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Abstract—A mathematical model for the transmission of SARS 
is developed.  In addition to dividing the population into susceptible 
(high and low risk), exposed, infected, quarantined, diagnosed and 
recovered classes, we have included a class called untraced.  The 
model simulates the Gompertz curves which are the best 
representation of the cumulative numbers of probable SARS cases in 
Hong Kong and Singapore.  The values of the parameters in the 
model which produces the best fit of the observed data for each city 
are obtained by using a differential evolution algorithm.  It is seen 
that the values for the parameters needed to simulate the observed 
daily behaviors of the two epidemics are different. 

Keywords—SARS, Mathematical Modeling, Differential 
Evolution Algorithm

I. INTRODUCTION

 HE SARS (Severe Acute Respiratory Syndrome) 
epidemic in 2003 created near panic among the general 

populaces in Asia [1, 2].  Singapore has estimated that the 
economic lost of potential income by the country caused by 
the fear of this disease was over 20 billion dollars]. Even 
though the start of the disease began in China around the 
middle of November 2002], the epidemic in the rest of Asia 
and Canada can be traced back to a single visitor to Hong 
Kong at the end of February, 2003 [4].  From Hong Kong, the 
disease was transmitted to Vietnam, Singapore, Taiwan and 
Canada.  By the end of the epidemic, the cumulative number 
of probable SARS case stood at 8,427 cases with 813 deaths 
[5].  For some reason, the SARS epidemic ended by the end of 
the summer of 2003 although there have been a few reported 
cases in 2004.  These were among military personnel or 
scientists who undertook unauthorized studies of the live 
virus. 
 Over the past few years, there have been warnings from  
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the public health officials throughout the world about the 
inevitable outbreak of the avian flu (H5N1) pandemic [6].  
The panic now is not among the general populaces but among 
public health officials in various countries and at the WHO.  
Elected government officials [7] have proposed the spending 
of billions of dollars to stockpile unproven medicines to treat 
this disease if ever arises.  Mathematical models [8, 9] have 
been proposed for developing strategies to lessen the dire 
consequences of a disease which at present has a mortality 
rate of over 50%. There have been warnings from WHO and 
the authors of refs. 8 and 9 that building a mathematical model 
is that the assumptions, the model are built on is not proven.  
To construct a model for the spread of a disease, the epidemic 
must have already occurred.  Then one could compare the 
predictions of the model with what has actually occurred.  In 
the absence of the actual occurrence of the epidemic, one 
should look at the lessons learnt from previous epidemics. 
    Towards the end of the SARS epidemic, many 
mathematical models [10-14] of the transmission of this 
disease began to appear.  They looked at the influence of early 
diagnosis, of quarantine and isolation, of cleanness of among 
the general populace and of the presence of classes of people 
called “untraced” on the spread of SARS virus.  All of these 
models required the separation of the populace into different 
population groups (suppose N). With at least three parameters 
needed in the dynamical equations to describe the time 
evolution of each group, one would need at least 3N 
numerical values.  How many populations groups depend on 
the model is being used.  In one model on AID’s [15], the 
population was divided into over fifty groups based on sex, 
age and occupation.   
 Due to the great amount of uncertainty that would arise 
when there are a large number of untraced people present and 
when there are many parameters to be determined, the fitting 
of the model to the past data to obtain the values of the 
parameters would be a horrendous task.  In addition to this, 
Bombardt [16] recently showed that the SAR outbreak (2003) 
in Taiwan could be explained if there was time varying rate of 
disease transmission.  The time varying rate was determined 
by examining the epidemic curves.  In this paper, we used a 
differential evolution (DE) algorithm to obtain the values of 
the parameters in our model for the SAR epidemic in Hong 
Kong and Singapore. We will find that a different set of 
numerical values are needed to simulate the behavior of 
different epidemics.  One set of values can not account for the 
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behaviors of all the epidemics due to one disease.  The DE 
algorithm is a class of stochastic search and optimization 
methods.  The DE algorithm used, the DE/best/2/bin scheme 
given by Price & Storn, [17] is briefly reviewed in Section IIc.  
Descriptions of the SARS epidemic in Hong Kong and in 
Singapore are presented in Section IIa.  The model for the 
transmission of SARS is given in Section IIb.  In Section III, 
the numerical values of the parameters that lead to the 
simulated results which most closely matched the observed 
results are given.  The simulated curves for the cumulative 
number of SARS cases in the two city states are presented 
here.  We see that the simulated curves closely fit the 
Gompertz description of the observed daily increases in the 
number of SARS cases in the two cities.   We make some 
comments in Section IV. 

II. MATHEMATICAL MODELS AND METHODS

A. SARS Epidemic in Hong Kong and Singapore  

The initial cases of an atypical pneumonia appeared in 
Fushan City, Guangdong Province in China in the middle of 
November 2002.   An accurate epidemiological study of the 
index patient who started the global spread of this disease can 
be found on the CDC website (http://www.cdc.go
/mmwr/preview/mmwrhtml/mmm5212a1. htm# figure 1 on 
the site).  He was a medical doctor visiting Hong Kong who 
had checked into a hotel in Hong Kong.  At the hotel, he 
infected ten people.  The index patient and three of the newly 
infected persons were taken to four hospitals in Hong Kong 
where they in turn infected more people.  Three other 
invectives went to Singapore.  There, they began the epidemic 
in that country.  Two others went to Canada and began the 
epidemic in the city of Ontario.  The remaining two traveled 
to the USA and to Europe.  They did not however start any 
new epidemics.  In the second ring of the epidemiology chain 
in Hong Kong, 103 of new cases were health care workers.  
The epidemic in Taiwan was started by a businessman who 
had visited Hong Kong, but no direct or indirection 
connections with the people in the primary or secondary ring 
of the epidemiology could be established.  
 When the world realized that it had a newly emerging 
infectious disease epidemic on its hand and that this disease 
was highly contagious and could be quickly spread through 
out the world, panic among the general population occurred.  
Close monitoring of the spread of this disease began.  
Knowing who the index patients were and having excellent 
health care systems, Hong Kong and Singapore were able to 
accurately record the progress of SARS in their location.  In 
Figures 1 and 2, the cumulative number of probable SARS 
patients on each day of the epidemic in Hong Kong and 
Singapore, respectively, are given.  The data points (open 
circles) are the raw numbers provided by WHO on their 
website (http://www.who.int/csr/sars/ country/2003_07_11. 
en). In addition to the data on the cumulative number of cases, 
the web site also provided data on the number of new cases 
and the number of people recovering each day. 

 Looking at the shape of the curves formed by the raw data 
on the cumulative number of probable SARS cases, we 
recognize them to be the Gompertz curves.  These curves are 
the most commonly used curves to fit the data on the growth 
of a large variety of populations.  The Gompertz curve is often 
divided into three segments.  The first segment reflects the 
dynamics of the initial growth of the populations.  In this 
segment, the curve indicates an exponential growth and so the 
curve is concave in this time region.  Laird [18] defines the 
end of this segment to be the point at which the population is 
equal to 0.37 of its final number. This point is often called the 
inflection point in the curve.  In this study, we take it to be the 
27th day from the start of the epidemic.  The second segment 
starts at the infection point and reflects the dynamics of the 
growth when the limitations on the exponential growth begin 
to be a factor.  The limitations can be due the finiteness of the 
food supply or of the number of susceptible people who can 
be infected.  The end of the second segment is the crossover 
point.  The crossover point is defined as the intersection of the 
initial slope of the first segment of the curve and slope of the 
Gompertz curve in the saturation region, the region in which 
no increase in the number of infected people is observed.  The 
third segment extends from the crossover point into the 
saturation region.  In this study, the crossover point is set to be 
the 54th day of the epidemic. 

B. Mathematical Model 
Since the SARS epidemics have only been of short 

durations and so the number of births and deaths from natural 
causes would be small, the Kermack-McKendrick model [19] 
is used.  We have added an additional class, the untraced 
classes, to the model.  In our model, the population is divided 
into ten categories; S1 denotes the number of susceptible 
people in the general population; S2, the number of susceptible 
people who are at high risk (health care workers and close 
relatives); Sq1, the number of susceptible people who are 
quarantined; Sq2, the number of susceptible high risk people 
who are quarantined; Eq, the number of people known to have 
been exposed to SARS and who are therefore quarantined; E, 
the number of people who have been exposed but are 
untraced; Q and J, the number of known infectious people 
who are quarantined or who are quarantined and isolated, 
respectively; I is the number of infectious persons who are 
untraced and R is the number of people who have recovered.  
A verbal description of what is happening is described as 
follows. 
 The susceptible population is divided into two categories 
since the health care workers and the close relatives will come 
into contact with the infected populations more often than 
would the general population.  They would therefore a higher 
risk of contacting the diseases.  In all other regards, the two 
categories are identical.  We let the parameter ‘p’ indicate how 
much more the high risk group would be susceptible to the 
diseases.  We further let q1 and q2 be the fractions of the two 
susceptible populations who have come into contact with an 
infected person and k be the number of contacts that that an 
infectious person makes per day.  If b is the probability of 
transmission per contact, then 1-b is the probability that the 
contact will not result in the transmission of the disease.  
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Adopting a policy of quarantining a person who may have 
come in contact (both causal and repeated) with a sick person, 
then q1k(1-b)S1 and q1pk(1-b)S2 people would be quarantined 
each day.  The people who enter into the quarantine will leave 
when the authorities are sure that they did not catch the 
disease.  This means that they would have to stay for at least 
the number of days in the incubation period.  A susceptible 
person belong to either susceptible classes would become 
exposed if they encountered an infectious person.  The 
infectious person can be a person whose health status is not 
known or one who is under quarantine or is in isolation.  Since 
the opportunity for a member in the general population to met 
people belonging to the latter two groups is reduced, the 
probability that a quarantined (or a quarantined and isolated) 
person will transmit the disease to a susceptible person in the 
general population would be q  (or l ).  Normally, 0 <  < q 
< 1.  The rates at which people enter into the known exposed 
group (Eq) are q1  and q2p  from the two susceptible groups, 
while the rates at which people enter into the untraced 
exposed group E are (1-q1)  and p(1-q2) .  d1 and d2 are the 
rates at which the traced (quarantined) and untraced infectious 
persons become known and are moved into isolation, 
respectively. 1, 2 and 3 are the rates at which the infectious 
individuals from the three groups (infectious who are 
quarantined, infectious who are untraced and who are 
isolated) respectively. 1, 2 and 3 are the mortality rates due 
to SARS of the three infectious groups.  The flow chart of the 
transmission of this disease is given in Figure 3.   
 The mathematical formulation of the model is done by 
noting that the time rate of change of each population group is 
equal to the number going in minus the number leaving.  
Expressing in mathematical terms what is happening verbally, 
we get

1
1 q1

t

dS qQ+I+ J[ ]+ S
dt N

S   ,   (1a) 

2
2 q2

t

dS qQ+I+ Jp [ ]+ S
dt N

S  ,   (1b) 

q1
1 1 q1

t

dS qQ+I+ J=q k(1-b)S [ ]- S
dt N

,     (1c) 

           q2
2 2 q2

t

dS qQ+I+ J=q pk(1-b)S [ ]- S
dt N

,  (1d) 

          q
1 1 2 2 q

t

dE qQ+I+ J= (q S +pq S )[ ]- E
dt N

,     (1e) 

                      

1 1 2 2
t

dE qQ+I+ J= ((1-q )S +p(1-q )S )[ ]- E
dt N

 ,  (1f) 

        q 1 1 1
dQ = -( +d + )Q
dt

E  ,           (1g) 

                 2 2 2
dI = -( +d + )I
dt

E  ,       (1h) 

           1 2 3 3
dJ =d Q+d I-( + )J
dt

 ,                 (1i) 

and                 1 2 3
dR = Q+ I+ J
dt

           (1j) 

with Nt = S1 + S2 + Sq1 + Sq2 + Eq + E + Q + I + J + R. 
 In the present work, we assume that the rates at which the 
infectious populations (Q and I) enter into the population 
group labeled J are the same, i.e., d1 = d2 and that the values of 
the recovery rates 1 and 2 are the same and 1/ 1 = 1/d1 +
1/ 3.  The numerical values of the other parameters are 
determined by the differential evolution algorithm (DE), 
which is described in the next section (IIc).  Using the 
numerical values generated by the DE at each update, 
equations (1a) to (1j) are numerically solved.  The criteria for 
determining the optimal set of numerical values is given at the 
end of Section IIc.  The cumulative number of probable SARS 
cases at time t, are obtained from the solutions of the 
equations when the optimal set of parameter values are used.  
Not unsurprising, the plot of cumulative number of cases 
versus time is a Gompertz curve (See Figures. (1) and (2)). 

C. Differential Evolution Algorithm 
 The ideal of Differential Evolution was put forth by Price 
and Storm in 1996.  It grew from the attempt to solve the 
Chebychev Polynomial fitting problem presented to Price by 
Storm.  The DE is a sub branch of evolutionary algorithms 
which is a class of stochastic search and optimization 
methods.  It is a generic algorithm for numerical optimization 
in which the user sets the values of three parameters; the 
population size (Np), a constant which controls the 
amplification of the differential variation (F) and the cross 
over constant (CR).  Price and Strom have proposed ten 
variants of the DE algorithm.  We will be using the 
DE/best/2/bin variant. 
 We first choose the values of Np, F, CR, the number of 
maximum updates and the convergence criteria ( ) with 
F [0, 2] and CR  [0, 1].   Lopez [18] has proposed some 
criteria for the values of F and CR so that the differential 
evolution algorithm is an efficient method for determining the 
near optimal values of the parameters.  He suggest that F = 0.9 
and CR = 0.1 when  (a measure population diversity) >  and 
F = 0.5 and CR = 0.5, otherwise.  Once this is done, we 
construct an initial set of n-dimensional vectors where n is the 
number of parameters whose values are to be determined.  
This is done by first establishing the upper and lower bounds 
for each parameter.  We call the vectors constructed with 
upper bound values and with the lower bound values, U and 

L.  We now generate Np new vectors according to the rule
       L U L

i i p= + ( - ) i=1,...,N            (2a) 
where i is random number between) and 1.  i will be the n-
dimensional vector [ 1i, 2i,  .., ni] where ji is the j-th 
component of the i-th (row) vector.  The numerical values 
given by ji will still be within the range of the lower and 
upper bounds for each parameter.  We denote these initial Np
vectors as the G = 0 generation vectors. 
 The differential evolutionary algorithm is a method to 
generate a new generation of n-dimensional vectors (n new 
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numerical values) which when used in the model will yield 
solutions which best fits the observed data.  The corrections to 
each generation is done by constructing a new set of vectors at 
each generation (iteration)

G+1 G+1 G+1 G+1
i 1i 2i niv = [v ,v ,...,v ]  i = 1, ….., Np    .          (2b) 

The new vectors are generated according to the following 
procedure; 

i. From the set G
i p{ , i = 1, 2,....,N }, we randomly 

pick four different vectors belonging to the G-th 
generation and label them j, k, l and r. 

ii.  The G+1
iv  are generated according to 

G+1 G G G G G
i best j k l rv = +F[( - )+( - )]              (2c) 

 where G
best  is the vector in the G-th generation 

which best satisfies the criterion for being the best fit 
(the criterion to be given later) and F is a random 
number between 0 and 2... 

The next generation of the vectors 
       G+1

i ( G+1 G+1 G+1
1i 2i ni[ , ,.... ] )

is created according to the substitution rule: 
G+1
jiG+1

ji G
ji

p

,               if  ( ) CR,
=

                  otherwise

 v

      i = 1,...., N  and   j=1,..,n

randb j

                           (2d) 

where CR is the crossover constant; randb(j) [0,1]denoted 
the j-th evaluation of an uniform random number generator.  
Then we need to see whether the numerical values generated 
for the G+1 generation lie within the bounds or not.  To insure 
this, we apply the following; 

L U L G+1 L G+1 U
j j j ji j ji jG+1

ji G
ji

p

+ ( j)( - ), if < or >
=

                                 otherwise

i=1,...,N   and   j=1,..,n

randb

         .                    (2e) 
The determination of the best G-th generation best choice of 
numerical value, the vector G

best and of when the iteration 

should be stopped involves finding the vector G+1
i (i = 1,…, 

Np) which gives the minimum values of the object function 
J( G+1

i ), defined as 

ob
m

i j=1

i i
j j 2

i,max
ob

k
k

X (t ) - X (t )
= ( )

X
J          (2f) 

          where k = 1,…, Np.
and whether the minimum value is less than the convergence 
criterion.  i

kX (t) is the calculated value of the i-th variable 
(e.g., the cumulative number of SARS cases, the number of 
new cases each day or the number of recovered cases) when 

the numerical entries of the vector G+1
k are used in the model.  

i
obX (t) are the observed values of the variable Xi (t) at time t.  
i,max
obX is the maximum observed value of the variable.  m is 

the number of data points.  We keep on generating new 
generations until the maximum number of iteration is 
performed or when 
      w b J -J <              (2h) 

where Jb = min G
i p{J( ),i=1,...,N }and Jw = max

G
i p{J( ),i=1,...,N }.

III. PARAMETER ESTIMATION

  In this work, the values which need to be estimated from 
the observed data are , p, q, q1, q2, , d1, 3, and {Xi (0)}, 
the last being the initial values in the model.  As we have 
mentioned, we expect the curve which will fit the data on the 
cumulative number of probable SARS cases will be a 
Gompertz curve.  If the equation to be fitted were a linear one, 
there are standard methods to determine the values which 
would give a least square best fit.  Since the equations are non 
linear ones, we have used instead the Differential Evolution 
Algorithm (DE/best/2/bin scheme) to find the values of the 
parameters which would give a least square best fit of each 
segment of the Gompertz curve to the observed data in the 
appropriate time intervals.  This was done for the epidemics in 
Hong Kong and Singapore. 
 The DE/best/2/bin algorithm requires the user to set the 
values of Np (the population size), F (a constant factor that 
controls the amplification of the differential variation) and CF 
(crossover constant).  We have set Np at 35, the maximum 
number of generation is 4000 and the tolerance for 
convergence ( ) is set at 10-8. In our use of DE/best/2/bin, we 
have assumed that the values of p, , d1 and 3 determined by 
a best fit of the first segment of the Gompertz curve to the data 
on the cumulative number of SARS cases in Hong Kong and 
Singapore in the time interval do not change in the second and 
third time intervals.  We however let the values of , q, q1, q2

and  to be different in the three intervals.  Doing this, we  
arrive at the values listed in Table 1 for the model for Hong 
Kong and Table 2 for Singapore.  As we see, all the numerical 
values are different.  This shows that the same set of 
numerical values can not be used to simulate the behavior of 
these two epidemics caused by the same disease (SARS in this 
case).  The solid curves in Figs. 1 and 2, are the plots based on 
the solutions of eqns. (1a) to (1j) using the values given in 
Tables
1 and 2.  The best fit of a Gompertz curve to the data points 
for Hong Kong gave a R2 = 0.9981.  For the data for 
Singapore, the best fit of the Gompertz curve gave a R2 = 
0.9915.

  Comparing the data for two city states, we see that the 
cumulative number of SARS cases in Singapore increased 
faster in the first regime that it did in Hong Kong is the same 
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Fig. 1.  Cumulative Number of SARS patients in Hong Kong Starting 
on February 21, 2003.  The circles are the numbers reported each day 
on the web site http://www.who.int/csr/sars/country/2003.07_11.en. 
The solid curve is the solutions of the differential equations when the 
values of the parameters determined by the DE (differential 
evolutionary algorithm) and which are listed in Table I. were used in 
the model.  

regime.  The estimated transmission rate  in Singapore was 
lower than that in Hong Kong. In both cities, the factions of 
susceptible general population and high risk population, q1
and q2, who were quarantined, were low in the first regime but 
higher in the later regimes   This can be easily understood as 
the results of a stricter application of quarantine and isolation 
as a better understanding of what had to be done as the disease 
developed. 
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Fig. 2.  Cumulative Number of SARS patients in Singapore Starting 
on February 28, 2003.  The circles are the numbers reported each day 
on the WHO web site 
http://www.who.int/csr/sars/country/2003.07_11.en. The solid curve 
is the solutions of the differential equations when the values of the 
parameters listed in Table 2 are used in the model.  

IV. DISCUSSION.
 The purpose is to show that a single set of numerical 
values of the parameters in a model to describe the 
transmission of a disease can not be used to simulate the time 
progression of an epidemic in a given locality.  Different sets 

of numerical values are needed for the epidemic occurring at 
different localities.  A model to describe the time progression 
of an epidemic can only be developed after the epidemic has 
occurred.  This has tremendous implications to present 
development of models to describe the time progression of an 
epidemic caused by a virus which has not yet evolved, i.e., the 
H5N1 avian flu pandemic, into a contagious human to human 
disease.
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TABLE I
VALUES OF THE PARAMETERS WHICH ENTER INTO THE MODEL FOR 

THE SARS EPIDEMIC IN HONG KONG

Parameter values which are common to all three segments of the Gompertz Curve  

                Parameter values which are different in each segment.

TABLE II
VALUES OF THE PARAMETERS WHICH ENTER INTO THE MODEL FOR 

THE SARS EPIDEMIC IN SINGAPORE

Parameter values which are common to all three segments of the Gompertz Curve  

                 Parameter values which are different in each segment. 

Time interval (day 1 ) 1q 2q q l 

1st(1st-27th) 0.21486 0.33507 0.27125 0.16513 0.01184 
2nd(28th-54th)  0.08987 0.85682 0.70036 0.10419 0.00773 
3rd(55th-82nd)  0.00561 0.86788 0.79427 0.16089 0.21045 

            p         1.5057 
           1/10 day-1

           1/6.40 day-1

1 = 1       1/28.35 day-1

       d1 = d2       1/4.85 day-1

3       1/23.5 day-1

1 = 1      1/.006086day-1

1      1/0.043424day-1

Time interval (day 1 ) 1q 2q q l 

1st(1st-27th) 0.21486 0.33507 0.27125 0.16513 0.01184 
2nd(28th-54th)  0.08987 0.85682 0.70036 0.10419 0.00773 
3rd(55th-82nd)  0.00561 0.86788 0.79427 0.16089 0.21045 

            p   1.7427 
      1/10 day-1

     1/5.678 day-1

1 = 1      1/9.19 day-1

       d1 = d2     1/5.32 day-1

3     1/23.87 day-1

1 = 1     1/.005014day-1

1     1/0.06604 day-1


