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Abstract—In this paper, a numerical solution based on non-

polynomial cubic spline functions is used for finding the solution of 
boundary value problems which arise from the problems of calculus 
of variations. This approximation reduce the problems to an explicit 
system of algebraic equations. Some numerical examples are also 
given to illustrate the accuracy and applicability of the presented 
method. 
 

Keywords—Calculus of variation; Non-polynomial spline 
functions; Numerical method 

INTRODUCTION 
HE calculus of variations and its extensions are devoted to 
finding the optimum function that gives the best value of 
the economic model and satisfies the constraints of a 

system. The need for an optimum function, rather than an 
optimal point, arises in numerous problems from a wide range 
of fields in engineering and physics, which include optimal 
control, transport phenomena, optics, elasticity, vibrations, 
statics and dynamics of solid bodies and navigation[1]. In 
computer vision the calculus of variations has been applied to 
such problems as estimating optical flow[2] and shape from  
shading [3]. Several numerical methods for approximating the 
solution of problems in the calculus of variations are known. 
Galerkin method is used for solving variational problems in 
[4]. The Ritz method [5], usually based on the subspaces of 
kinematically admissible complete functions, is the most 
commonly used approach in direct methods of solving 
variational problems. Chen and Hsiao [6] introduced the 
Walsh series method to variational problems. Due to the 
nature of the Walsh functions, the solution obtained was 
piecewise constant. Some orthogonal polynomials are applied 
on variational problems to find the continuous solutions for 
these problems [7-9]. A simple algorithm for solving 
variational problems via Bernstein orthonormal polynomials 
of degree six is proposed by Dixit et al. [10]. Razzaghi et al. 
[11] applied a direct method for solving variational problems 
using Legendre wavelets. He’s variational iteration method 
has been employed for solving some problems in calculus of 
variations in [12]. 
   Spline functions are special functions in the space of which 
approximate solutions of ordinary differential equations. In 
other words spline function is a piecewise polynomial, 
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satisfying certain conditions of continuity of the function and 
its derivatives. The applications of spline as approximating 
interpolating and curve fitting functions have been very 
successful[13-16]. Quadratic and cubic polynomial and non-
polynomial spline functions based methods have been 
presented to find approximate solutions to second order 
boundary value problems[17]. Khan [18] used parametric 
cubic spline function to develop a numerical method, which is 
fourth order for a specific choice of the parameter. The main 
purpose of the present paper is to use non-polynomial cubic 
spline method for numerical solution of boundary value 
problems which arise from problems of calculus of variations. 
The method consists of reducing the problem to a set of 
algebraic equations. The outline of the paper is as follows. 
First, in Section 2, we introduce the problems in calculus of 
variations and explain their relations with boundary value 
problems. Section 3 outlines non-polynomial cubic spline and 
basic equations that are necessary for the formulation of the 
discrete system. Also in this section, we report our numerical 
results and demonstrate the efficiency and accuracy of the 
proposed numerical scheme by considering two numerical 
examples.  

 

II. STATEMENT OF THE PROBLEM 
The genaral form of a variational problem is finding 
extremum of the 
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                                                                                               (1) 
To find the extreme value of J , the boundary conditions of 
the admissible curves are known in the following form: 
 

( ) , 1, 2,..., ,i iu a i nγ= =                           (2) 

( ) , 1, 2,..., .i iu b i nδ= =                           (3) 
 
The necessary condition for ( ), 1, 2,...,iu t i n= ,  to extremize 

)](),...,(),([ 21 tututuJ n is to satisfy the Euler-Lagrange 
equations that is obtained by applying the well known 
procedure in the calculus of variation [5], 

( ) 0, 1,2,...,
i i

G d G i n
u dt u
∂ ∂

− = =
′∂ ∂

                             (4) 

subject to the boundary conditions given by Eqs. (2)-(3). 
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   In this paper, we consider the special form of the variational 
problem(1) as 

[ ( )] ( , ( ), ( )) ,
b

a

J u t G t u t u t dt′= ∫                                  (5) 

 with boundary conditions 
,)(,)( δγ == buau                                                (6) 

and 

1 2 1 2 1 2[ ( ), ( )] ( , ( ), ( ), ( ), ( ))
b

a

J u t u t G t u t u t u t u t dt′ ′= ∫   (7) 

subject to boundary conditions 
 

,)(,)( 1111 δγ == buau                                          (8) 

.)(,)( 2222 δγ == buau                                        (9) 
 
Thus, for solving the variational problems (5), we consider the 
second order differential equation 
 

( ) 0,G d G
u dt u

∂ ∂
− =

′∂ ∂
                                                       (10) 

 
with the boundary condition (6). And also, for solving the 
variational problems (7), we find the solution of the system of 
second-order differential equations 
 

( ) 0, 1, 2,
i i

G d G i
u dt u
∂ ∂

− = =
′∂ ∂

                                (11) 

 
with the boundary conditions (8)-(9). Therefore, by applying 
non-polynomial cubic spline method for the Euler-Lagrange 
equations (10) and (11) we can obtain an approximate solution 
to the variational problems (5) and (7). 
 

III. Non-polynomial Cubic spline method 
 

   Consider the partition },...,,,{ 210 ntttt=Δ of .],[ Rba ⊂  
Let )(ΔkS denote the set of piecewise polynomials of degree 

k on subinterval ][ 1, += iii ttI of partition Δ . In this work, we 
consider non-polynomial cubic spline method for finding 
approximate solution of variational problems. 
 
    Consider the grid points it  on the interval ],[ ba  as 
follows: 

 bttttta nn =<<<<<= −1210 ...                          (12) 

,,...,2,1,0,0 niihtti =+=                                  (13) 

,
n

abh −
=                                                                      (14) 

where n is a positive integer. Let )(tu be the exact solution of 

the Eq.(10) and )(tSi be an approximation to 

)( ii tuu = obtained by the segment ).(tPi  Each non-

polynomial spline segment )(tPi  has the form: 
 

( ) sin ( ) cos ( ) ( )i i i i i i i iP t a k t t b k t t c t t d= − + − + − +  

,1,...,2,1,0 −= ni                                                           (15) 
 
where iii cba ,, and id are constants and k is the frequency 
of the trigonometric functions which will be used to raise the 
accuracy of the method and Eq. (15) reduce to cubic 
polynomial spline function in ],[ ba when 0→k . 
 
We consider the following relations: 
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We can obtain the values of iii cba ,, and id via a 
straightforward calculation as follows: 
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where kh=θ and .1,...,1,0 −= ni  Using the continuity 
conditions 1,0),()(
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following relations for 0,1,..., 1i n= − : 
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By reducing the indices of Eqs. (20) and (21) by one, we get 
the following equations: 
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and also 
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2
1,0,1,

2
3, −

−
=+ jD ji are eliminated from Eq. (23) by using 

Eq. (22). As a result we get the following scheme: 
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where 

2 2

1 1 1 cos,
sin sin

θα β
θ θ θ θ θ θ

= − = −                  (25) 

In order to illustrate the performance of the non-polynomial 
cubic spline method, we present two examples. 
 
Example 1. We first consider the following variational 
problem with the exact solution tetu 3)( = in [12]: 

1
3

0

min ( ( ) ( ) 4 ) ,tJ u t u t e dt′= + −∫                               (26) 

subject to boundary conditions 
 

3(0) 1, (1) .u u e= =                                             (27) 
 
Considering the Eq. (26), the Euler-Lagrange equation of this 
problem can be written in the following form: 
 

3( ) ( ) 8 0.tu t u t e′′ − − =                                                  (28) 
 
The solution of the second-order differential equation (28) 
with boundary conditions (27) is approximated by the 
presented spline method. For our purpose, We consider the 
boundary value problem (28) in general form as follows: 
 

( ) ( ) ( ) ( ),u t g t u t f t′′ = +                                                 (29) 
 
Where 1)( =tg and tetf 38)( = . The exact solution of this 

problem is tetu 3)( = . For a numerical solution of the 
boundary-value problem (29), the interval ]1,0[  is divided 
into a set of grid points with step size h . Setting 
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Using Taylor’s series for Eq. (33), we can obtain local 
truncation error as follows:    
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The linear system (33) consists of )2( −n equation with 
n unknowns .,...,1,
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1 niu
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 To obtain unique solution, we 

need two equations. For this purpose, we can use the 
following equations that are found by using method of 
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                                                                         (36) 
The local truncation errors niti ,...,2,1, =  associate with 
the scheme (33), (35) and (36) can be obtained as follows: 
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The errors are reported on the set of uniform grid points 
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The maximum error on the uniform grid points S  is 

( ) max ( ) ( ) ,

0
u j n jE h u t u t

j n
∞
= −

≤ ≤
                            (38) 

where )( jtu is the exact solution of the given example, and 

ju is the computed solution by the non-polynomial cubic 

spline method. The maximum absolute errors in numerical 
solution of the Example 1 are tabulated in Table I. These 
results show the efficiency and applicability of the presented 
method. 
 

TABLE I 
RESULTS FOR EXAMPLE 1 

n  h  
∞

)(hEu  

4  2500000.0  31052887.3 −×  
8  1250000.0  41096710.3 −×  

16  0625000.0  51085156.2 −×  
32  0312500.0  61085427.1 −×  
64  0156250.0  71017167.1 −×  

128  0078125.0  91034391.7 −×  
   

 
 
Example 2. In this example, consider the following problem 
of finding the extremals of the functional[11]: 
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with boundary conditions 
 

1 1(0) 0, ( ) 1,
2

u u π
= =                                          (40) 

1)
2

(0)0( 22 −==
πuu                                       (41) 

which has the exact solution given by 
)).sin(),(sin())(),(( 21 tttutu −=  For this problem, the 

corresponding Euler-Lagrange equations are 

1 2

2 1

( ) ( ) 0,
( ) ( ) 0,

u t u t
u t u t
′′ − =⎧

⎨ ′′ − =⎩
                                                          (42) 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:3, 2011

358

 

 

with boundary conditions (40) and (41). In a similar manner 
and applying (24), we assume that functions )(1 tu  and 

)(2 tu  defined over the interval ]
2

,0[ π
 are approximated by 
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Where ijijij cba ,,, ,,  and 2,1,, =jd ij  are constants 

and k  is the frequency of the trigonometric functions. 
Similarly, we can obtain the following results: 
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                                                                                             (45) 
 
where α  and β are defined in (25).  Now, consider the 

system (42) and substitute ,itt =  thus we can write: 
 

 1, 2, 2, 1,, ,i i i iu u u u′′ ′′= =                                             (46) 

 
consequently, we have: 
 

., ,1,2,2,1 iiii uMuM ==                                         (47) 

By using relations (45) -(47), we get:  
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2
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                                                                                             (48) 
The system (48) contains )2(2 −n  equations with n2  
unknown coefficients .,...,1,2,1,

2
1,

niju
ij

==
−

 To 

obtain unique solution, four more equations are needed. These 
equations are found by using method of undetermined 
coefficients and are given below: 

2

1,0 1 3 1 31, 1, 2 , 2 ,
2 2 2 2

2

3 1 1, 3 11, 1, 2 , 2 ,
2 2 2 2

2 3 (15 3 ), 1,
24

3 2 (3 15 ), ,
24nn n n n

hu u u u u i

hu u u u u i n
− − − −

⎧
− + = + =⎪

⎪
⎨
⎪ − + = + =⎪⎩

                                                                                          (49)                   
and 

2

2,0 1 3 1 32, 2, 1, 1,
2 2 2 2

2

3 1 2, 3 12, 2, 1, 1,
2 2 2 2

2 3 (15 3 ), 1,
24

3 2 (3 15 ), .
24nn n n n

hu u u u u i

hu u u u u i n
− − − −

⎧
− + = + =⎪

⎪
⎨
⎪ − + = + =⎪⎩

                                                                                           (50) 
The Eqs. (48)-(50) produce a linear system that contains 
n2 equations with n2  unknown coefficients. Solving               

this linear system, we can obtain the approximate solution of        
the system of second-order boundary value problems(42). 
   Suppose 

∞
)(

1
hEu and 

∞
)(

2
hEu  be the maximum 

absolute errors. We solved Example 2 for different values of 
n . The maximum of absolute errors on the uniform grid 
points (37) are tabulated in Table II . 
 

TABLE II 
RESULTS FOR EXAMPLE  2 

n  h  
∞

)(
1

hEu  
∞

)(
2

hEu  

4  392699.0  51050959.1 −×  51050959.1 −×  
8  196350.0  61056763.1 −×  61056763.1 −×  

16  098175.0  71006058.1 −×  71006058.1 −×  
32  049087.0  91075003.6 −×  91075003.6 −×  
64  024544.0  101023519.4 −×  101023519.4 −×  

128  012272.0  111065017.2 −×  111065017.2 −×  
    

 
 

IV. CONCLUSION 
In this paper non-polynomial cubic spline method 

employed for finding the extremum of a functional over the 
specified domain. The main purpose is to find the solution of 
boundary value problems which arise from the variational 
problems. The non-polynomial cubic spline method reduce the 
computation of boundary value problems to some algebraic 
equations. The proposed scheme is simple and 
computationally attractive. Applications aredemonstrated 
through illustrative examples 
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