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Non-Local Behavior of a Mixed-Mode Crack in a
Functionally Graded Piezoelectric Medium
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Abstract—In this paper, the problem of a mixed-Mode crack
embedded in an infinite medium made of a functionally graded
piezoelectric material (FGPM) with crack surfaces subjected to
electro-mechanical loadings is investigated. Eringen’s non-local
theory of elasticity is adopted to formulate the governing electro-
elastic equations. The properties of the piezoelectric material are
assumed to vary exponentially along a perpendicular plane to the
crack. Using Fourier transform, three integral equations are obtained
in which the unknown variables are the jumps of mechanical
displacements and electric potentials across the crack surfaces. To
solve the integral equations, the unknowns are directly expanded as a
series of Jacobi polynomials, and the resulting equations solved using
the Schmidt method. In contrast to the classical solutions based on
the local theory, it is found that no mechanical stress and electric
displacement singularities are present at the crack tips when nonlocal
theory is employed to investigate the problem. A direct benefit is the
ability to use the calculated maximum stress as a fracture criterion.
The primary objective of this study is to investigate the effects of
crack length, material gradient parameter describing FGPMs, and
lattice parameter on the mechanical stress and electric displacement
field near crack tips.

Keywords—Functionally graded piezoelectric material, mixed-
mode crack, non-local theory, Schmidt method.

1. INTRODUCTION

ISCOVERED as early as 1880 by Pierre and Jacques

Curie, piezoelectricity can be defined as the linear
electromechanical interaction between the mechanical and
electrical states of crystals devoid of a center of symmetry [1].
Piezoelectric materials exhibit the piezoelectric effect; that is,
electric polarization is induced in the material on application
of mechanical loads and vice-versa [2]. However, a major
shortcoming of piezoelectric ceramics is that they are
extremely brittle with a propensity to develop cracks due to
stress concentrations induced as a consequence of both
mechanical and electrical loadings [3]. A class of materials
which could potentially alleviate the problem of internal
deboning and stress concentration in  conventional
piezoelectric materials are functionally graded materials
(FGMs). Over the past two decades, FGMs have already
shown great promise to be used as an alternative to
conventional homogenous coatings [4]. These materials are
generally composed of at least two-phase inhomogeneous
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particulate composites synthesized in such a manner that the
volume fractions of the constituents vary continuously along
any desired spatial direction, resulting in materials having
smooth variation of mechanical properties. Therefore, any
material property discontinuities that exist maybe suitably
eliminated when FGMs are used as coating material.
Therefore, the concept of FGMs can be extended to
piezoelectric materials to synthesize FGPMs that exhibit
improved reliability. For reliable service lifetime prediction of
FGPM based devices, it is imperative to investigate and
understand the fracture behavior of FGPMs and their effects
on the electro-mechanical response. Most of the previous
investigations into the fracture of FGPMs adopt classical
continuum mechanics based on the local theory. Another point
easily noticed is that these studies are almost exclusively
devoted to the analysis of anti-plane Mode-III crack problems.
Considering both electrically impermeable and permeable
crack surfaces Chue and Ou [5] studied the problem of a
Mode-III crack oriented perpendicular to the interface formed
by bonding two functionally graded piezoelectric half-planes.
Hsu and Chue [6] solved the Mode III fracture problem of an
arbitrarily oriented crack in functionally graded piezoelectric
strip bonded to a homogenous piezoelectric half plane. Chen
and Chue [7] investigated the Mode-III fracture problem of a
cracked functionally graded piezoelectric surface layer bonded
to a cracked functionally graded piezoelectric substrate. A
survey of the literatures shows that as opposed to Mode-III
crack problems in FGPMs, studies concerning Mode-1, Mode-
II and mixed-Mode crack problems are far and few between.
Ueda [8] analyzed the mixed-Mode dynamic fracture problem
for functionally graded piezoelectric strip containing a parallel
crack under in-plane mechanical and electric impact loadings.
Recently, Zhou and Chen [9] examined the interaction of two
parallel Mode-I limited-permeable cracks in FGPMs.
Common to all aforementioned studies, the use of classical
continuum mechanics techniques is based on the local
assumption to investigate crack problems in FGPMs.
According to local elasticity theory, the state of stress at a
specific point in the material depends only on the state of
strain at the same point. Contrary to physical reasoning, the
application of local elasticity theory invariably leads to stress
singularities at the crack tips. A major issue here is that stress
at the crack tips is indeterminate, and thus there, a fracture
criterion based on maximum stress is not easy to establish.
Different from classical local elasticity theory is the nonlocal
elasticity theory which attempts to develop the constitutive
relationships without foregoing the microstructure of the
material. Nonlocal continuum mechanics initiated by Eringen
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[10] is based on the nonlocal elasticity model, where the state
of stress at a given point is a function of the strain states at all
points in the material. The nonlocal theory was employed to
great success by Eringen [11] to investigate the stress near the
tip of a sharp line crack in an isotropic elastic plate. Unlike
classical (or local) elasticity theory, it was shown that the
stress field calculated by using nonlocal theory does not
contain any singularities at the crack tips. Therefore, nonlocal
elasticity models can be used to obtain the stress field in the
vicinity of the crack tips and establish a fracture criterion in a
natural way. A major hindrance to studying crack problems in
FGPMs via nonlocal elasticity models is the inherent
mathematical difficulty associated with it. To the best
knowledge of the authors, the electro-elastic behavior of
FGPMs with a mixed-Mode electrically impermeable crack
has not been studied using the non-local theory in open
literature. Therefore, in this paper, the concept of Eringen’s
non-local theory is adopted to solve the mixed-Mode crack
problem in a FGPM. The major emphasis is to calculate the
stress and electric fields in FGPMs with mixed-Mode cracks
through a formulation based on the non-local theory.

This paper is organized as follows. The formulation and the
boundary conditions of the problem are presented in Section
II. The solution methodology is described in Section III, where
the mixed boundary value problem is reduced to a system of
singular integral equations. Section IV contains the validation
of results, parametric study, and a discussion of the results.
Finally, concluding remarks are provided in Section V.

II. PROBLEM DESCRIPTION AND FORMULATION
The problem under consideration is shown in Fig. 1. The
Cartesian coordinate system (x,z)is used for all the analysis

presented here. The problem domain consists of a functionally
graded piezoelectric medium extending infinitely in X and z
directions, with an embedded crack of length 2l oriented along
the x-axis.

: Electrically impermeable v

crack
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' Material l
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y

Fig. 1 Geometry and loading of the mixed-Mode crack problem

To make the problem analytically tractable and as is
common in the treatment of crack problems for isotropic non-
homogeneous materials [5], we assume that the material

gradient is in the z-direction and the electro-mechanical
properties depend on z as:

(C11:613:C43.Caa )(2) = (€11:€13:C33:Cag ), vz, (D
(efs-€31:€53)(2) = (ers.€a1.€33)e”?, vz, (2)
(e1:633)(2) = (11,633)e”", vz, (3)
wherecj ,e;, and ¢ are respectively the shear moduli, the

piezoelectric coefficients and the dielectric parameters, of
FGPM. Their corresponding values in the FGPM medium
along the crack plane are given by cjj,e;, andsj; . The
subscripts i and j indicate the indices used in (1)-(3). Here, g
denotes the nonhomogeneity parameter that controls the
variation of properties in the functionally graded piezoelectric
medium. When g=0 the problem reduces to a homogenous
piezoelectric material case. Mechanical loadings (z,,,7,,)in

the form of tangential and normal traction are applied on the
FGPM. In addition, electrical loading(D,,) in the form of

electric field is applied. The crack surface traction loading can
be obtained by using the superposition principle from a
Neumann boundary value problem consisting of the FGPM
medium without cracks subject to far-field mechanical and
electric loading [12]. The crack surfaces are assumed to be
electrically impermeable. The X and z components of the
displacement field are denoted by u and v, respectively, while
the electric potential is given by ¢. Based on the classical (or
local) elasticity theory, the constitutive equations involving
the strain-displacement relationships, the linear elastic stress-
strain law and the general electro-elastic interaction for
continuously nonhomogeneous media are given by [13]

e=LU, 4
)
11 OX
u . .
where &=| ¢33 ,U:[V},L: 0 6i in which ¢,, &, and
z
13 Ea)
0z 0Ox

&,are the components of the local strain field in the

coordinate system (x,z).
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0,, 03, , and o, are the components of the local stress field in

the coordinate system (x,z). The X and z components of the

local electric displacement field are given by DS and DY,

respectively.

Here, we adopt Eringen’s nonlocal elasticity theory and
reformulate (5) to obtain the constitutive relations in the
nonlocal framework. According to the nonlocal theory, the
stress at a point X in a body depends not only on the strain at
point X but also on those at all other points of the body [10].
Accordingly, the constitutive relations can be expressed in an
integral form as shown as [13]:

[ 7D, ](X

where wn, in nonlocal elasticity theory can be expressed in an
integral form here z,, D, (with i,k=13) are the nonlocal
stress tensor and electric displacement fields, respectively,
defined at a point X in the body. It is easily noted that (6)
relates the nonlocal quantities to their corresponding local
D¢ defined in (5). Here, a(|X-X]) is a
nonlocal kernel also called the influence function that
introduces the effect of strain and electric fields at points X' to
the stress and electric displacement at point X . This influence
function expression is given by

a(|X=X"]) =a, exp{—[ijz [(x— XY +(z- z’)zj} 7

where a is taken as the lattice parameter of the material and

:Vja(\x =X )[ow.D¢ J(X)av (X)), ©)

ik »

components o, ,

2
a, = —(éj .Here, 5 is an external characteristic length.
z\a

Neglecting body forces and local electric charge, the
following electro-elasticity equations in the graded medium

can be easily derived [14]:
c a—2+/)’ﬁ v(x,2)
“loxa T ax ’

o o 0 o
G +ou ngﬂE u(xz)+ S

+[e3, %‘Fels (% +ﬂ§ ]gﬁ(x,z) =0, ®)

u(x2) +[c44+c33{§+ﬂ H (x2)
xz)=

oxer

J 2
[915 5833 ;2+ﬁ D#ﬁ

[04462%13 i+ﬁ§(
©)

[915;;+931 [;; +ﬂ§(]]u(x,z)+[915§2(2+e33[; +ﬁ§ZDV(“)
~2
+[6‘11§(22 —&33 [;722 +,8§ZD¢(X, Z) =0.

For the mixed-Mode crack (Mode-I and II), the electro-
elasticity equations (8)-(10) in the graded material are subject
to the following boundary conditions:

(10)

(7575 D](%0°) =[720:70: D)), X<, (1
[, D)) (%.07) =[30,70. D) (% 07), VX, (12)
[uv.g)(x.07) =[uv.](x.07). ¥ 21, (13)
[uv.g)(x.2)= VXZoE0,  (14)

The applied electro-mechanical loadings on the crack faces
are given in (11). The continuity condition for stresses and
electric displacement along the crack plane is indicated in
(12). Equations (13) describes the continuity of the
displacement field and the electric potential along the crack
plane outside the crack. Also, regularity conditions given by
(14) require that the displacement and electric field remain
bounded and therefore must vanish as X, z goes to +o.

III.SOLUTION PROCEDURE OF THE EMBEDDED CRACK
PROBLEM

The electro-elasticity equation (8)-(10) is a system of partial
differential equations (PDEs) that need to be solved to
determine the unknown variables, namely, the displacement
field (u,v)and the electric scalar potential(¢). The standard

Fourier transform is applied with respect to the X-coordinate as

[uv,¢](x.2) = j [0.V.4](s.z)e™ ds. (15)

1
27

Here, s is the Fourier transform variable and T,V and ¢
represent the transformed unknown variables. This
transformation reduces the PDEs given by (8)-(10) to a system
of sixth-order ordinary differential equations (ODEs) with
o,vand ¢ as the dependent and z as the independent
variables. The resulting ODEs can be solved in a
straightforward manner using well-known mathematical
techniques [15]. The sixth-order characteristic polynomial
associated with the ODE is given as

X*+a,X +a,=0, with X =m*+ Am+a,, (16)

where the coefficients a,,a and a, depend only on the

electro-elastic constants.
Employing the Fourier transform, the mixed-boundary
value problem is converted into the following three integral
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equations, with the unknown variables being the jumps of the
physical fields across the crack surfaces:

f(x)=u(x,0)-u?(x,0),
v (x,0), (17)
f;(x)=4" (x,0)-¢ (x.0),

f,(x)=v"(x,0)—

where, the superscript j=1, 2 is used to differentiate the
solutions between that corresponding to the half-plane z>0
andz <0, respectively. Therefore, using (6), the non-local
quantities can be expressed as

[ ot [ )t o o e
o

Here, the non-local quantities z,;, 7, and D, are expressed in

—0

(18)

X'=X|)[ 02,0505 | ’,z’)dx}dz',

terms of the unknown, f. ;(s) (j=1.3), the Fourier transform of
f,(x) i=1..3). After simplifications, the boundary conditions
(11) can be applied to obtain the following:

_ 1 T |SX <
ELK ds =7,. X<, (19)
in which,
T3 K, T30
A=l7, |, K=K, |, =] 7 |-
D3 K3 D3()

where the expressions of the kernels, K,, K, and K, in the

integral equations (19) are

Ki(s)=7(s)D’(s). (20)
where
f, d e f
f=|f,|and D'=|d, & f, |
f73 d: e% f;
Here, d; (s), e (s) and f’(s)(i=1.3) are known functions

which depend on the material properties.

Now, the mixed-Mode crack problem has been reduced to a
system of three integral equations given (19) that can be
solved to determine the unknown functions f (s), f,(s),
and f,(s).

As the lattice parameter “a” tends to zero, the nonlocal
theory approaches the classical (or local) theory. From a
mathematical standpoint, as “a” tends to zero, the kernels of
the three integral equations (19) d;(s).e(s), and

f."(s)reduce to a non-zero constant resulting in “singular”

integral equations. These “singular” integral equations are the
same as those obtained from the classical electro-elasticity
theory. The important aspect is that when “a” is not zero, the
integral equations are not singular as in the nonlocal case, but
when “a@” is equal to zero, the integral equations are singular
as in the classical case. Due to this fundamental difference
between the two cases, different methodologies are generally
required to solve the singular and nonsingular integral
equations. In classical electro-elasticity theory, the
singularities must be extracted from the kernels of the singular
integral equations and a solution in terms of orthogonal
polynomials is sought [16]. In this case, the resulting stress
field is singular and the results are in general given in terms of
stress intensity factors that can be used as a fracture criterion
based on linear elastic fracture mechanics. However, for the
case of nonsingular integral equations, there are no
singularities in the kernels and the stress field obtained is
nonsingular. Unlike classical theory, the calculated stresses
can potentially be used to establish a fracture criterion without
the need for stress intensity factors.

The system given by (19) is solved by treating it as a single
integral equation of the first kind with discontinuous kernel
[13]. Integral equations of the first kind are generally ill-posed
in the sense of Hadamard; i.e., small perturbations of the data
can yield arbitrarily large changes in the solution [13] and
hence a numerical solution is often difficult. Zhou et al. [13]
showed that this difficulty can be overcome by using the
Schmidt method ([17], [18]). Therefore, the Schmidt method
is employed here to solve the system of three integral
equations (19). The jumps of mechanical displacements and
electric potential are expanded by the following series:

- St (-
0,

11
where a,,b, ,and ¢, are unknown coefficients, and Pn(“](x)

is a Jacobi polynomial [19].
For the domain |x|<I, where f,(x)(i=1..3) is nonzero, the

Fourier transforms of (21) can be written as [20]
ARAT

where  Q,=2vz(-1)'i"[(n+1+1/2)/n!. Here, T(x) and

J,(x) are the Gamma and Bessel functions of order n,

o

=Y [a,.b,.¢,]Q

n=

1
s o (81): (22)

=L

respectively.

By substituting (22) in (20), we rewrite (19) to obtain the
following system of equations which can now be solved for
the coefficients a and c¢, by the Schmidt method:

n> n’

ST (X)A, =%,(x).

n=0

H<x<l, (23)
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in which, asymmetric across X =0 which is a result of the
B EYEY U, a, application of tangential traction on the crack as expected
Fo=| R E2RY L %=V | A =|b |, in a mixed-Mode crack scenario.
GY G® G® W, c,
30 : : . :

where BV, E?,G"U,.V,, and W, (j=1.3) are known 25 | 1

functions. 20 L |

IV. RESULTS AND DISCUSSIONS T3 15 ¢ 1

The mechanical stresses (75,7y;) and electric displacement Ty 10 f b 1

(Ds) in the medium are evaluated by determining the s L '-\\ _

unknown coefficients a,,b,, and c, from (23) as explained in ok j T————— i

section III. Of particular interest is the calculation of the
mechanical stresses and electric displacements in the vicinity
of the crack tips, and determining their variation as a function x/1
of the functionally graded parameter (), lattice parameter (&)

Fig. 2 (a) Comparison of the normalized normal stress, z,, (x,0)/z,
and crack length (I). PZT-5H is used as a model material for

the calculations presented here, properties of which are
provided in Table I based on the data in [13].

obtained from the present work (solid line) with that of Liang [22]
(dashed line). Results are shown for a case of a crack embedded in an
infinite functionally graded medium subjected to uniform normal

TABLE I crack surface traction 7, with a/61 =0.001,1=1.0and g=1.0

MATERIAL PROPERTIES OF PZT-5H BASED ON [13]

¢, =12.6E10Nm 2, ¢, = 5.3E10Nm 2, c,, =11.7EI0Nm 2, % ' ' ' '
¢, =3.53E10Nm>, e, =17Cm>, e, =—6.5Cm, e,, = 23.3Cm~, =0 f
£, =15.1E —9C*N"'m?, &, =13E —9C>N"'m™, o
r.. 151 )f \

A. Results Validation - ol / \

In order to validate the solution methodology adopted, a %o Al \
particular case of a homogeneous medium (i.e. with a small
value for non-homogeneity parameter,#) and vanishing or —
piezoelectric coefficient is considered first. Under these 5 ' : ' '
conditions, the present problem reduces to the one studied by e oss 0% 1/ vorooem e
Zhou et al [21]. Referring to Fig. 4 in [21], the normalized /1
stress value near the crack tip, for a/sl=0.002 is Fig. 2 (b) Locally enlarged graph of Fig. 2 (a)
approximately 14.25 for S tending to zero. For the same case, : : : : : : :
from the present formulation a value of 14.199 is obtained for 35 | 1
the normalized stress (733/7 ) which is in excellent agreement
with [21]. As a second case of validation, by considering 5 F ]
vanishing piezoelectric coefficient in the present work, and .
assuming the second and third boundary conditions in (11) go —=15 1
to zero, a comparison can be made with results in [22]. Fig. 2 fo
shows the comparison of the normalized normal 5 .
stress, 733 (x,0)/z, for a crack embedded in an infinite

_5 1 1 1 1 1 1 1

functionally graded medium subjected to uniform normal
surface tractionz, witha/51=0.001, 1=1.0, and B=1.0.The

results are in excellent agreement with [22].

x/ 1
. Fig. 3 (a) Variation of the normal stress 7., (X, 0) /t,, with x
B. Parametric Study
(i) Figs. 3 (a)-(c) show the variation of normalized normal

stress, tangential stress, and electric displacement with X,
and it is clear that all quantities have finite values at

fora/sl =0.001, 1=1.0, and #=1.0 under uniform combined
mechanical and electric loading

X =%l (crack tips). Also, all quantities of interest are
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20 T T T T T T T

16 B

s s r q
Ty

x/1

Fig. 3 (b) Variation of the tangential stress z,, (X,O)/ 7, with X

fora/sl =0.001, 1=1.0, and #=1.0 under uniform combined
mechanical and electric loading

[

x/1
Fig. 3 (c) Variation of the electric displacement D, (X,O)/ D, with X

fora/sl =0.001, 1=1.0, and #=1.0 under uniform combined
mechanical and electric loading

(ii)) The normal stress and the electric displacement fields
near the inner (left) crack tips are larger than the ones near
the outer (right) crack tips as shown in Figs. 3 (a) and (c).
On the other hand, the tangential stress field is smaller at
the inner crack tip as shown in Fig. 3 (b). This asymmetry
is due to the presence of horizontal mechanical loadings
on the crack surfaces.

(iii) A particularly interesting observation is that the maximum
stress and electric displacement do not occur exactly at
the crack tip, but in its immediate vicinity as shown in
Figs. 3 (a) and (b). Similar observations were drawn by
[23]. It is also noted that the distance between the crack
tip and the point at which the maximum occurs is small
and depends on the crack length and the lattice parameter.
Another observation is that the values of stresses and
electric displacement reduce quite rapidly away from the
crack tips and approach zero as X — o . Away from the
crack tips, this behavior is qualitatively similar to results
obtained via classical methods.

(iv) The normalized stresses and electric displacement fields
at the crack tips tend to decrease with increase in the
lattice parameter as shown in Figs. 5 (a)-(c). Therefore, it
can be concluded that FGPMs characterized by higher
lattice parameters are more resilient to fracture.

-1.01 1 -0.99
xSl

Fig. 4 (a) Locally enlarged graph of Fig. 3 (a) near the crack left tip

25 3

0.99 1 1.01
x/0

Fig. 4 (b) Locally enlarged graph of Fig. 3 (a) near the crack right tip

30 T T T T T

0 0002 0004 0.006 0.008 001 0012
aldl

Fig. 5 (a) Effect of the lattice parameter a on the normal stress
7, (iI,O) / 7, along the crack line for 1=1.0 and #=0.4 under

uniform combined mechanical and electric loading

16

o 0002 0.004 0006 0008 001 0012
al i

Fig. 5 (b) Effect of the lattice parameter @ on the tangential stress
7, (iI,O) /7, along the crack line for 1=1.0 and g =0.4 under

uniform combined mechanical and electric loading
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40

30t

0 0002 0004 0006 0008 001 0012
ald

Fig. 5 (c) Effect of the lattice parameter a on the electric

displacement D, (+l.0)/ D, along the crack line for I=1.0 and g=0.4

™)

(vi)

(vii)

under uniform combined mechanical and electric loading

For the case ofa=0, at the crack tips, finite values of
field quantities are obtained as seen from Fig. 5. Also, it
is clear that as “@” tends to zero, the values of the field
quantities increase rapidly with decreasing values of “a”.
In the classical limit whena=0, it is known that the
stresses and electric displacements are singular at the
crack tips and the observations in Fig. 5 provide a good
qualitative agreement with the classical theory.

With a/s held constant, the values of the normalized

stresses and electric displacement at the crack tip
increase with increasing crack length (I) as shown in Fig.
6.

It is evident from the discussion in (iv) and (vi) that the
maximum stress depends on the lattice parameter (a)
(which is an internal length scale related to the
microstructure of the material) and the crack length (I)
(which is an external length scale related at the
macroscopic level). Hence, it can be concluded that the
maximum stresses calculated through Eringen’s nonlocal
formalism enable the unification of macroscopic and
microscopic scales.

(viii) From Figs. 7 (a) and (c), it is clear that for #>0, the

(ix)

normalized stresses and electric displacement at the
crack tips tend to increase with increasing gradient
parameter. Also, for f<0, the values increase with
reduction of the gradient parameter. The minimum
values are attained close to #=0. Unlike normal stress
and electric displacement, the tangential stress fields
vary almost linearly with the gradient parameter (Fig. 7
(b)). Therefore, the gradient parameter () can be used

to control the stress and electric displacement fields at
the crack tips.

As seen from Fig. 3 through 7, Eringen’s nonlocal theory
provides a maximum value for the stresses and electric
displacement when studying mixed-Mode cracks in
FGPMs. The distribution of the field variables is devoid
of singularities at the crack tips which is in direct
contrast to what is expected from classical (based on
local assumption) and micropolar [24] continuum

theories. The indeterminate nature of stresses at the
crack tips is a major drawback of these theories, making
it difficult to attribute a unique value for the maximum
stress in the material in the presence of cracks.
Therefore, both classical and micropolar continuum
theories fail to establish a brittle fracture criterion based
on the maximum stress hypothesis. This prompted the
investigators to consider other alternatives; for instance,
the popular Griffith’s criterion which is based on
considerations of energy balance [25]. On the other
hand, as maximum stresses can be evaluated in the
neighborhood of the crack tips through Eringen’s
nonlocal theory, a fracture criterion based on maximum
stress hypothesis can be established [10]. Eringen et al.
[11] and Eringen [26] investigated, respectively, the
Mode-I and Mode-II crack problems in an isotropic
homogenous medium. For the Mode-I problem, Eringen
et al. [11] stipulated a fracture criterion based on the
maximum stress hypothesis which states that the crack
becomes unstable when the calculated maximum normal
stress 7, exceeds the cohesive strength 7z of the

atomic bonds. Similarly, for a Mode-II problem [26], the
crack becomes unstable when the calculated shear stress
7y, exceeds the cohesive strengthz,. The cohesive

strength holding the atomic bonds were calculated by
introducing the experimentally measured values of
surface energy ([26], [11]). Therefore, through the
maximum stress hypothesis, a fracture criterion was
established that unified the macro and micro scales in
addition to employing the natural concept of bond failure
([26], [11]). It must be noted that that Eringen and his
group established this criterion for homogeneous
materials treating Mode-I and Mode-II cracks separately.
On the other hand, smart materials such as FGPMs can
also have electrical Modes of crack opening in addition
to the mechanical Modes [27]. Furthermore, for mixed-
Mode fracture of FGPMs, Eringen’s maximum stress
fracture criterion cannot be extended in a straightforward
manner and needs further consideration and can form
part of future investigations.

50 T T T T T T

45 L

Fig. 6 (a) Effect of the length crack | on the normal stress

T, (tl,O)/Tﬂ along the crack line for a/61=0.001and g=0.4 under

uniform combined mechanical and electric loading
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25 T T T T T T

Fig. 6 (b) Effect of the length crack | on the tangential stress
7,,(1,0)/ 7, along the crack line for §/é1=0001and =0.4 under

uniform combined mechanical and electric loading

70 T T T T T T

60

2=

a0

Fig. 6 (c) Effect of the length crack | on the electric displacement
D, (iI,O)/ D, along the crack line for a/é1=0.001and g=0.4 under

uniform combined mechanical and electric loading
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Fig. 7 (a) Effect of the functionally graded parameter f on the (a)
normal stress z,,(+1,0)/ 7, along the crack line for a/s1=0.002and 1=1.0

under uniform combined mechanical and electric loading

Fig. 7 (b) Effect of the functionally graded parameter 8 on the
tangential stress ,, (+1,0)/ r, along the crack line for &dl=0.002and

I=1.0 under uniform combined mechanical and electric loading

20 T T T T T

Fig. 7 (c) Effect of the functionally graded parameter f on the electric
displacement D, (+1,0)/ D, along the crack line for a/61=0.002and

I=1.0 under uniform combined mechanical and electric loading

V. CONCLUSION

In the present work, the mixed-Mode fracture problem of a
FGPM has been solved within the framework of nonlocal
continuum mechanics employing Eringen’s nonlocal elasticity
model. An electrically impermeable crack is embedded in an
infinitely extending FGPM and 1is subject to electro-
mechanical loadings. By wusing Fourier transforms, the
governing equations are converted into a system of three
integral equations, where the unknowns are the jumps of
mechanical displacement and the electric potentials across the
crack. The unknowns are expanded as a series of Jacobi
polynomials to obtain a system of linear algebraic equations
that are solved by using the Schmidt method. Results show
that the stresses and electric displacement fields throughout
the problem domain including the crack tips are devoid of any
singularities unlike electro-elasticity fracture problems studied
via classical (or local) elasticity theories. The present
formulation using Eringen’s nonlocal theory gives finite
values for the maximum stress in the vicinity of crack tips —
thus making it possible to employ the maximum stress
hypothesis to establish a fracture criterion. It is also observed
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that the maximum stress and electric displacement near the
crack tips depends on the functionally graded parameter, crack
length and lattice parameter. Establishing a brittle fracture
criterion for FGPMs based on the maximum stress hypothesis
is a promising direction for research and can be pursued as
part of future work.
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