VALUES IN VARIOUS EMBEDDING 

DIMENSIONS FOR HRV TIME SERIES OF  KUNDALINI MEDITATION 
 

  Pre-meditation Meditation Statistical analysis 

ED mean std mean std Chi-sq p-value 

2 0.7934 0.0763 0.9424 0.0233 5.3333 0.0209a 
3 1.1121 0.0793 1.2744 0.0465 4.0833 0.0433a 
4 1.5344 0.0907 1.4564 0.0397 3.0000 0.0832 
5 1.7882 0.1094 1.5859 0.0548 5.3333 0.0209a 
6 2.0565 0.1634 1.6937 0.0632 5.3333 0.0209a 
7 2.2992 0.1926 1.7923 0.0720 5.3333 0.0209a 
8 2.4983 0.2160 1.8888 0.0819 5.3333 0.0209a 
9 2.6926 0.2532 1.9828 0.0911 5.3333 0.0209a 
10 2.8612 0.2847 2.0734 0.0958 5.3333 0.0209a 
11 3.0216 0.3242 2.1592 0.0966 5.3333 0.0209a 
12 3.1486 0.3589 2.2433 0.0935 5.3333 0.0209a 
13 3.2292 0.3691 2.3255 0.0872 5.3333 0.0209a 
14 3.2792 0.3652 2.4033 0.0800 5.3333 0.0209a 
15 3.3443 0.4018 2.4794 0.0822 5.3333 0.0209a 
16 3.3591 0.4142 2.5460 0.0985 5.3333 0.0209a 
17 3.4093 0.5233 2.6093 0.1302 5.3333 0.0209a 
18 3.4661 0.7085 2.6742 0.1775 3.0000 0.0832 
19 3.4506 0.7727 2.7305 0.2228 3.0000 0.0832 
20 3.3023 0.6069 2.7760 0.2666 2.0833 0.1489 

 
TABLE III 

AVERAGE LLE OF HRV IN CHI MEDITATION 
 

Pre-meditation Meditation Statistical analysis 

Mean Std Mean Std chi-sq p-value 
0.060
3   0.0123 0.0639 0.0206 6.3403 0.0118a 

 
TABLE IV 

AVERAGE LLE OF HRV IN KUNDALINI MEDITATION 
 

Pre-meditation Meditation Statistical analysis 

Mean Std Mean Std chi-sq p-value 

0.0900 0.0241 0.1034 0.0166 5.5383 0.0186a 
 

The predictability of the system is quantified by LLE, 
which also gives the presence of chaos. The LLE describes the 
rate of exponential divergence of trajectories and sensitive 
dependence on the initial condition. During meditation state 
the HRV showed higher LLE which confirms decreased 
predictability in this state compared to pre-meditation state. 
The decrease in predictability (increase in LLE) probably 
reflects a high degree of chaos during meditation state 
compared to pre-meditation state. This can be due to increased 
nonlinear interaction of variables in meditation state, and may 
be related to increased sympathetic activity and changes in 
peripheral vascular mechanisms. It is also found that HRV 
time series are chaotic both before and during meditation, as 
suggested by the positive LLEs in either state. 

The intense stimulation of either the sympathetic or 
parasympathetic system could ultimately result in 
simultaneous  

TABLE V 
AVERAGE NONLINEARITY SCORE OF HRV IN CHI MEDITATION 

 

PSC Algorithm           

  Pre-meditation Meditation Statistical analysis 

  mean std mean std Chi sq p-value 

PRS 1.9171 0.8352 4.3339 2.2337 5.8346 0.0157a 
GSS 2.7662 0.6686 6.3246 2.5818 9.9265 0.0016a 

          

NET Algorithm        

  Pre-meditation Meditation Statistical analysis 

  mean std mean std Chi sq p-value 

PRS 2.1350 0.8524 4.3068 2.3547 3.5735 0.0587 
GSS 3.4606 0.4634 5.0411 1.4517 6.3529 0.0117a 

 
TABLE VI 

AVERAGE NONLINEARITY SCORE OF HRV IN KUNDALINI MEDITATION 
 

PSC Algorithm           

  Pre-meditation Meditation Statistical analysis 

  mean std mean std Chi sq p-value 

PRS 1.2549 0.7801 3.1124 2.5697 4.3200 0.0377a 
GSS 2.2256 1.8778 4.1634 3.3446 3.0000 0.0833 

          

NET Algorithm        

  Pre-meditation Meditation Statistical analysis 

  mean std mean std Chi sq p-value 

PRS 1.1921 0.5847 5.3436 2.6278 15.8700 0.0001a 
GSS 2.6685 0.7476 6.3294 2.3294 14.5200 0.0001a 

 
 
discharge of both systems [87], [97]. Several studies have 
demonstrated influence of autonomic activity during 
meditation associated with decreased heart rate and blood 
pressure, decreased respiratory rate, and decreased oxygen 
metabolism [88], [3], [10], [92], [93]. However, a recent study 
of meditative techniques suggested a mutual activation of 
parasympathetic and sympathetic systems by demonstrating an 
increase in the variability of heart rate during meditation [6]. 
The increased variation in heart rate was hypothesized to 
reflect activation of both arms of ANS. This notion is 
consistent with recent developments in the study of autonomic 
interactions [89] [94]-[96], and also fits the characteristic 
description of meditative states in which there is a sense of 
overwhelming calmness as well as significant alertness. 

The present study of HRV time series using nonlinear 
techniques has shown significant differences between the pre-
meditation and meditation states, and thus could give 
additional insight into underlying dynamics of HRV and in the 
investigation of cardiac autonomic function during meditation. 
However, it should be noted that the present study has been 
considered on a smaller sample size of data and further 
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investigation is required on a larger sample of data size to 
substantiate the present work. 
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