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Non-Stationary Stochastic Optimization of an
Oscillating Water Column

Marı́a L. Jalón, Feargal Brennan

Abstract—A non-stationary stochastic optimization methodology
is applied to an OWC (oscillating water column) to find the design
that maximizes the wave energy extraction. Different temporal cycles
are considered to represent the long-term variability of the wave
climate at the site in the optimization problem. The results of the
non-stationary stochastic optimization problem are compared against
those obtained by a stationary stochastic optimization problem. The
comparative analysis reveals that the proposed non-stationary
optimization provides designs with a better fit to reality. However,
the stationarity assumption can be adequate when looking at averaged
system response.
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I. INTRODUCTION

S INCE the last decades, wave energy is being investigated

as an alternative to fossil fuels [1]–[3]. Of the wave energy

converters, the OWC (oscillating water column) system is the

most studied and the one with the largest number of full-size

prototypes [4]. However, these systems are not yet competitive

and several researchers have tried to find the optimal designs

among all possible. López et al. [5] used a numerical model

to maximize the capture factor of a fixed OWC for a given set

of wave conditions. Gomes et al. [6] maximized the annual

average power available to the turbine of a floating OWC

device from real sea waves, using a stochastic model [7]. Jalón

et al. [8] described a stochastic optimization framework for an

OWC in different time scales (season, year). Furthermore, they

considered time-series simulations of the wave climate taking

into account its temporal variability [9], [10] to compare the

future performance of the different optimal designs obtained

with the stochastic optimization.
Notwithstanding, the temporal variability of the wave

climate should also be considered in the design of such

devices, because of the influence of the variability of wave

energy on the power output [11]. In this context, the main

research objective of this paper is to describe and analyse

the non-stationary stochastic optimization for an OWC. For

this purpose, non-stationary mixture distributions of the peak

period are used in the optimization method proposed by Jalón

et al. [8].

II. METHODOLOGY

For this research, we consider a particular design for an

OWC system (Fig. 1) with radius a, submergence d, and
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emergence e. This device has a Wells turbine with an outer

rotor diameter D, and rotational speed N. The system is

supposed to be able to automatically modify its parameters

(d, N) so as to maximize the wave energy extraction. To this

end, the formula of the available pneumatic power for the

turbine in the sea state is adopted to quantify the wave energy

extraction.

Fig. 1 Sketch of the OWC system [8]

Assuming that values of the submergence and rotational

speed of the turbine for which device performance is optimal

are weakly depend on significant wave height [8], the

stochastic optimization of the wave energy extraction can be

calculated as follow:

max E[P̄avai,irr] =

∫
�
P̄avai,irrf (Tp) dTp

s.t

2.0 ≤ d ≤ 8.0

0.0 < N ≤ 2.0Mmaxca/D

(1)

where P̄avai,irr is the available pneumatic power for the

turbine in the sea state (see [8]), f(Tp) is the stationary

probability density function of the peak period, Mmax is the

Mach number, and ca is the speed of sound in the air.

However, the temporal variability of the wave climate

(f(Tp, t)) should be considered in the design of such

devices. Hence, under non-stationary conditions, the
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optimization problem in (1) rewrites as:

max E[P̄avai,irr] =

∫
�
P̄avai,irrf (Tp, t) dTp, ∀t ∈ T

s.t

2.0 ≤ d ≤ 8.0

0.0 < N ≤ 2.0Mmaxca/D

(2)

with T being the time window of the data.

For this purpose, a non-stationary parametric mixture model

that combines two Log-Normal probability density functions

of the peak period [10] is used:

f(Tp, t) = α(t)fLN1
(Tp, t) + (1− α(t))fLN2

(Tp, t) (3)

where fLNi
(Tp, t), i = 1, 2 are the Log-Normal probability

density functions, and α(t) and (1 − α(t)) provides the

weight of the first and second Log-Normal distribution

with time, respectively. This parametric model is able to

reproduce the statistical variability at different time scales. The

intra-annual and inter-annual variations of all the parameters

of the model (α(t),μ1(t),σ1(t),μ2(t),σ2(t)), are expressed as

the superposition of a Fourier truncated series over a time

interval of one year, and two longer-term sinusoidal cycles

representative of the studied site (T1, T2):

θ(t) = θ0 +

Nk∑
k=1

[θka cos(2πkt) + θkb sin(2πkt)] (4)

+ θa1 cos (2πt/T1) + θb1 sin (2πt/T1)

+ θa2 cos (2πt/T2) + θb2 sin (2πt/T2)

III. RESULTS

A. Intra-Annual and Inter-Annual Variability of the Peak
Period

The proposed non-stationary stochastic optimization

problem is exemplified for a particular geographical

location. The study area is located at a depth of 10.0 m in the

Gulf of Cadiz (Spain) (see [8]). Figs. 2 and 3 represent the

intra-annual and the inter-annual time variation of the peak

period in the site, respectively. From these figures, it can be

observed an intra-annual and an inter-annual variation in both

the median (red line) and the dispersion (blue box). These

analyses show the need to consider the temporal variability

in the design of the system.
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Fig. 2 Intra-annual variability of the peak period
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Fig. 3 Inter-annual variability of the peak period

B. Parametric Mixture Models

1) Parametric Stationary Mixture Model: In the case of the

parametric stationary mixture model of the peak period (5), the

parameters of the model are not time dependent.

f(Tp) = αfLN1
(Tp) + (1− α)fLN2

(Tp) (5)

They are obtained using maximum likelihood (α = 0.4345,

μ1 = 1.6507, σ1 = 0.2152, μ2 = 2.3785, σ2 = 0.2360),

although it could be also calculated from the non-stationary

probability density function (f(Tp) =
∫ t

0
f(Tp, t)dt).

To compare the use of a mixture model, the peak period

is fitted using a Log-Normal probability density function

(μ = 2.062, σ = 0.426). Fig. 4 shows both stationary models,

along with the empirical probability density function of the

peak period. The mixture model (2 Log-Normal) is shown to

provide a better fit than the standard model (1 Log-Normal).
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Fig. 4 Empirical probability density function (bins), and probability density
function calculated with the standard model (−) and with the mixture

model (o), for the peak period

2) Parametric Non-Stationary Mixture Model: Fig. 5 shows

the non-stationary probability density function fitted to the

peak period (3). The inter-annual variations are modeled with

cyclical components of T1 = 5 and T2 = 11 yrs. The fitting

parameters (4) can be found in Jalón et al. [8].
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Fig. 5 Non-stationary probability density function of the peak period

Fig. 6 shows both the non-stationary and the stationary

probability density function (pdf ) of the peak period. In the

case of the non-stationary function, a different pdf is obtained

in each period of time. In contrast, the stationary function is

represented by the same pdf independently of the time.

Fig. 6 Non-stationary (−) and stationary (o) probability density function of
the peak period

3) Models Comparison: In order to understand the

influence of taking account the climate variability in the

parametric mixture model, the monthly moving average of the

data (Tp), and the mean values obtained with the different

mixture models (non-stationary, stationary) are compared

(Fig. 7). The mixture stationary model (2 Log-Normal)

provides a constant value for the mean of Tp along the

time. The incorporation of the intra-annual variations in the

non-stationary model produces a seasonal change on the mean

of Tp, although its amplitude remains constant along the

time. Whereas, the inclusion of the inter-annual variations in

the non-stationary model generates a change of the value for

the mean of Tp in cycles longer than one year.
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Fig. 7 Monthly average moving of the peak period observed, and the mean
of the peak period simulated by the non-stationary and the stationary

parametric mixture models

C. Optimization

For the optimization process, we consider a value of the

turbine diameter D = 1 m, radius a = 3.5 m, and emergence

e = 5 m. In regard to the spectrum of the sea states necessary

to calculate the available pneumatic power for the turbine in

the sea state [8], a constant value of the significant wave height

is assumed (Hs = 1 m).

1) Stationary Stochastic Optimization: Solving the

optimization problem (1) with the mixture and standard

stationary probability density functions of the peak

period (Fig. 4), the estimated values of the optimal

submergence, dopt, and the optimal rotational speed of the

turbine, Nopt, are given in Table I:

TABLE I
RESULTS OF THE STATIONARY STOCHASTIC OPTIMIZATION

model dopt(m) Nopt(rad/s)
1 Log-Normal 8 28
2 Log-Normal 8 33

Note that, the same value of the dopt, which coincides

with the maximum submergence imposed, is obtained with the

different stationary models (1 Log-Normal, 2 Log-Normal). In

regard to Nopt, very similar values are obtained with both

models, although the maximum allowed value is not reached.

2) Non-Stationary Stochastic Optimization: Following the

optimization problem (2) with the non-stationary mixture

probability density function of the peak period (Fig. 5), the

optimal submergence values, dopt, and the optimal rotational

speed values, Nopt, are obtained based on the time (Fig. 8).
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Fig. 8 Results of the non-stationary stochastic optimization: dopt (o), Nopt

(∗)

As can be observed, the optimal results inherit the temporal

variability of the wave climate. An intra-annual cycle is

observed on the Nopt, where the less energetic months (see

Fig. 2) correspond to lower values of Nopt. Furthermore, Nopt

presents an inter-annual cycle, reaching the higher values in

the higher energetic years (see Fig. 3). In regard to dopt, an

intra-annual cycle is only observed in the less energetic years.

D. Models Comparison

The available pneumatic power based on the different

optimization results and on the wave climate is calculated

to compare the performance of the non-stationary and

stationary optimal designs (Fig. 9). The values for the
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available pneumatic power in each sea state associated with

the central regimen, result to be very similar independently

of the type of optimization adopted for optimal design

(stationary or non-stationary). However, the resulting design

from non-stationary optimization provides higher values for

pneumatic power.

Fig. 9 State curve of the available pneumatic power for an OWC with
different designs: non-stationary optimal design (o), stationary optimal

design following the 2 Log-Normal model (x), and stationary optimal design
following the 1 Log-Normal model (+)

Fig. 10 represents the annual maximum values of

the available pneumatic power for the different optimal

designs. The higher difference appears in December 2000,

where the consideration of the stationary optimal design

supposes a decrease of the 37.8 % (2 Log-Normal model) and

the 41.3 % (1 Log-Normal model) respect to the non-stationary

optimal design.
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Fig. 10 Annual maximum values of the available pneumatic power for an
OWC with different designs: non-stationary optimal design (o), stationary

optimal design following the 2 Log-Normal model (x), and stationary
optimal design following the 1 Log-Normal model (+)

IV. CONCLUSION

This paper proposes a non-stationary stochastic optimization

methodology which takes into account the temporal variability

of the wave climate in the design of systems whose

performance depends on the sequence of the sea states.

The non-stationary stochastic optimization methodology

has been applied to an OWC system located in a specific

site. As evident from the results, the optimal design variables

obtained from the proposed methodology capture the temporal

variability of the wave climate, in contrast to the resulting

fixed values for these variables given by the stationary

optimization. From a practical point of view, this methodology

allows a better fit to reality which is intended to avoid a

system performance far from optimal along the time. This

better performance is observed in the higher values for

wave energy extraction given by the non-stationary optimal

design. Notwithstanding, it is noted that the stationarity can

be an adequate assumption when looking at averaged system

response.
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